# **NEC**

# **User's Manual**

# 78K/IV Series

**16-Bit Single Chip Microcontroller** 

**Instructions** 

For all 78K/IV Series

[MEMO]

#### NOTES FOR CMOS DEVICES -

# (1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

#### (2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

# (3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

IEBus and QTOP are trademarks of NEC Corporation.

MS-DOS and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

PC/AT and PC DOS are trademarks of International Business Machines Corporation.

Ethernet is a trademark of Xerox Corporation.

TRON is an abbreviation of The Realtime Operating System Nucleus.

ITRON is an abbreviation of Industrial TRON.

The export of these products from Japan is regulated by the Japanese government. The export of some or all of these products may be prohibited without governmental license. To export or re-export some or all of these products from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

Caution: Purchase of NEC I<sup>2</sup>C components conveys a license under the Philips I<sup>2</sup>C Patent Rights to use these components in an I<sup>2</sup>C system, provided that the system conforms to the I<sup>2</sup>C Standard Specification as defined by Philips.

# The information in this document is subject to change without notice.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

# **Major Revisions in This Edition**

| Pages      | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Throughout | <ul> <li>Addition of μPD784937, 784955 Subseries. Deletion of μPD784943 Subseries.</li> <li>The status of following products changed from under development to completed: μPD784031(A), 784035(A), 784036(A), μPD784044(A), 784044(A1), 784044(A2), 784046(A), 784046(A1), 784046(A2), μPD784054(A), 784054(A1), 784054(A2), μPD784214, 784214Y, μPD784915B, 784916B, μPD784927, 78F4928, 784927Y, 78F4928Y</li> <li>Modification of the package from GC-7EA to GC-8EU in μPD78F4216 and 78F4216Y.</li> <li>Modification of the power supply voltage in μPD784908 Subseries. Mask ROM version (μPD784907, 784908): VDD = 4.5 to 5.5 V → VDD = 3.5 to 5.5 V</li> <li>PROM version (μPD78P4908): VDD = 4.5 to 5.5 V → VDD = 3.5 to 5.5 V</li> </ul> |
| P. 163     | CHAPTER 6 INSTRUCTION SET  Modification of notes for special instructions (CHKL and CHKLA).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| P. 291     | CHAPTER 7 DESCRIPTION OF INSTRUCTIONS  Modification of the operation sequences in the POP instruction.  Addition of Caution to the CHKL instruction.  Addition of Caution to the CHKLA instruction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| P. 473     | CHAPTER 8 DEVELOPMENT TOOL  Modification of arrangement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| P. 479     | CHAPTER 9 SOFTWARE FOR EMBEDDING Addition of description regarding PC environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

The mark ★ shows major revised points.

# **Regional Information**

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- · Ordering information
- · Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- · Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

#### **NEC Electronics Inc. (U.S.)**

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

#### **NEC Electronics (Germany) GmbH**

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

#### **NEC Electronics (UK) Ltd.**

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

# NEC Electronics Italiana s.r.1.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

#### **NEC Electronics (Germany) GmbH**

Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

#### **NEC Electronics (France) S.A.**

Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

#### **NEC Electronics (France) S.A.**

Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

#### **NEC Electronics (Germany) GmbH**

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

# **NEC Electronics Hong Kong Ltd.**

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

#### **NEC Electronics Hong Kong Ltd.**

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

#### **NEC Electronics Singapore Pte. Ltd.**

United Square, Singapore 1130

Tel: 65-253-8311 Fax: 65-250-3583

#### **NEC Electronics Taiwan Ltd.**

Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

#### **NEC do Brasil S.A.**

Electron Devices Division Rodovia Presidente Dutra, Km 214 07210-902-Guarulhos-SP Brasil Tel: 55-11-6465-6810

Fax: 55-11-6465-6829

J98. 8

# INTRODUCTION

|   | Readers      | : This manual is intended for engineers who understand the functions of 78K/IV Series products and wish to design 78K/IV Series application systems.                                                                                                                                                                             |
|---|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| * |              | <ul> <li>78K/IV Series products</li> <li>μPD784026 Subseries : μPD784020, 784021, 784025, 784026, 78P4026</li> <li>μPD784038 Subseries : μPD784031, 784035, 784036, 784037, 784038, 78P4038, 784031(A), 784035(A), 784036(A)</li> <li>μPD784038Y Subseries : μPD784031Y, 784035Y, 784036Y, 784037Y, 784038Y, 78P4038Y</li> </ul> |
| * |              | <ul> <li>μPD784046 Subseries : μPD784044, 784046, 784054, 78F4046, 78444(A),</li> <li>(A1), (A2), μPD784046(A), (A1), (A2), 784054(A),</li> <li>(A1), (A2)</li> </ul>                                                                                                                                                            |
| * |              | <ul> <li>μPD784216 Subseries : μPD784214, 784215, 784216, 78F4216 Note</li> </ul>                                                                                                                                                                                                                                                |
| * |              | • μPD784216Y Subseries : μPD784214Y, 784215Y, 784216Y, 78F4216Y Note                                                                                                                                                                                                                                                             |
|   |              | <ul> <li>μPD784218 Subseries<sup>Note</sup>: μPD784217, 784218, 78F4218</li> </ul>                                                                                                                                                                                                                                               |
|   |              | <ul> <li>μPD784218Y Subseries Note: μPD784217Y, 784218Y, 78F4218Y</li> </ul>                                                                                                                                                                                                                                                     |
|   |              | <ul> <li>μPD784225 Subseries<sup>Note</sup>: μPD784224, 784225, 78F4225</li> </ul>                                                                                                                                                                                                                                               |
|   |              | <ul> <li>μPD784225Y Subseries<sup>Note</sup>: μPD784224Y, 784225Y, 78F4225Y</li> </ul>                                                                                                                                                                                                                                           |
|   |              | <ul> <li>μPD784908 Subseries<sup>Note</sup>: μPD784907, 784908, 78P4908</li> </ul>                                                                                                                                                                                                                                               |
| * |              | <ul> <li>μPD784915 Subseries : μPD784915, 784915A, 784916A, 784915B,</li> <li>784916B, 78P4916</li> </ul>                                                                                                                                                                                                                        |
| * |              | <ul> <li>μPD784928 Subseries : μPD784927, 78F4928</li> </ul>                                                                                                                                                                                                                                                                     |
| * |              | <ul> <li>μPD784928Y Subseries : μPD784927Y, 78F4928Y</li> </ul>                                                                                                                                                                                                                                                                  |
| * |              | <ul> <li>μPD784937 Subseries<sup>Note</sup>: μPD784935, 784936, 784937, 78F4937</li> </ul>                                                                                                                                                                                                                                       |
| * |              | <ul> <li>μPD784955 Subseries<sup>Note</sup>: μPD784953, 784955, 78F4956</li> </ul>                                                                                                                                                                                                                                               |
|   |              | Note Under development                                                                                                                                                                                                                                                                                                           |
|   | Purpose      | : The purpose of this manual is to explain the various instruction functions of the 78K/IV Series.                                                                                                                                                                                                                               |
|   | Organization | : This manual is broadly organized as follows:                                                                                                                                                                                                                                                                                   |
|   |              | <ul> <li>Features of 78K/IV Series products</li> </ul>                                                                                                                                                                                                                                                                           |
|   |              | CPU functions                                                                                                                                                                                                                                                                                                                    |
|   |              | Instruction set                                                                                                                                                                                                                                                                                                                  |
|   |              | Instruction descriptions                                                                                                                                                                                                                                                                                                         |
|   |              | Development tools                                                                                                                                                                                                                                                                                                                |
|   |              |                                                                                                                                                                                                                                                                                                                                  |

- How to read this manual : Readers require a general understanding of electrical and logic circuits and microcontrollers.
  - To check the details of an instruction function when the mnemonic is known:
    - → Use APPENDIX A and APPENDIX B INDEX OF INSTRUCTIONS.
  - . To check an instruction when you know the general function but do not know the mnemonic:
    - → Find the mnemonic in **CHAPTER 6 INSTRUCTION SET**, then check the function in CHAPTER 7 DESCRIPTION OF INSTRUCTIONS.
  - For a general understanding of the various instruction functions of the 78K/IV Series:
    - → Read in accordance with the contents.
  - For information on the hardware functions of the 78K/IV Series:
    - → Read the separate User's Manual.
      - μPD784026 Subseries User's Manual Hardware (U10898E)
      - $-\mu$ PD784038/784038Y Subseries User's Manual Hardware (U R316E)
      - μPD784046 Subseries User's Manual Hardware (U11515E)
      - $-\mu$ PD784054 User's Manual Hardware (U11719E)
      - $-\mu$ PD784216/784216Y Subseries User's Manual Hardware (U12015E)
      - $-\mu$ PD784218/784218Y Subseries User's Manual Hardware (U12970E)
      - $-\mu$ PD784225/784225Y Subseries User's Manual Hardware (U12679E)
      - μPD784908 Subseries User's Manual Hardware (U11787E)
      - μPD784915 Subseries User's Manual Hardware (U10444E)
      - $-\mu$ PD784928/784928Y Subseries User's Manual Hardware (U12648E)
      - $-\mu$ PD784937 Subseries User's Manual Hardware (To be prepared)
      - μPD784955 Subseries User's Manual Hardware (U12833E)

#### Conventions

: Significance in data notation : High-order digit on left, low-order digit on right

Active-low notation :  $\overline{\times}\overline{\times}$  (line above pin or signal name)

Note : Footnote for item marked with Note in the text

Caution : Information requiring particular attention

Remark : Supplementary information

Numeric notations : Binary ..... xxxB or xxxx

> Decimal ..... ×××× Hexadecimal ..... ××××H

# **Related documents**

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

# • Documents common to the 78K/IV Series

| Document Name                      | Document Number |             |
|------------------------------------|-----------------|-------------|
|                                    | Japanese        | English     |
| Pamphlet                           | U10752J         | _           |
| User's Manual – Instructions       | U10905J         | This manual |
| Instruction Set                    | U10595J         | _           |
| Instruction List                   | U10594J         | _           |
| Application Note – Software Basics | U10095J         | U10095E     |

# • Individual documents

# • $\mu$ PD784026 Subseries

| Document Name                                               | Document Number |         |
|-------------------------------------------------------------|-----------------|---------|
|                                                             | Japanese        | English |
| μPD784020/784021 Data Sheet                                 | U11514J         | U11514E |
| μPD784025/784026 Data Sheet                                 | U11605J         | U11605E |
| μPD78P4026 Data Sheet                                       | U11609J         | U11609E |
| μPD784026 Subseries User's Manual – Hardware                | U10898J         | U10898E |
| $\mu$ PD784026 Subseries Special Function Register Table    | U10593J         | _       |
| $\mu$ PD784026 Subseries Application Note – Hardware Basics | U10573J         | U10573E |

# • $\mu$ PD784038/784038Y Subseries

| Document Name                                                  | Docume   | nt Number |
|----------------------------------------------------------------|----------|-----------|
|                                                                | Japanese | English   |
| μPD784031 Data Sheet                                           | U11507J  | U11507E   |
| μPD784035/784036/784037/784038 Data Sheet                      | U10847J  | U10847E   |
| μPD784031(A) Data Sheet                                        | U13009J  | U13009E   |
| μPD784035(A)/784036(A) Data Sheet                              | U13010J  | U13010E   |
| μPD78P4038 Data Sheet                                          | U10848J  | U10848E   |
| μPD784038 Subseries Special Function Register Table            | U11090J  | _         |
| μPD784031Y Data Sheet                                          | U11504J  | U11504E   |
| μPD784035Y/784036Y/784037Y/784038Y Data Sheet                  | U10741J  | U10741E   |
| μPD78P4038Y Data Sheet                                         | U10742J  | U10742E   |
| μPD784038Y Subseries Special Function Register Table           | U11091J  | _         |
| μPD784038/784038Y Subseries User's Manual – Hardware           | U11316J  | U11316E   |
| μPD784038/784038Y Subseries Application Note – Hardware Basics | U13285J  | _         |

•

\*

# • $\mu$ PD784046 Subseries

| Document Name Document Number                       |          | nt Number |
|-----------------------------------------------------|----------|-----------|
|                                                     | Japanese | English   |
| μPD784044/784046 Data Sheet                         | U10951J  | U10951E   |
| μPD784044(A)/784046(A) Data Sheet                   | U13121J  | U13121E   |
| μPD784054 Data Sheet                                | U11154J  | U11154E   |
| μPD784054(A) Data Sheet                             | U13122J  | U13122E   |
| $\mu$ PD78F4046 Preliminary Product Information     | U11447J  | U11447E   |
| μPD784046 Subseries Special Function Register Table | U10986J  | _         |
| μPD784054 Special Function Register Table           | U11113J  | _         |
| μPD784046 Subseries User's Manual – Hardware        | U11515J  | U11515E   |
| μPD784054 User's Manual – Hardware                  | U11719J  | U11719E   |

# • μPD784216, 784216Y Subseries

| Document Name                                              | Document Number |         |
|------------------------------------------------------------|-----------------|---------|
|                                                            | Japanese        | English |
| μPD784214/784215/784216 Preliminary Product Information    | U11813J         | U11813E |
| μPD78F4216 Preliminary Product Information                 | U11825J         | U11825E |
| μPD784216 Subseries Special Function Register Table        | U12045J         | _       |
| μPD784214Y/784215Y/784216Y Preliminary Product Information | U11725J         | U11725E |
| μPD78F4216Y Preliminary Product Information                | U11824J         | U11824E |
| μPD784216Y Subseries Special Function Register Table       | U12046J         | _       |
| μPD784216/784216Y Subseries User's Manual – Hardware       | U12015J         | U12015E |

# • $\mu$ PD784218, 784218Y Subseries

| Document Name                                             | Document Number |         |
|-----------------------------------------------------------|-----------------|---------|
|                                                           | Japanese        | English |
| μPD784217/784218 Preliminary Product Information          | U12303J         | U12303E |
| μPD78F4218 Preliminary Product Information                | U12439J         | U12439E |
| μPD784218 Subseries Special Function Register Table       | Planned         | _       |
| μPD784217Y/784218Y Preliminary Product Information        | U12304J         | U12304E |
| $\mu$ PD78F4218Y Preliminary Product Information          | U12440J         | U12440E |
| $\mu$ PD784218Y Subseries Special Function Register Table | U12919J         | _       |
| μPD784218/784218Y Subseries User's Manual – Hardware      | U12970J         | U12970E |

10

# • $\mu$ PD784225, 784225Y Subseries

| Document Name                                             | Document Number |         |
|-----------------------------------------------------------|-----------------|---------|
|                                                           | Japanese        | English |
| μPD784224/784225 Preliminary Product Information          | U12498J         | U12498E |
| μPD78F4225 Preliminary Product Information                | U12499J         | U12499E |
| μPD784225 Subseries Special Function Register Table       | U12689J         | _       |
| μPD784224Y/784225Y Preliminary Product Information        | U12376J         | U12376E |
| μPD78F4225Y Preliminary Product Information               | U12377J         | U12377E |
| $\mu$ PD784225Y Subseries Special Function Register Table | U12699J         | _       |
| μPD784225/784225Y Subseries User's Manual – Hardware      | U12679J         | U12679E |

# • $\mu$ PD784908 Subseries

| Document Name                                       | Document Number |         |
|-----------------------------------------------------|-----------------|---------|
|                                                     | Japanese        | English |
| μPD784907/784908 Preliminary Product Information    | U11680J         | U11680E |
| μPD78P4908 Preliminary Product Information          | U11681J         | U11681E |
| μPD784908 Subseries Special Function Register Table | U11589J         | _       |
| μPD784908 Subseries User's Manual – Hardware        | U11787J         | U11787E |

# • $\mu$ PD784915 Subseries

| Document Name                                           | Document Number |         |
|---------------------------------------------------------|-----------------|---------|
|                                                         | Japanese        | English |
| μPD784915 Data Sheet                                    | U11044J         | U11044E |
| μPD784915A/784916A Data Sheet                           | U11022J         | U11022E |
| μPD784915B/784916B Data Sheet                           | U13118J         | U13118E |
| μPD78P4916 Data Sheet                                   | U11045J         | U11045E |
| μPD784915 Subseries Special Function Register Table     | U10976J         | _       |
| μPD784915 Subseries User's Manual – Hardware            | U10444J         | U10444E |
| μPD784915 Subseries Application Note – VCR Servo Basics | U11361J         | U11361E |

# • $\mu$ PD784928, 784928Y Subseries

| Document Name                                        | Document Name Document Number |         |
|------------------------------------------------------|-------------------------------|---------|
|                                                      | Japanese                      | English |
| μPD784927 Data Sheet                                 | U12255J                       | U12255E |
| μPD78F4928 Preliminary Product Information           | U12188J                       | U12188E |
| μPD784928 Subseries Special Function Register Table  | U11045J                       | _       |
| μPD784927Y Data Sheet                                | U12373J                       | U12373E |
| μPD78F4928Y Preliminary Product Information          | U12271J                       | U12271E |
| μΡD784928Y Subseries Special Function Register Table | U12719J                       | _       |
| μΡD784928/784928Y Subseries User's Manual – Hardware | U12648J                       | U12648E |

\*

# • $\mu$ PD784937 Subseries

| Document Name                                           | Document Number |                |  |
|---------------------------------------------------------|-----------------|----------------|--|
|                                                         | Japanese        | English        |  |
| μPD784935/784936/784937 Preliminary Product Information | U13572J         | To be prepared |  |
| μPD78F4937 Preliminary Product Information              | U13573J         | To be prepared |  |
| μPD784937 Subseries Special Function Register Table     | To be prepared  | _              |  |
| μPD784937 Subseries User's Manual – Hardware            | To be prepared  | To be prepared |  |

# • $\mu$ PD784955 Subseries

| Document Name                                       | Document Number |         |  |
|-----------------------------------------------------|-----------------|---------|--|
|                                                     | Japanese        |         |  |
| μPD784953/784955 Preliminary Product Information    | U12830J         | U12830E |  |
| μPD78F4956 Preliminary Product Information          | U12831J         | U12831E |  |
| μΡD784955 Subseries Special Function Register Table | U12832J         | _       |  |
| μPD784955 Subseries User's Manual – Hardware        | U12833J         | U12833E |  |

# **CONTENTS**

| 1.1 | 78K/I\                                                                                                                                                   | / Series Product Development Diagram                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 1.2 | Product Outline of $\mu$ PD784026 Subseries                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|     | <b>(</b> μ <b>PD7</b>                                                                                                                                    | 84020, 784021, 784025, 784026, 78P4026)                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|     | 1.2.1                                                                                                                                                    | Features                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|     | 1.2.2                                                                                                                                                    | Applications                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|     | 1.2.3                                                                                                                                                    | Ordering information and quality grade                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|     | 1.2.4                                                                                                                                                    | Outline of functions                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|     | 1.2.5                                                                                                                                                    | Block diagram                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 1.3 | Produ                                                                                                                                                    | Product Outline of $\mu$ PD784038 Subseries ( $\mu$ PD784031, 784035, 784036,                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|     | 78403                                                                                                                                                    | 7, 784038, 78P4038, 784031(A), 784035(A), 784036(A))                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|     | 1.3.1                                                                                                                                                    | Features                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|     | 1.3.2                                                                                                                                                    | Applications                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|     | 1.3.3                                                                                                                                                    | Ordering information and quality grade                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|     | 1.3.4                                                                                                                                                    | Outline of functions                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|     | 1.3.5                                                                                                                                                    | Block diagram                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 1.4 | Produ                                                                                                                                                    | ct Outline of $\mu$ PD784038Y Subseries                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|     | <b>(μPD7</b>                                                                                                                                             | 84031Y, 784035Y, 784036Y, 784037Y, 784038Y, 78P4038Y)                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|     | 1.4.1                                                                                                                                                    | Features                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|     | 1.4.2                                                                                                                                                    | Applications                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|     | 1.4.3                                                                                                                                                    | Ordering information and quality grade                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|     | 1.4.4                                                                                                                                                    | Outline of functions                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|     | 1.4.5                                                                                                                                                    | Block diagram                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 1.5 | Product Outline of $\mu$ PD784046 Subseries ( $\mu$ PD784044, 784054, 784046,                                                                            |                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|     |                                                                                                                                                          | 46, 784044(A), 784044(A1), 784044(A2), 784046(A), 784046(A1), 784046(A2),                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|     | 79/105                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|     |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|     | 1.5.1                                                                                                                                                    | Features                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|     | 1.5.1<br>1.5.2                                                                                                                                           | Features                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|     | 1.5.1<br>1.5.2<br>1.5.3                                                                                                                                  | Features                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|     | 1.5.1<br>1.5.2<br>1.5.3<br>1.5.4                                                                                                                         | Features Applications Ordering information and quality grade Outline of functions                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|     | 1.5.1<br>1.5.2<br>1.5.3<br>1.5.4<br>1.5.5                                                                                                                | 4(A), 784054(A1), 784054(A2))  Features  Applications  Ordering information and quality grade  Outline of functions  Block diagram                                                                                                                                                                                                                                                |  |  |  |  |  |
| 1.6 | 1.5.1<br>1.5.2<br>1.5.3<br>1.5.4<br>1.5.5<br><b>Prod</b> u                                                                                               | Features Applications Ordering information and quality grade Outline of functions Block diagram act Outline of µPD784216 Subseries (µPD784214, 784215, 784216, 78F4216)                                                                                                                                                                                                           |  |  |  |  |  |
| 1.6 | 1.5.1<br>1.5.2<br>1.5.3<br>1.5.4<br>1.5.5<br><b>Produ</b><br>1.6.1                                                                                       | Features Applications Ordering information and quality grade Outline of functions Block diagram  Ct Outline of \(\mu\)PD784216 Subseries (\(\mu\)PD784214, 784215, 784216, 78F4216) Features                                                                                                                                                                                      |  |  |  |  |  |
| 1.6 | 1.5.1<br>1.5.2<br>1.5.3<br>1.5.4<br>1.5.5<br><b>Prod</b> u<br>1.6.1<br>1.6.2                                                                             | Features Applications Ordering information and quality grade Outline of functions Block diagram act Outline of µPD784216 Subseries (µPD784214, 784215, 784216, 78F4216) Features Applications                                                                                                                                                                                     |  |  |  |  |  |
| 1.6 | 1.5.1<br>1.5.2<br>1.5.3<br>1.5.4<br>1.5.5<br><b>Produ</b><br>1.6.1<br>1.6.2<br>1.6.3                                                                     | Features Applications Ordering information and quality grade Outline of functions Block diagram Ict Outline of µPD784216 Subseries (µPD784214, 784215, 784216, 78F4216) Features Applications Ordering information and quality grade                                                                                                                                              |  |  |  |  |  |
| 1.6 | 1.5.1<br>1.5.2<br>1.5.3<br>1.5.4<br>1.5.5<br><b>Produ</b><br>1.6.1<br>1.6.2<br>1.6.3<br>1.6.4                                                            | Features Applications Ordering information and quality grade Outline of functions                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|     | 1.5.1<br>1.5.2<br>1.5.3<br>1.5.4<br>1.5.5<br><b>Produ</b><br>1.6.1<br>1.6.2<br>1.6.3<br>1.6.4<br>1.6.5                                                   | Features  Applications  Ordering information and quality grade  Outline of functions  Block diagram  Ict Outline of µPD784216 Subseries (µPD784214, 784215, 784216, 78F4216)  Features  Applications  Ordering information and quality grade  Outline of functions  Block diagram                                                                                                 |  |  |  |  |  |
|     | 1.5.1<br>1.5.2<br>1.5.3<br>1.5.4<br>1.5.5<br><b>Produ</b><br>1.6.1<br>1.6.2<br>1.6.3<br>1.6.4<br>1.6.5<br><b>Produ</b>                                   | Features                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| 1.6 | 1.5.1<br>1.5.2<br>1.5.3<br>1.5.4<br>1.5.5<br><b>Produ</b><br>1.6.1<br>1.6.2<br>1.6.3<br>1.6.4<br>1.6.5<br><b>Produ</b><br>(μ <b>PD7</b>                  | Features Applications                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|     | 1.5.1<br>1.5.2<br>1.5.3<br>1.5.4<br>1.5.5<br><b>Produ</b><br>1.6.1<br>1.6.2<br>1.6.3<br>1.6.4<br>1.6.5<br><b>Produ</b>                                   | Features                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|     | 1.5.1<br>1.5.2<br>1.5.3<br>1.5.4<br>1.5.5<br><b>Produ</b><br>1.6.1<br>1.6.2<br>1.6.3<br>1.6.4<br>1.6.5<br><b>Produ</b><br>(μ <b>PD7</b>                  | Features  Applications  Ordering information and quality grade  Outline of functions  Block diagram  Outline of μPD784216 Subseries (μPD784214, 784215, 784216, 78F4216).  Features  Applications  Ordering information and quality grade  Outline of functions  Block diagram  Outline of μPD784216Y Subseries  84214Y, 784215Y, 784216Y, 78F4216Y)  Features  Applications      |  |  |  |  |  |
|     | 1.5.1<br>1.5.2<br>1.5.3<br>1.5.4<br>1.5.5<br><b>Produ</b><br>1.6.1<br>1.6.2<br>1.6.3<br>1.6.4<br>1.6.5<br><b>Produ</b><br>( <i>µ</i> <b>PD7</b>          | Features                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|     | 1.5.1<br>1.5.2<br>1.5.3<br>1.5.4<br>1.5.5<br><b>Produ</b><br>1.6.1<br>1.6.2<br>1.6.3<br>1.6.4<br>1.6.5<br><b>Produ</b><br>( <i>µ</i> <b>PD7</b><br>1.7.1 | Features  Applications  Ordering information and quality grade  Outline of functions  Block diagram  Ct Outline of μPD784216 Subseries (μPD784214, 784215, 784216, 78F4216)  Features  Applications  Ordering information and quality grade  Outline of functions  Block diagram  Ct Outline of μPD784216Y Subseries  84214Y, 784215Y, 784216Y, 78F4216Y)  Features  Applications |  |  |  |  |  |

| 1.8   | Produ  | ct Outline of μPD784218 Subseries (μPD784217, 784218, 78F4218)            |
|-------|--------|---------------------------------------------------------------------------|
|       | 1.8.1  | Features                                                                  |
|       | 1.8.2  | Applications                                                              |
|       | 1.8.3  | Ordering information and quality grade                                    |
|       | 1.8.4  | Outline of functions                                                      |
|       | 1.8.5  | Block diagram                                                             |
| 1.9   | Produ  | ct Outline of µPD784218Y Subseries (µPD784217Y, 784218Y, 78F4218Y)        |
|       | 1.9.1  | Features                                                                  |
|       | 1.9.2  | Applications                                                              |
|       | 1.9.3  | Ordering information and quality grade                                    |
|       | 1.9.4  | Outline of functions                                                      |
|       | 1.9.5  | Block diagram                                                             |
| 1.10  | Produ  | ct Outline of μPD784225 Subseries (μPD784224, 784225, 78F4225)            |
|       | 1.10.1 | Features                                                                  |
|       | 1.10.2 | Applications                                                              |
|       | 1.10.3 | Ordering information and quality grade                                    |
|       | 1.10.4 | Outline of functions                                                      |
|       | 1.10.5 | Block diagram                                                             |
| 1.11  |        | ct Outline of μPD784225Y Subseries (μPD784224Y, 784225Y, 78F4225Y)        |
|       | 1.11.1 | Features                                                                  |
|       | 1.11.2 | Applications                                                              |
|       | 1.11.3 | Ordering information and quality grade                                    |
|       | 1.11.4 | Outline of functions                                                      |
|       |        |                                                                           |
| 4 4 2 | 1.11.5 | Block diagram                                                             |
| 1.12  |        | ct Outline of $\mu$ PD784908 Subseries ( $\mu$ PD784907, 784908, 78P4908) |
|       | 1.12.1 | Features                                                                  |
|       | 1.12.2 | Applications                                                              |
|       | 1.12.3 | Ordering information and quality grade                                    |
|       | 1.12.4 | Outline of functions                                                      |
|       | 1.12.5 | Block diagram                                                             |
| 1.13  |        | ct Outline of μPD784915 Subseries                                         |
|       | -      | 84915, 784915A, 784916A, 784915B, 784916B, 78P4916)                       |
|       | 1.13.1 | Features                                                                  |
|       | 1.13.2 | Applications                                                              |
|       | 1.13.3 | Ordering information and quality grade                                    |
|       | 1.13.4 | Outline of functions                                                      |
|       | 1.13.5 | Block diagram                                                             |
| 1.14  | Produ  | ct Outline of $\mu$ PD784928 Subseries ( $\mu$ PD784927, 78F4928)         |
|       | 1.14.1 | Features                                                                  |
|       | 1.14.2 | Applications                                                              |
|       | 1.14.3 | Ordering information                                                      |
|       | 1.14.4 | Outline of functions                                                      |
|       | 1.14.5 | Block diagram                                                             |
| 1.15  | Produ  | ct Outline of µPD784928Y Subseries (µPD784927Y, 78F4928Y)                 |
|       | 1.15.1 | Features                                                                  |
|       | 1.15.2 | Applications                                                              |
|       | 1.15.3 | Ordering information                                                      |
|       | 1.15.4 | Outline of functions                                                      |
|       | 1.15.5 | Block diagram                                                             |

| 1.16   | Product Outline of $\mu$ PD784937 Subseries ( $\mu$ PD784935, 784936, 78F4937, 78F4937) . |
|--------|-------------------------------------------------------------------------------------------|
|        | 1.16.1 Features                                                                           |
|        | 1.16.2 Applications                                                                       |
|        | 1.16.3 Ordering information and quality grade                                             |
|        | 1.16.4 Outline of functions                                                               |
|        | 1.16.5 Block diagram                                                                      |
| 1.17   | Product Outline of $\mu$ PD784955 Subseries ( $\mu$ PD784953, 784955, 78F4956)            |
|        | 1.17.1 Features                                                                           |
|        | 1.17.2 Applications                                                                       |
|        | 1.17.3 Ordering information and quality grade                                             |
|        | 1.17.4 Outline of functions                                                               |
|        | 1.17.5 Block diagram                                                                      |
| CHAPTE | ER 2 MEMORY SPACE                                                                         |
| 2.1    | Memory Space                                                                              |
| 2.2    | Internal ROM Area                                                                         |
| 2.3    | Base Area                                                                                 |
|        | 2.3.1 Vector table area                                                                   |
|        | 2.3.2 CALLT instruction table area                                                        |
|        | 2.3.3 CALLF instruction entry area                                                        |
| 2.4    | Internal Data Area                                                                        |
|        | 2.4.1 Internal RAM area                                                                   |
|        | 2.4.2 Special function register (SFR) area                                                |
|        | 2.4.3 External SFR area                                                                   |
| 2.5    | External Memory Space                                                                     |
| CHAPTE | ER 3 REGISTERS                                                                            |
| 3.1    | Control Registers                                                                         |
|        | 3.1.1 Program counter (PC)                                                                |
|        | 3.1.2 Program status word (PSW)                                                           |
|        | 3.1.3 Use of RSS bit                                                                      |
|        | 3.1.4 Stack pointer (SP)                                                                  |
| 3.2    | General Registers                                                                         |
|        | 3.2.1 Configuration                                                                       |
|        | 3.2.2 Functions                                                                           |
| 3.3    | Special Function Registers (SFR)                                                          |
| CHAPTE | ER 4 INTERRUPT FUNCTIONS                                                                  |
| 4.1    | Kinds of Interrupt Request                                                                |
|        | 4.1.1 Software interrupt requests                                                         |
|        | 4.1.2 Non-maskable interrupt requests                                                     |
|        | 4.1.3 Maskable interrupt requests                                                         |
| 4.2    | Interrupt Service Modes                                                                   |
|        | 4.2.1 Vectored interrupts                                                                 |
|        | 4.2.2 Context switching                                                                   |
|        | 4.2.3 Macro service function                                                              |

| CHAPTE | ER 5 A                           | DDRESSING                                           |  |
|--------|----------------------------------|-----------------------------------------------------|--|
| 5.1    | Instru                           | ction Address Addressing                            |  |
|        | 5.1.1                            | Relative addressing                                 |  |
|        | 5.1.2                            | Immediate addressing                                |  |
|        | 5.1.3                            | Table indirect addressing                           |  |
|        | 5.1.4                            | 16-bit register addressing                          |  |
|        | 5.1.5                            | 20-bit register addressing                          |  |
|        | 5.1.6                            | 16-bit register indirect addressing                 |  |
|        | 5.1.7                            | 20-bit register indirect addressing                 |  |
| 5.2    | Opera                            | nd Address Addressing                               |  |
|        | 5.2.1                            | Implied addressing                                  |  |
|        | 5.2.2                            | Register addressing                                 |  |
|        | 5.2.3                            | Immediate addressing                                |  |
|        | 5.2.4                            | 8-bit direct addressing                             |  |
|        | 5.2.5                            | 16-bit direct addressing                            |  |
|        | 5.2.6                            | 24-bit direct addressing                            |  |
|        | 5.2.7                            | Short direct addressing                             |  |
|        | 5.2.8                            | Special function register (SFR) addressing function |  |
|        | 5.2.9                            | Short direct 16-bit memory indirect addressing      |  |
|        | 5.2.10                           | Short direct 24-bit memory indirect addressing      |  |
|        | 5.2.11                           | Stack addressing                                    |  |
|        | 5.2.12                           | 24-bit register indirect addressing                 |  |
|        | 5.2.13                           | 16-bit register indirect addressing                 |  |
|        | 5.2.14                           | Based addressing                                    |  |
|        | 5.2.15                           | Indexed addressing                                  |  |
|        | 5.2.16                           | Based indexed addressing                            |  |
|        |                                  |                                                     |  |
| CHAPTE | ER 6 IN                          | ISTRUCTION SET                                      |  |
| 6.1    | Legen                            | d                                                   |  |
| 6.2    | List of                          | Instruction Operations                              |  |
| 6.3    |                                  | ctions Listed by Type of Addressing                 |  |
| 6.4    | Opera                            | tion Codes                                          |  |
|        | 6.4.1                            | Operation code symbols                              |  |
|        | 6.4.2                            | List of operation codes                             |  |
| 6.5    | Numb                             | er of Instruction Clocks                            |  |
|        | 6.5.1                            | Execution time of instruction                       |  |
|        | 6.5.2                            | Legend for "Clocks" column                          |  |
|        | 6.5.3                            | Explanation of "Clocks" column                      |  |
|        | 6.5.4                            | List of number of clocks                            |  |
|        |                                  |                                                     |  |
| CHAPTE | ER7 D                            | ESCRIPTION OF INSTRUCTIONS                          |  |
| 7.1    | 8-bit D                          | Oata Transfer Instruction                           |  |
| 7.2    | 16-bit Data Transfer Instruction |                                                     |  |
| 7.3    | 24-bit Data Transfer Instruction |                                                     |  |
| 7.4    |                                  | Data Exchange Instruction                           |  |
| 7.5    |                                  | Data Exchange Instruction                           |  |
| 7.6    |                                  | Operation Instructions                              |  |
| 7.7    |                                  | Operation Instructions                              |  |
|        |                                  | ~ <sub> </sub>                                      |  |

| 7.8    | 24-bit Operation Instructions                              | 322 |
|--------|------------------------------------------------------------|-----|
| 7.9    | Multiplication/Division Instructions                       | 325 |
| 7.10   | Special Operation Instructions                             | 331 |
| 7.11   | Increment/Decrement Instructions                           | 341 |
| 7.12   | Adjustment Instructions                                    | 348 |
| 7.13   | Shift/Rotate Instructions                                  | 352 |
| 7.14   | Bit Manipulation Instructions                              | 363 |
| 7.15   | Stack Manipulation Instructions                            | 374 |
| 7.16   | Call/Return Instructions                                   | 386 |
| 7.17   | Unconditional Branch Instruction                           | 400 |
| 7.18   | Conditional Branch Instructions                            | 402 |
| 7.19   | CPU Control Instructions                                   | 422 |
| 7.20   | Special Instructions                                       | 432 |
| 7.21   | String Instructions                                        | 435 |
| CHAPTE | R 8 DEVELOPMENT TOOLS                                      | 473 |
| 8.1    | Development Tools                                          | 474 |
| 8.2    | PROM Programming Tools                                     | 477 |
| 8.3    | Flash Memory Programming Tools                             | 478 |
| CHAPTE | R 9 EMBEDDED SOFTWARE                                      | 479 |
| 9.1    | Real-time OS                                               | 479 |
| APPEND | IX A INDEX OF INSTRUCTIONS (MNEMONICS: BY FUNCTION)        | 481 |
| APPEND | IX B INDEX OF INSTRUCTIONS (MNEMONICS: ALPHABETICAL ORDER) | 485 |
| APPEND | IX C REVISION HISTORY                                      | 487 |

# **LIST OF FIGURES**

| Figure No. | Title                                                       | Page |
|------------|-------------------------------------------------------------|------|
| 1-1.       | 78K Series and 78K/IV Series Composition                    | 22   |
| 2-1.       | Memory Map                                                  | 102  |
| 2-2.       | Internal RAM Memory Mapping                                 | 110  |
| 3-1.       | Program Counter (PC) Configuration                          | 113  |
| 3-2.       | Program Status Word (PSW) Configuration                     | 114  |
| 3-3.       | Stack Pointer (SP) Configuration                            | 121  |
| 3-4.       | Data Saved to Stack Area                                    | 122  |
| 3-5.       | Data Restored from Stack Area                               | 123  |
| 3-6.       | General Register Configuration                              | 125  |
| 3-7.       | General Register Addresses                                  | 126  |
| 4-1.       | Context Switching Operation by Interrupt Request Generation | 133  |
| 8-1.       | Development Tools Structure                                 | 476  |

# LIST OF TABLES

| Table No. | Title                                                                         | Page |
|-----------|-------------------------------------------------------------------------------|------|
|           |                                                                               |      |
| 2-1.      | List of Internal ROM Space for 78K/IV Series Products                         | 103  |
| 2-2.      | Vector Table                                                                  | 106  |
| 2-3.      | Internal RAM Area in 78K/IV Series Products                                   | 108  |
| 3-1.      | Register Bank Selection                                                       | 116  |
| 3-2.      | Function Names and Absolute Names                                             | 129  |
| 4-1.      | Interrupt Request Servicing                                                   | 131  |
| 6-1.      | List of Instructions by 8-Bit Addressing                                      | 193  |
| 6-2.      | List of Instructions by 16-Bit Addressing                                     | 194  |
| 6-3.      | List of Instructions by 24-Bit Addressing                                     | 195  |
| 6-4.      | List of Instructions by Bit Manipulation Instruction Addressing               | 196  |
| 6-5.      | List of Instructions by Call/Return Instruction/Branch Instruction Addressing | 197  |
| 8-1.      | Types and Functions of Development Tools                                      | 474  |

[MEMO]

#### **CHAPTER 1 FEATURES OF 78K/IV SERIES PRODUCTS**

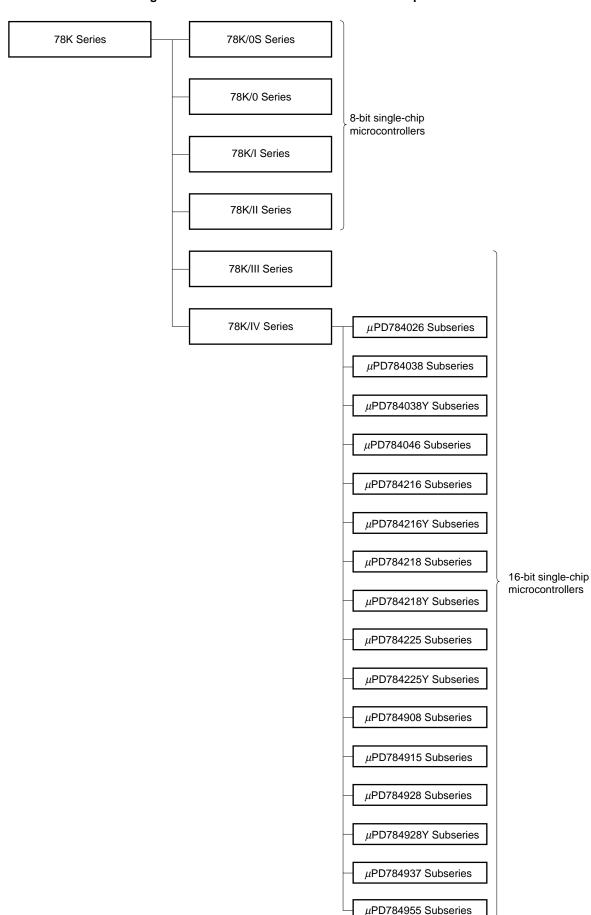
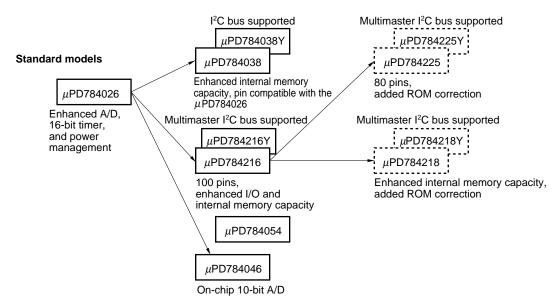
The 78K Series consists of 6 series as shown in Figure 1-1.

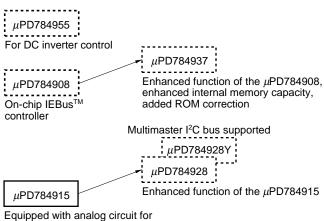
The 78K/IV Series is one of these 6 series, comprising products with an on-chip 16-bit CPU.

These products have an instruction set suitable for control applications, a high-performance interrupt controller, and incorporate a high-performance CPU equipped with a maximum 1-Mbyte program memory space and maximum 16-Mbyte data memory space.

The 78K/IV Series offers a variety of subseries, enabling the most suitable subseries to be selected for a particular application.

All the subseries have the same CPU, and differ only in their peripheral hardware. Consequently, the entire instruction set is common to all subseries. Moreover, individual products within a subseries differ only in the size of on-chip memory.



Figure 1-1. 78K Series and 78K/IV Series Composition

# 1.1 78K/IV Series Product Development Diagram

: Under mass production



# **ASSP** models



Equipped with analog circuit for sofware servo control VCR, enhanced timer

# 1.2 Product Outline of $\mu$ PD784026 Subseries ( $\mu$ PD784020, 784021, 784025, 784026, 78P4026)

#### 1.2.1 Features

- Pins are compatible with μPD78234 Subseries
- Minimum instruction execution time: 160 ns/320 ns/640 ns/1,280 ns (at 25-MHz operation)
- On-chip memory
  - ROM

Mask ROM: 48 Kbytes (μPD784025)

64 Kbytes ( $\mu$ PD784026) None ( $\mu$ PD784020, 784021)

PROM : 64 Kbytes (μPD78P4026)

• RAM : 2,048 bytes (μPD784021, 784025, 784026)

512 bytes (μPD784020)

• I/O pins: 64

46 (μPD784020, 784021 only)

• Timer/counter: 16-bit timer/counter × 3 units

16-bit timer × 1 unit

Watchdog timer: 1 channel

A/D converter: 8-bit resolution × 8 channels
 D/A converter: 8-bit resolution × 2 channels

Serial interface: 3 channels

UART/IOE (3-wire serial I/O): 2 channels (on-chip baud rate generator)

CSI (3-wire serial I/O, SBI): 1 channel

• Interrupt controller (4-level priority)

Vectored interrupt/macro service/context switching

- Standby function: HALT/STOP/IDLE mode
- Clock output function

Selectable from fclk, fclk/2, fclk/4, fclk/8, fclk/16 (except  $\mu$ PD784020, 784021)

• Power supply voltage: V<sub>DD</sub> = 2.7 to 5.5 V

# 1.2.2 Applications

Laser beam printers, autofocus cameras, plain paper copiers, printers, electronic typewriters, air conditioners, electronic musical instruments, cellular phones, etc.

#### 1.2.3 Ordering information and quality grade

#### (1) Ordering information

| Part Number                                 | Package                                              | Internal ROM                 |
|---------------------------------------------|------------------------------------------------------|------------------------------|
| $\mu$ PD784020GC-3B9                        | 80-pin plastic QFP (14 $\times$ 14 mm)               | None                         |
| $\mu$ PD784021GC-3B9                        | 80-pin plastic QFP (14 $\times$ 14 mm)               | None                         |
| $\mu$ PD784021GK-BE9                        | 80-pin plastic TQFP (fine pitch) (12 $\times$ 12 mm) | None                         |
| $\mu$ PD784025GC- $\times\times$ -3B9       | 80-pin plastic QFP (14 $\times$ 14 mm)               | Mask ROM                     |
| $\mu$ PD784026GC- $\times$ $\times$ -3B9    | 80-pin plastic QFP (14 $\times$ 14 mm)               | Mask ROM                     |
| $\mu$ PD78P4026GC-3B9                       | 80-pin plastic QFP (14 $\times$ 14 mm)               | One-time PROM                |
| $\mu$ PD78P4026GC- $\times\times$ -3B9 Note | 80-pin plastic QFP (14 $\times$ 14 mm)               | Preprogramming one-time PROM |
| $\mu$ PD78P4026KK-T                         | 80-pin ceramic WQFN (14 $\times$ 14 mm)              | EPROM                        |

**Note** QTOP<sup>TM</sup> microcontroller. "QTOP microcontroller" is a general term for a single-chip microcontroller with on-chip one-time PROM, for which total support is provided by NEC programming service, from programming to marking, screening, and verification.

Remark xxx indicates ROM code suffix.

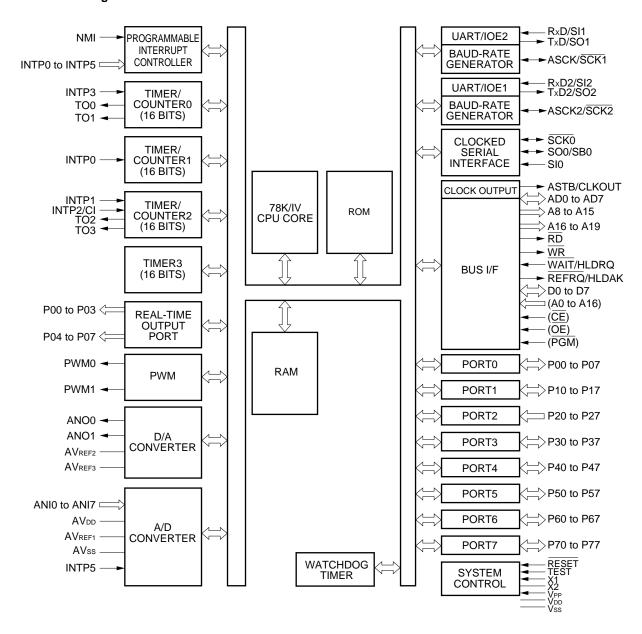
### (2) Quality grades

| Part Number                              | Package                                              | Quality Grade                            |
|------------------------------------------|------------------------------------------------------|------------------------------------------|
| μPD784020GC-3B9                          | 80-pin plastic QFP (14 × 14 mm)                      | Standard                                 |
| μPD784021GC-3B9                          | 80-pin plastic QFP (14 $\times$ 14 mm)               | Standard                                 |
| $\mu$ PD784021GK-BE9                     | 80-pin plastic TQFP (fine pitch) (12 $\times$ 12 mm) | Standard                                 |
| $\mu$ PD784025GC- $\times$ $\times$ -3B9 | 80-pin plastic QFP (14 $\times$ 14 mm)               | Standard                                 |
| $\mu$ PD784026GC- $\times$ $\times$ -3B9 | 80-pin plastic QFP (14 $\times$ 14 mm)               | Standard                                 |
| $\mu$ PD78P4026GC-3B9                    | 80-pin plastic QFP (14 $\times$ 14 mm)               | Standard                                 |
| $\mu$ PD78P4026GC-xxx-3B9 Note           | 80-pin plastic QFP (14 $\times$ 14 mm)               | Standard                                 |
| μPD78P4026KK-T                           | 80-pin ceramic WQFN (14 $\times$ 14 mm)              | Not applicable (for function evaluation) |

**Note** QTOP microcontroller. "QTOP microcontroller" is a general term for a single-chip microcontroller with on-chip one-time PROM, for which total support is provided by NEC programming service from programming to marking, screening, and verification.

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

Caution The EPROM version of the  $\mu$ PD78P4026 does not have a level of reliability intended for volume production of customers' equipment, and should only be used for experimental or preproduction function evaluation.


Remark xxx indicates ROM code suffix.

# 1.2.4 Outline of functions

| Item                               | Prod             | uct Name | μPD784020                                                                                                                                                                            | μPD78402                                                                                 | 1 μPD784025                                                                                                                                                                                                                                                  | μPD784026               | μPD78P4026          |
|------------------------------------|------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------|
| Number of basic i                  | nstructions (mne | monics)  | 113                                                                                                                                                                                  | •                                                                                        |                                                                                                                                                                                                                                                              | <b>'</b>                |                     |
| General registers                  |                  |          | 8 bits × 16 registers × 8 banks or 16 bits × 8 registers × 8 banks (memory mapped                                                                                                    |                                                                                          |                                                                                                                                                                                                                                                              |                         |                     |
| Minimum instruction execution time |                  |          | 160 ns/320 ns                                                                                                                                                                        | s/640 ns/1,28                                                                            | 30 ns (at 25-MHz                                                                                                                                                                                                                                             | operation)              |                     |
| Internal memory of                 | apacity          | ROM      | None                                                                                                                                                                                 |                                                                                          | 48 Kbytes<br>(Mask ROM)                                                                                                                                                                                                                                      | 64 Kbytes<br>(Mask ROM) | 64 Kbytes<br>(PROM) |
| RAM                                |                  |          | 512 bytes                                                                                                                                                                            | 512 bytes 2,048 bytes                                                                    |                                                                                                                                                                                                                                                              |                         |                     |
| Memory space                       |                  |          | 1 Mbyte total                                                                                                                                                                        | both progran                                                                             | n and data                                                                                                                                                                                                                                                   |                         |                     |
| I/O port                           | Total            |          | 46                                                                                                                                                                                   |                                                                                          | 64                                                                                                                                                                                                                                                           |                         |                     |
|                                    | Input            |          | 8 8                                                                                                                                                                                  |                                                                                          |                                                                                                                                                                                                                                                              |                         |                     |
|                                    | Input/output     |          | 34                                                                                                                                                                                   |                                                                                          | 56                                                                                                                                                                                                                                                           |                         |                     |
|                                    | Output           |          | 4                                                                                                                                                                                    |                                                                                          | 0                                                                                                                                                                                                                                                            |                         |                     |
| Additional                         | Pin with pull-up | resistor | 32                                                                                                                                                                                   |                                                                                          | 54                                                                                                                                                                                                                                                           |                         |                     |
| function pin Note                  | LED direct drive | e output | 8                                                                                                                                                                                    |                                                                                          | 24                                                                                                                                                                                                                                                           |                         |                     |
|                                    | Transistor direc | t drive  | 8                                                                                                                                                                                    |                                                                                          |                                                                                                                                                                                                                                                              |                         |                     |
| Real-time output p                 | oort             |          | 4 bits $\times$ 2, or                                                                                                                                                                | 8 bits × 1                                                                               |                                                                                                                                                                                                                                                              |                         |                     |
| Timer/counter                      |                  |          | Timer/counter<br>(16-bit)                                                                                                                                                            | (                                                                                        | Timer register × 1  Compare register × 2  Capture register × 1  Pulse output capability  • Toggle output  • PWM/PPG output  • One-shot pulse output                                                                                                          |                         | utput<br>G output   |
|                                    |                  |          |                                                                                                                                                                                      | (                                                                                        | $\begin{tabular}{lll} Timer register $\times$ 1 & Pulse output capability \\ Compare register $\times$ 1 & Real-time output: $4$ bits $\times$ 2 \\ Capture register $\times$ 1 \\ Capture/compare register $\times$ 1 & $\times$ 2 \\ \hline \end{tabular}$ |                         |                     |
|                                    |                  |          | Timer/counter 2<br>(8-/16-bit)                                                                                                                                                       | (                                                                                        | $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                        |                         |                     |
|                                    |                  |          | Timer 3: (8-/16-bit)                                                                                                                                                                 |                                                                                          | Timer register × 1 Compare register × 1                                                                                                                                                                                                                      |                         |                     |
| Watchdog timer                     |                  |          | 1 channel                                                                                                                                                                            |                                                                                          |                                                                                                                                                                                                                                                              |                         |                     |
| PWM output funct                   | ion              |          | 12-bit resolution × 2 channels                                                                                                                                                       |                                                                                          |                                                                                                                                                                                                                                                              |                         |                     |
| Serial interface                   |                  |          | UART × IOE (3-wire serial I/O): 2 channels (on-chip baud rate generator)     CSI (3-wire serial I/O, SBI) : 1 channel                                                                |                                                                                          |                                                                                                                                                                                                                                                              |                         |                     |
| A/D converter                      |                  |          | 8-bit resolution × 8 channels                                                                                                                                                        |                                                                                          |                                                                                                                                                                                                                                                              |                         |                     |
| D/A converter                      |                  |          | 8-bit resolution                                                                                                                                                                     | n × 2 chann                                                                              | els                                                                                                                                                                                                                                                          |                         |                     |
| Standby function                   |                  |          | HALT/STOP/                                                                                                                                                                           | IDLE mode                                                                                |                                                                                                                                                                                                                                                              |                         |                     |
| Interrupt                          | Hardware sour    | ces      | 23 (internal:                                                                                                                                                                        | 16, external:                                                                            | 7 (sampling cloc                                                                                                                                                                                                                                             | k variable input:       | 1) )                |
| ·                                  | Software source  | es       | 23 (internal: 16, external: 7 (sampling clock variable input: 1) )  BRK instruction, BRKCS instruction, operand error  Internal: 1, external: 1                                      |                                                                                          |                                                                                                                                                                                                                                                              | . ,                     |                     |
|                                    | Non-maskable     |          |                                                                                                                                                                                      |                                                                                          | ·                                                                                                                                                                                                                                                            |                         |                     |
|                                    | Maskable         |          | Internal: 15, external: 6                                                                                                                                                            |                                                                                          |                                                                                                                                                                                                                                                              |                         |                     |
|                                    |                  |          | <ul> <li>4-level programmable priority</li> <li>3 kinds of process mode (vectored interrupt/macro service/context switch)</li> </ul>                                                 |                                                                                          |                                                                                                                                                                                                                                                              | ontext switching        |                     |
| Clock output funct                 | tion             |          |                                                                                                                                                                                      | Selectable from fclk, fclk/2, fclk/4, fclk/8, fclk/16 (also usable as 1-bit output port) |                                                                                                                                                                                                                                                              |                         | к/4, fcьк/8,        |
| Power supply volt                  | age              |          | V <sub>DD</sub> = 2.7 to 5.5 V                                                                                                                                                       |                                                                                          |                                                                                                                                                                                                                                                              |                         |                     |
| Package                            |                  |          | <ul> <li>80-pin plastic QFP (14 × 14 mm)</li> <li>80-pin plastic TQFP (fine pitch, 12 × 12 mm: μPD784021 only)</li> <li>80-pin ceramic WQFN (14 × 14 mm: μPD78P4026 only)</li> </ul> |                                                                                          |                                                                                                                                                                                                                                                              |                         |                     |

**Note** The pins with additional functions are included in the I/O pins.

#### 1.2.5 Block diagram



**Remarks 1.** Internal ROM and RAM capacities vary depending on the products.

- **2.** VPP applies to the  $\mu$ PD78P4026 only.
- 3. The pins in parentheses are used in the PROM programming mode.

# \* 1.3 Product Outline of $\mu$ PD784038 Subseries ( $\mu$ PD784031, 784035, 784036, 784037, 784038, 78P4038, 784031(A), 784035(A), 784036(A))

#### 1.3.1 Features

- Pins are compatible with  $\mu$ PD78234 Subseries,  $\mu$ PD784026 Subseries, and  $\mu$ PD784038Y Subseries
- On-chip memory capacity of  $\mu$ PD78234 Subseries and  $\mu$ PD784026 Subseries is expanded.
- Minimum instruction execution time 125 ns/250 ns/500 ns/1,000 ns (at 32-MHz operation)
- On-chip memory
  - ROM

Mask ROM : None ( $\mu$ PD784031, 784031(A))

48 Kbytes (μPD784035, 784035(A)) 64 Kbytes (μPD784036, 784036(A))

96 Kbytes (μPD784037)128 Kbytes (μPD784038)

PROM : 128 Kbytes (μPD78P4038)

RAM : 2,048 bytes (μPD784031, 784035, 784036, 784031(A), 784035(A), 784036(A))

3,584 bytes ( $\mu$ PD784037) 4,352 bytes ( $\mu$ PD784038)

• I/O port: 64

• Timer/counter: 16-bit timer/counter × 3 units

16-bit timer  $\times$  1 unit

Watchdog timer: 1 channel

A/D converter: 8-bit resolution × 8 channels
 D/A converter: 8-bit resolution × 2 channels

• 12-bit PWM output: 2 channels

Serial interface

UART/IOE (3-wire serial I/O): 2 channels

CSI (3-wire serial I/O, 2-wire serial I/O): 1 channel

• Interrupt controller (4-level priority)

Vectored interrupt/macro service/context switching

Standby function

HALT/STOP/IDLE mode

Clock output function

Selectable from fclk, fclk/2, fclk/4, fclk/8, and fclk/16 (except  $\mu$ PD784031)

Power supply voltage: VDD = 2.7 to 5.5 V

#### 1.3.2 Applications

- Standard-grade devices: Laser beam printers, autofocus cameras, plain paper copiers, printers, electronic typewriters, air conditioners, electronic musical instruments, cellular phones, etc.
- Special-grade devices: Control equipment in automobile electrical system, gas detector and cut off equipment, and various safety equipment.

# 1.3.3 Ordering information and quality grade

# (1) Ordering information

|   | Part Number                                    | Package                                                   | Internal ROM                 |  |  |
|---|------------------------------------------------|-----------------------------------------------------------|------------------------------|--|--|
|   | μPD784031GC-3B9                                | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 2.7 mm) | None                         |  |  |
|   | μPD784031GC-8BT                                | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 1.4 mm) | None                         |  |  |
| * | $\mu$ PD784031GC(A)- $\times$ $\times$ -3E9    | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 2.7 mm) | None                         |  |  |
|   | μPD784031GK-BE9                                | 80-pin plastic TQFP (fine pitch) (12 $\times$ 12 mm)      | None                         |  |  |
|   | $\mu$ PD784035GC- $\times$ $\times$ -3B9       | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 2.7 mm) | Mask ROM                     |  |  |
|   | $\mu$ PD784035GC-×××-8BT                       | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 1.4 mm) | Mask ROM                     |  |  |
| * | $\mu$ PD784035GC(A)- $\times$ $\times$ -3B9    | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 2.7 mm) | Mask ROM                     |  |  |
|   | $\mu$ PD784035GK- $\times$ $\times$ -BE9       | 80-pin plastic TQFP (fine pitch) (12 $\times$ 12 mm)      | Mask ROM                     |  |  |
|   | $\mu$ PD784036GC- $\times$ $\times$ -3B9       | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 2.7 mm) | Mask ROM                     |  |  |
|   | $\mu$ PD784036GC- $\times$ $\times$ -8BT       | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 1.4 mm) | Mask ROM                     |  |  |
| * | $\mu$ PD784036GC(A)- $\times$ $\times$ -3B9    | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 2.7 mm) | Mask ROM                     |  |  |
|   | $\mu$ PD784036GK- $\times\!\times$ -BE9        | 80-pin plastic TQFP (fine pitch) (12 $\times$ 12 mm)      | Mask ROM                     |  |  |
|   | $\mu$ PD784037GC- $\times$ $\times$ -3B9       | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 2.7 mm) | Mask ROM                     |  |  |
|   | $\mu$ PD784037GC-×××-8BT                       | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 1.4 mm) | Mask ROM                     |  |  |
|   | $\mu$ PD784037GK- $\times$ $\times$ -BE9       | 80-pin plastic TQFP (fine pitch) (12 $\times$ 12 mm)      | Mask ROM                     |  |  |
|   | $\mu$ PD784038GC- $\times$ $\times$ -3B9       | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 2.7 mm) | Mask ROM                     |  |  |
|   | $\mu$ PD784038GC-×××-8BT                       | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 1.4 mm) | Mask ROM                     |  |  |
|   | $\mu$ PD784038GK- $\times$ $\times$ -BE9       | 80-pin plastic TQFP (fine pitch) (12 $\times$ 12 mm)      | Mask ROM                     |  |  |
|   | $\mu$ PD78P4038GC-3B9                          | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 2.7 mm) | One-time PROM                |  |  |
|   | $\mu$ PD78P4038GC-8BT                          | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 1.4 mm) | One-time PROM                |  |  |
|   | $\mu$ PD78P4038GC- $\times\times$ -3B9 Note    | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 2.7 mm) | Preprogramming one-time PROM |  |  |
|   | $\mu$ PD78P4038GC- $\times\times$ -8BT Note    | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 1.4 mm) | Preprogramming one-time PROM |  |  |
|   | $\mu$ PD78P4038GK-BE9                          | 80-pin plastic TQFP (fine pitch) (12 $\times$ 12 mm)      | One-time PROM                |  |  |
|   | $\mu$ PD78P4038GK- $	imes$ X $	imes$ -BE9 Note | 80-pin plastic TQFP (fine pitch) (12 $\times$ 12 mm)      | Preprogramming one-time PROM |  |  |
|   | $\mu$ PD78P4038KK-T                            | 80-pin ceramic WQFN (14 $\times$ 14 mm)                   | EPROM                        |  |  |
|   |                                                |                                                           |                              |  |  |

**Note** QTOP microcontrollers. "QTOP microcontroller" is a general term for a single-chip microcontroller with onchip one-time ROM, for which total support is provided by NEC programming service, from programming to marking, screening, and verification.

Remark xxx indicates ROM code suffix.

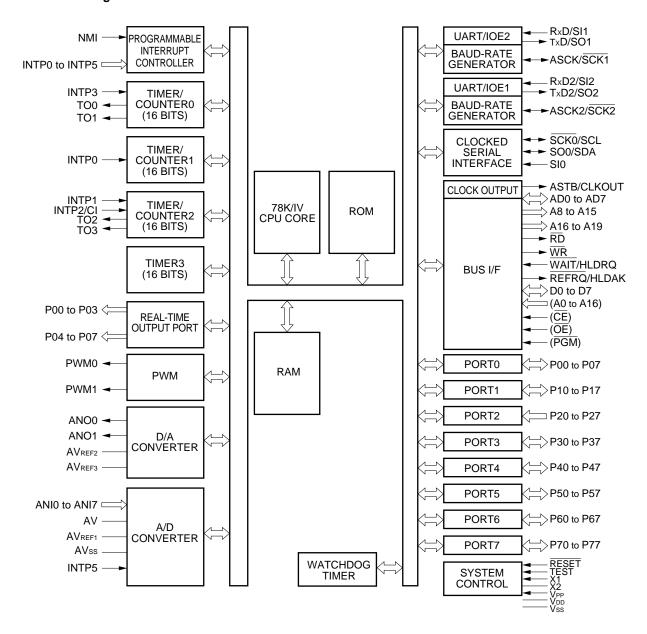
#### (2) Quality grades

|   | Part Number                                                 | Package                                                   | Quality Grade             |
|---|-------------------------------------------------------------|-----------------------------------------------------------|---------------------------|
|   | μPD784031GC-3B9                                             | 80-pin plastic QFP (14 × 14 mm, thickness: 2.7 mm)        | Standard                  |
|   | μPD784031GC-8BT                                             | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 1.4 mm) | Standard                  |
|   | μPD784031GC-BE9                                             | 80-pin plastic TQFP (fine pitch) (12 $\times$ 12 mm)      | Standard                  |
|   | $\mu$ PD784035GC- $\times$ $\times$ -3B9                    | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 2.7 mm) | Standard                  |
|   | $\mu$ PD784035GC- $\times$ $\times$ -8BT                    | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 1.4 mm) | Standard                  |
|   | $\mu$ PD784035GK- $\times$ $\times$ -BE9                    | 80-pin plastic TQFP (fine pitch) (12 $\times$ 12 mm)      | Standard                  |
|   | $\mu$ PD784036GC- $\times$ $\times$ -3B9                    | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 2.7 mm) | Standard                  |
|   | $\mu$ PD784036GC- $\times$ $\times$ -8BT                    | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 1.4 mm) | Standard                  |
|   | $\mu$ PD784036GK- $\times$ $\times$ -BE9                    | 80-pin plastic TQFP (fine pitch) (12 $\times$ 12 mm)      | Standard                  |
|   | $\mu$ PD784037GC- $\times$ $\times$ -3B9                    | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 2.7 mm) | Standard                  |
|   | $\mu$ PD784037GC- $\times$ $\times$ -8BT                    | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 1.4 mm) | Standard                  |
|   | $\mu$ PD784037GK- $\times$ $\times$ -BE9                    | 80-pin plastic TQFP (fine pitch) (12 $\times$ 12 mm)      | Standard                  |
|   | $\mu$ PD784038GC- $\times$ $\times$ -3B9                    | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 2.7 mm) | Standard                  |
|   | $\mu$ PD784038GC- $\times$ $\times$ -8BT                    | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 1.4 mm) | Standard                  |
|   | $\mu$ PD784038GK- $\times$ $\times$ -BE9                    | 80-pin plastic TQFP (fine pitch) (12 $\times$ 12 mm)      | Standard                  |
|   | μPD78P4038GC-3B9                                            | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 2.7 mm) | Standard                  |
|   | $\mu$ PD78P4038GC- $\times$ $\times$ -8BT                   | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 1.4 mm) | Standard                  |
|   | $\mu$ PD78P4038GC- $\times\times$ -3B9 Note                 | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 2.7 mm) | Standard                  |
|   | $\mu$ PD78P4038GC- $\times\times$ -8BT Note                 | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 1.4 mm) | Standard                  |
|   | $\mu$ PD78P4038GK-BE9                                       | 80-pin plastic TQFP (fine pitch) (12 $\times$ 12 mm)      | Standard                  |
|   | $\mu$ PD78P4038GK- $	imes$ X $	imes$ -BE9 $^{	exttt{Note}}$ | 80-pin plastic TQFP (fine pitch) (12 $\times$ 12 mm)      | Standard                  |
| * | $\mu$ PD784031GC(A)- $\times$ $\times$ -3B9                 | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 2.7 mm) | Special                   |
| * | $\mu$ PD784035GC(A)- $\times$ $\times$ -3B9                 | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 2.7 mm) | Special                   |
| * | $\mu$ PD784036GC(A)- $\times$ $\times$ -3B9                 | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 2.7 mm) | Special                   |
|   | $\mu$ PD78P4038KK-T                                         | 80-pin ceramic WQFN (14 $\times$ 14 mm)                   | Not applicable            |
|   |                                                             |                                                           | (for function evaluation) |

**Note** QTOP microcontrollers. "QTOP microcontroller" is a general term for a single-chip microcontroller with onchip one-time ROM, for which total support is provided by NEC programming service, from programming to marking, screening, and verification.

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

Remark xxx indicates ROM code suffix.


Caution The EPROM version of the  $\mu$ PD78P4028 does not have a level of reliability intended for volume production of customer's equipment, and should only be used for experimental or preproduction function evaluation.

# 1.3.4 Outline of functions

| Product Name Item                        |                         |          | μPD784031,<br>784031(A)                                                                                                                                                                                                                              | 1 '                                                                                                                                                                         | 784035, μPD784036, μθ<br>4035(A) 784036(A) |                         | μPD784037                | μPD784038                                 | μPD78P4038 |
|------------------------------------------|-------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------|--------------------------|-------------------------------------------|------------|
| Number of basic instructions (mnemonics) |                         |          | 113                                                                                                                                                                                                                                                  |                                                                                                                                                                             |                                            |                         |                          |                                           |            |
| General registers                        |                         |          | 8 bits × 16 registers × 8 banks or 16 bits × 8 registers × 8 banks (memory mapped)                                                                                                                                                                   |                                                                                                                                                                             |                                            |                         |                          |                                           |            |
| Minimum instruction execution time       |                         |          | 125 ns/250 ns/500 ns/1,000 ns (at 32-MHz operation)                                                                                                                                                                                                  |                                                                                                                                                                             |                                            |                         |                          |                                           |            |
| Internal memory capacity ROM             |                         | None     | 48 Kbytes<br>(Mask ROM)                                                                                                                                                                                                                              |                                                                                                                                                                             | 64 Kbytes<br>(Mask ROM)                    | 96 Kbytes<br>(Mask ROM) | 128 Kbytes<br>(Mask ROM) | 128 Kbytes<br>(One-time PROM<br>or EPROM) |            |
|                                          |                         | RAM      | 2,048 bytes                                                                                                                                                                                                                                          |                                                                                                                                                                             |                                            |                         | 3,584 bytes 4,352 bytes  |                                           |            |
| Memory spa                               | ace                     |          | 1 Mbyte total both programs and data                                                                                                                                                                                                                 |                                                                                                                                                                             |                                            |                         |                          |                                           |            |
| I/O port                                 | Total                   |          | 64                                                                                                                                                                                                                                                   |                                                                                                                                                                             |                                            |                         |                          |                                           |            |
|                                          | Input                   |          | 8                                                                                                                                                                                                                                                    |                                                                                                                                                                             |                                            |                         |                          |                                           |            |
|                                          | Input/Output            |          | 56                                                                                                                                                                                                                                                   |                                                                                                                                                                             |                                            |                         |                          |                                           |            |
| Additional                               | Pin with pull-up        | resistor | 54                                                                                                                                                                                                                                                   |                                                                                                                                                                             |                                            |                         |                          |                                           |            |
| function                                 | LED direct drive output |          | 24                                                                                                                                                                                                                                                   |                                                                                                                                                                             |                                            |                         |                          |                                           |            |
| pin Note                                 | Transistor direct       | t drive  | 8                                                                                                                                                                                                                                                    |                                                                                                                                                                             |                                            |                         |                          |                                           |            |
| Real-time o                              | utput port              |          | 4 bits $\times$ 2, or                                                                                                                                                                                                                                | 8 bits ×                                                                                                                                                                    | 1                                          |                         |                          |                                           |            |
| Timer/count                              | Timer/counter           |          |                                                                                                                                                                                                                                                      | Timer/counter 0: Timer register × 1 Pulse output capability  (16-bit) Capture register × 1 • Toggle output  Compare register × 2 • PWM/PPG output  • One-shot pulse output  |                                            |                         |                          |                                           |            |
|                                          |                         |          |                                                                                                                                                                                                                                                      | Timer/counter 1: Timer register × 1 Pulse output capability  (8/16-bit) Capture register × 1 • Real-time output (4 bits × Capture/compare register × 1 Compare register × 1 |                                            |                         | •                        |                                           |            |
|                                          |                         |          | Timer/counter 2: Timer register $\times$ 1 Pulse output capability (8/16-bit) Capture register $\times$ 1 • Toggle output Capture/compare register $\times$ 1 • PWM/PPG output Compare register $\times$ 1                                           |                                                                                                                                                                             |                                            | ty                      |                          |                                           |            |
|                                          |                         |          | Timer 3: Timer register $\times$ 1 (8/16-bit) Compare register $\times$ 1                                                                                                                                                                            |                                                                                                                                                                             |                                            |                         |                          |                                           |            |
| PWM outpu                                | it                      |          | 12-bit resolution × 2 channels                                                                                                                                                                                                                       |                                                                                                                                                                             |                                            |                         |                          |                                           |            |
| Serial interf                            | ace                     |          | UART/IOE (3-wire serial I/O) : 2 channels (on-chip baud rate generator) CSI (3-wire serial I/O, 2-wire serial I/O): 1 channel                                                                                                                        |                                                                                                                                                                             |                                            |                         |                          |                                           |            |
| A/D convert                              | ter                     |          | 8-bit resolution × 8 channels                                                                                                                                                                                                                        |                                                                                                                                                                             |                                            |                         |                          |                                           |            |
| D/A convert                              | ter                     |          | 8-bit resolution × 2 channels                                                                                                                                                                                                                        |                                                                                                                                                                             |                                            |                         |                          |                                           |            |
| Clock outpu                              | ıt                      |          | — Selectable from fclk, fclk/2, fclk/4, fclk/8, and fclk/16 (also usable as 1-bit output port)                                                                                                                                                       |                                                                                                                                                                             |                                            |                         |                          |                                           |            |
| Watchdog t                               | imer                    |          | 1 channel                                                                                                                                                                                                                                            |                                                                                                                                                                             |                                            |                         |                          |                                           |            |
| Standby fur                              | nction                  |          | HALT/STOP/IDLE mode                                                                                                                                                                                                                                  |                                                                                                                                                                             |                                            |                         |                          |                                           |            |
| Interrupt                                | Hardware sour           | ces      | 23 (internal: 16, external: 7 (sampling clock variable input: 1) )                                                                                                                                                                                   |                                                                                                                                                                             |                                            |                         |                          |                                           |            |
|                                          | Software source         | ces      | BRK instruction, BRKCS instruction, operand error                                                                                                                                                                                                    |                                                                                                                                                                             |                                            |                         |                          |                                           |            |
|                                          | Non-maskable            |          | Internal: 1, external: 1                                                                                                                                                                                                                             |                                                                                                                                                                             |                                            |                         |                          |                                           |            |
|                                          | Maskable                |          | Internal: 15, external: 6                                                                                                                                                                                                                            |                                                                                                                                                                             |                                            |                         |                          |                                           |            |
|                                          |                         |          | 4-level programmable priority                                                                                                                                                                                                                        |                                                                                                                                                                             |                                            |                         |                          |                                           |            |
|                                          |                         |          |                                                                                                                                                                                                                                                      | 3 processing modes (vectored interrupt, macro service, context switching)                                                                                                   |                                            |                         |                          |                                           |            |
| Power supply voltage                     |                         |          | V <sub>DD</sub> = 2.7 to 5.5 V                                                                                                                                                                                                                       |                                                                                                                                                                             |                                            |                         |                          |                                           |            |
| Package                                  |                         |          | <ul> <li>80-pin plastic QFP (14 × 14 mm, thickness: 1.4 mm)</li> <li>80-pin plastic QFP (14 × 14 mm, thickness: 2.7 mm)</li> <li>80-pin plastic TQFP (fine pitch) (12 × 12 mm)</li> <li>80-pin ceramic WQFN (14 × 14 mm): μPD78P4038 only</li> </ul> |                                                                                                                                                                             |                                            |                         |                          |                                           |            |

 $\textbf{Note} \quad \text{The pins with additional functions are included in the I/O pins.}$ 

#### 1.3.5 Block diagram



Remarks 1. Internal ROM and RAM capacities vary depending on the products.

- **2.** VPP applies to the  $\mu$ PD78P4038 only.
- 3. The pins in parentheses are used in the PROM programming mode

# 1.4 Product Outline of $\mu$ PD784038Y Subseries ( $\mu$ PD784031Y, 784035Y, 784036Y, 784037Y, 784038Y, 78P4038Y)

# 1.4.1 Features

- I<sup>2</sup>C bus control function is added to μPD784038.
- Pins are compatible with μPD78234 Subseries, μPD784026 Subseries, and μPD784038.
- On-chip memory capacity of μPD78234 Subseries and μPD784026 Subseries is expanded.
- Minimum instruction execution time: 125 ns/250 ns/500 ns/1,000 ns (at 32-MHz operation)
- On-chip memory
  - ROM

Mask ROM: None (µPD784031Y)

48 Kbytes (μPD784035Y) 64 Kbytes (μPD784036Y) 96 Kbytes (μPD784037Y) 128 Kbytes (μPD784038Y)

PROM : 128 Kbytes (μPD78P4038Y)

• RAM : 2,048 bytes (μPD784031Y, 784035Y, 784036Y)

3,584 bytes ( $\mu$ PD784037Y) 4,352 bytes ( $\mu$ PD784038Y)

• I/O port: 64

• Timer/counter: 16-bit timer/counter × 3 units

16-bit timer × 1 unit

• Watchdog timer: 1 channel

 $\bullet$  A/D converter: 8-bit resolution  $\times$  8 channels

• D/A converter: 8-bit resolution × 2 channels

• 12-bit PWM output: 2 channels

Serial interface

UART/IOE (3-wire serial I/O): 2 channels

CSI (3-wire serial I/O, 2-wire serial I/O, I2C bus): 1 channel

• Interrupt controller (4-level priority)

Vectored interrupt/macro service/context switching

Standby function

HALT/STOP/IDLE modes

Clock output function

Selectable from fclk, fclk/2, fclk/4, fclk/8,and fclk/16 (except  $\mu$ PD784031Y)

• Power supply voltage: VDD = 2.7 to 5.5 V

# 1.4.2 Applications

Cellular phones, cordless phones, audiovisual equipment, etc.

#### 1.4.3 Ordering information and quality grade

# (1) Ordering information

| Part Number                                          | Package                                                   | Internal ROM                 |
|------------------------------------------------------|-----------------------------------------------------------|------------------------------|
| μPD784031YGC-3B9                                     | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 2.7 mm) | None                         |
| $\mu$ PD784031YGC-8BT                                | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 1.4 mm) | None                         |
| $\mu$ PD784031YGK-BE9                                | 80-pin plastic TQFP (fine pitch) (12 $\times$ 12 mm)      | None                         |
| $\mu$ PD784035YGC- $\times$ $\times$ -3B9            | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 2.7 mm) | Mask ROM                     |
| $\mu$ PD784035YGC- $\times\!\times\!$ -8BT           | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 1.4 mm) | Mask ROM                     |
| $\mu$ PD784035YGK- $\times\!\times$ -BE9             | 80-pin plastic TQFP (fine pitch) (12 $\times$ 12 mm)      | Mask ROM                     |
| $\mu$ PD784036YGC- $\times$ $\times$ -3B9            | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 2.7 mm) | Mask ROM                     |
| $\mu$ PD784036YGC- $\times$ $\times$ -8BT            | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 1.4 mm) | Mask ROM                     |
| $\mu$ PD784036YGK- $	imes$ $	imes$ -BE9              | 80-pin plastic TQFP (fine pitch) (12 $\times$ 12 mm)      | Mask ROM                     |
| $\mu$ PD784037YGC- $\times$ $\times$ -3B9            | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 2.7 mm) | Mask ROM                     |
| $\mu$ PD784037YGC-×××-8BT                            | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 1.4 mm) | Mask ROM                     |
| $\mu$ PD784037YGK- $\times\!\times$ -BE9             | 80-pin plastic TQFP (fine pitch) (12 $\times$ 12 mm)      | Mask ROM                     |
| $\mu$ PD784038YGC- $\times$ $\times$ -3B9            | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 2.7 mm) | Mask ROM                     |
| $\mu$ PD784038YGC-×××-8BT                            | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 1.4 mm) | Mask ROM                     |
| $\mu$ PD784038YGK- $\times\!\times$ -BE9             | 80-pin plastic TQFP (fine pitch) (12 $\times$ 12 mm)      | Mask ROM                     |
| $\mu$ PD78P4038YGC-3B9                               | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 2.7 mm) | One-time PROM                |
| $\mu$ PD78P4038YGC-8BT                               | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 1.4 mm) | One-time PROM                |
| $\mu$ PD78P4038YGC- $\times\!\!\times\!\!$ -3B9 Note | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 2.7 mm) | Preprogramming one-time PROM |
| $\mu$ PD78P4038YGC- $\times\!\!\times\!\!$ -8BT Note | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 1.4 mm) | Preprogramming one-time PROM |
| $\mu$ PD78P4038YGK-BE9                               | 80-pin plastic TQFP (fine pitch) (12 $\times$ 12 mm)      | One-time PROM                |
| $\mu$ PD78P4038YGK- $\times\!\!\times\!\!$ -BE9 Note | 80-pin plastic TQFP (fine pitch) (12 $\times$ 12 mm)      | Preprogramming one-time PROM |
| $\mu$ PD78P4038YKK-T                                 | 80-pin ceramic WQFN (14 $\times$ 14 mm)                   | EPROM                        |

**Note** QTOP microcontrollers. "QTOP microcontroller" is a general term for a single-chip microcontroller with onchip one-time ROM, for which total support is provided by NEC programming service, from programming to marking, screening, and verification.

Remark xxx indicates ROM code suffix.

Caution  $\mu$ PD784035YGK- $\times\times$ -BE9 and  $\mu$ PD784036YGK- $\times\times$ -BE9 are under development.

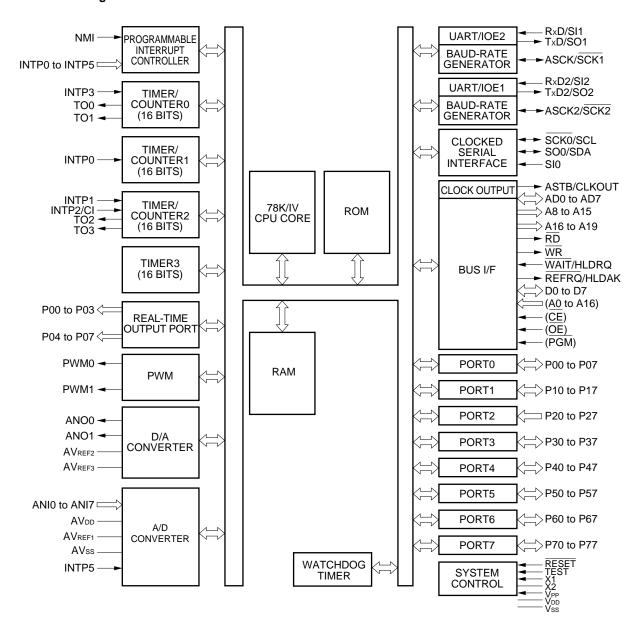
### (2) Quality grades

| Part Number                                          | Package                                                   | Quality Grade             |
|------------------------------------------------------|-----------------------------------------------------------|---------------------------|
| μPD784031YGC-3B9                                     | 80-pin plastic QFP (14 × 14 mm, thickness: 2.7 mm)        | Standard                  |
| $\mu$ PD784031YGC-8BT                                | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 1.4 mm) | Standard                  |
| $\mu$ PD784031YGK-BE9                                | 80-pin plastic TQFP (fine pitch) (12 $\times$ 12 mm)      | Standard                  |
| $\mu$ PD784035YGC- $\times$ $\times$ -3B9            | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 2.7 mm) | Standard                  |
| $\mu$ PD784035YGC- $\times$ $\times$ -8BT            | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 1.4 mm) | Standard                  |
| $\mu$ PD784035YGK- $\times$ $\times$ -BE9            | 80-pin plastic TQFP (fine pitch) (12 $\times$ 12 mm)      | Standard                  |
| $\mu$ PD784036YGC- $\times$ $\times$ -3B9            | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 2.7 mm) | Standard                  |
| $\mu$ PD784036YGC- $\times$ $\times$ -8BT            | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 1.4 mm) | Standard                  |
| $\mu$ PD784036YGK-×××-BE9                            | 80-pin plastic TQFP (fine pitch) (12 $\times$ 12 mm)      | Standard                  |
| $\mu$ PD784037YGC- $\times$ $\times$ -3B9            | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 2.7 mm) | Standard                  |
| $\mu$ PD784037YGC- $\times$ $\times$ -8BT            | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 1.4 mm) | Standard                  |
| $\mu$ PD784037YGK- $	imes$ X $	imes$ BE9             | 80-pin plastic TQFP (fine pitch) (12 $\times$ 12 mm)      | Standard                  |
| $\mu$ PD784038YGC- $\times$ $\times$ -3B9            | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 2.7 mm) | Standard                  |
| $\mu$ PD784038YGC- $\times$ $\times$ -8BT            | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 1.4 mm) | Standard                  |
| $\mu$ PD784038YGK- $\times$ $\times$ -BE9            | 80-pin plastic TQFP (fine pitch) (12 $\times$ 12 mm)      | Standard                  |
| $\mu$ PD78P4038YGC-3B9                               | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 2.7 mm) | Standard                  |
| $\mu$ PD78P4038YGC-8BT                               | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 1.4 mm) | Standard                  |
| $\mu$ PD78P4038YGC- $\times\!\!\times\!\!$ -3B9 Note | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 2.7 mm) | Standard                  |
| $\mu$ PD78P4038YGC- $\times\!\!\times\!\!$ -8BT Note | 80-pin plastic QFP (14 $\times$ 14 mm, thickness: 1.4 mm) | Standard                  |
| $\mu$ PD78P4038YGK-BE9                               | 80-pin plastic TQFP (fine pitch) (12 $\times$ 12 mm)      | Standard                  |
| $\mu$ PD78P4038YGK- $\times\!\!\times\!\!$ -BE9 Note | 80-pin plastic TQFP (fine pitch) (12 $\times$ 12 mm)      | Standard                  |
| $\mu$ PD78P4038YKK-T                                 | 80-pin ceramic WQFN (14 $\times$ 14 mm)                   | Not applicable            |
|                                                      |                                                           | (for function evaluation) |

**Note** QTOP microcontrollers. "QTOP microcontroller" is a general term for a single-chip microcontroller with onchip one-time ROM, for which total support is provided by NEC programming service, from programming to marking, screening, and verification.

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

Remark xxx indicates ROM code suffix.


- Cautions 1. The EPROM version of the  $\mu$ PD78P4028 dose not have a level of reliability intended for volume production of customer's equipment, and should only be used for experimental or preproduction function evaluation.
  - 2.  $\mu$ PD784035YGK- $\times\times$ -BE9 and  $\mu$ PD784036YGK- $\times\times$ -BE9 are under development.

# 1.4.4 Outline of functions

| lt                                 | Produ                   | ict Name                                           | μPD784031Y                                                                                                                                           | μPD784035Y                                                         | μPD784036Y                                           | μPD784037Y       | μPD784038Y                | μPD78P4038Y |  |  |
|------------------------------------|-------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|------------------|---------------------------|-------------|--|--|
| Item  Number of ba                 | asic instructions (m    | nnemonics)                                         | 113                                                                                                                                                  |                                                                    |                                                      |                  |                           |             |  |  |
| General registers                  |                         |                                                    | 8 bits × 16 registers × 8 banks or 16 bits × 8 registers × 8 banks (memory mapped)                                                                   |                                                                    |                                                      |                  |                           |             |  |  |
| Minimum instruction execution time |                         |                                                    | 125 ns/250 ns/500 ns/1,000 ns (at 32-MHz operation)                                                                                                  |                                                                    |                                                      |                  |                           |             |  |  |
| Internal memory capacity ROM       |                         |                                                    | None 48 Kbytes 64 Kbytes 96 Kbytes 128 Kbytes                                                                                                        |                                                                    |                                                      |                  | 128 Kbytes                |             |  |  |
|                                    |                         |                                                    | (Mask ROM)                                                                                                                                           | (Mask ROM)                                                         | (Mask ROM)                                           | (Mask ROM)       | -                         |             |  |  |
|                                    |                         |                                                    |                                                                                                                                                      |                                                                    |                                                      |                  | or EPROM)                 |             |  |  |
|                                    |                         | RAM                                                | 2,048 bytes 3,584 bytes 4,352 bytes                                                                                                                  |                                                                    |                                                      |                  |                           |             |  |  |
| Memory spa                         | ace                     |                                                    | 1 Mbyte total both programs and data                                                                                                                 |                                                                    |                                                      |                  |                           |             |  |  |
| I/O port                           | Total                   |                                                    | 64                                                                                                                                                   |                                                                    |                                                      |                  |                           |             |  |  |
|                                    | Input                   |                                                    | 8                                                                                                                                                    |                                                                    |                                                      |                  |                           |             |  |  |
|                                    | Input/Output            |                                                    | 56                                                                                                                                                   |                                                                    |                                                      |                  |                           |             |  |  |
| Additional                         | Pin with pull-up        | p resistor                                         | 54                                                                                                                                                   |                                                                    |                                                      |                  |                           |             |  |  |
| function                           | LED direct drive output |                                                    | 24                                                                                                                                                   |                                                                    |                                                      |                  |                           |             |  |  |
| pin Note                           | Transistor dire         | ct drive                                           | 8                                                                                                                                                    |                                                                    |                                                      |                  |                           |             |  |  |
| Real-time o                        | utput port              |                                                    | 4 bits $\times$ 2, or                                                                                                                                | 8 bits × 1                                                         |                                                      |                  |                           |             |  |  |
| Timer/count                        | ter                     |                                                    | Timer/counte                                                                                                                                         |                                                                    | egister × 1                                          |                  | output capabili           | ty          |  |  |
|                                    |                         |                                                    |                                                                                                                                                      |                                                                    | register × 1                                         |                  | le output<br>I/PPG output |             |  |  |
|                                    |                         |                                                    |                                                                                                                                                      | Compa                                                              | re register × 2                                      |                  | shot pulse outp           | out         |  |  |
|                                    |                         |                                                    | Timer/counte                                                                                                                                         | Timer/counter 1: Timer register × 1 Pulse output capability        |                                                      |                  |                           |             |  |  |
|                                    |                         |                                                    |                                                                                                                                                      | Capture register $\times$ 1 • Real-time output (4 bits $\times$ 2) |                                                      |                  |                           |             |  |  |
|                                    |                         |                                                    | Capture/compare register × 1                                                                                                                         |                                                                    |                                                      |                  |                           |             |  |  |
|                                    |                         |                                                    | Compare register × 1                                                                                                                                 |                                                                    |                                                      |                  |                           |             |  |  |
|                                    |                         |                                                    | Timer/counter 2: Timer register × 1 Pulse output capability  Capture register × 1  • Toggle output                                                   |                                                                    |                                                      |                  |                           |             |  |  |
|                                    |                         |                                                    | Capture register × 1 • Toggle output Capture/compare register × 1 • PWM/PPG output                                                                   |                                                                    |                                                      |                  |                           |             |  |  |
|                                    |                         |                                                    | Compare register × 1                                                                                                                                 |                                                                    |                                                      |                  |                           |             |  |  |
|                                    |                         |                                                    | Timer 3: Timer register × 1                                                                                                                          |                                                                    |                                                      |                  |                           |             |  |  |
|                                    |                         |                                                    | Compare register × 1                                                                                                                                 |                                                                    |                                                      |                  |                           |             |  |  |
| PWM outpu                          | t                       |                                                    | 12-bit resolution × 2 channels                                                                                                                       |                                                                    |                                                      |                  |                           |             |  |  |
| Serial interfa                     | ace                     |                                                    | UART/IOE (3-wire serial I/O) : 2 channels (on-chip baud rate generator) CSI (3-wire serial I/O, 2-wire serial I/O, I <sup>2</sup> C bus) : 1 channel |                                                                    |                                                      |                  |                           |             |  |  |
| A/D convert                        | er                      |                                                    | 8-bit resolution × 8 channels                                                                                                                        |                                                                    |                                                      |                  |                           |             |  |  |
| D/A convert                        | er                      |                                                    | 8-bit resolution × 2 channels                                                                                                                        |                                                                    |                                                      |                  |                           |             |  |  |
| Clock outpu                        | ıt                      |                                                    | — Selectable from fclк, fclк/2, fclк/4, fclк/8,and fclк/16 (also usable as 1-bit output port)                                                        |                                                                    |                                                      |                  |                           |             |  |  |
| Watchdog ti                        | imer                    |                                                    | 1 channel                                                                                                                                            |                                                                    |                                                      |                  |                           |             |  |  |
| Standby fun                        | nction                  |                                                    | HALT/STOP/IDLE mode                                                                                                                                  |                                                                    |                                                      |                  |                           |             |  |  |
| Interrupt                          | Hardware sour           | ces                                                | 24 (internal:                                                                                                                                        | 17, external: 7                                                    | (sampling cloc                                       | k variable inpu  | t: 1) )                   |             |  |  |
|                                    | Software source         | ces                                                | BRK instruction, BRKCS instruction, operand error                                                                                                    |                                                                    |                                                      |                  |                           |             |  |  |
|                                    | Non-maskable            |                                                    | Internal: 1, external: 1                                                                                                                             |                                                                    |                                                      |                  |                           |             |  |  |
| Maskable                           |                         |                                                    | Internal: 16, external: 6                                                                                                                            |                                                                    |                                                      |                  |                           |             |  |  |
|                                    |                         |                                                    | 4-level programmable priority                                                                                                                        |                                                                    |                                                      |                  |                           |             |  |  |
|                                    |                         |                                                    | 3 processing modes (vectored interrupt, macro service, context switching)                                                                            |                                                                    |                                                      |                  |                           |             |  |  |
| Power supply voltage               |                         |                                                    | V <sub>DD</sub> = 2.7 to 5.5 V                                                                                                                       |                                                                    |                                                      |                  |                           |             |  |  |
| Package                            |                         | 80-pin plastic QFP (14 × 14 mm, thickness: 1.4 mm) |                                                                                                                                                      |                                                                    |                                                      |                  |                           |             |  |  |
|                                    |                         |                                                    | 80-pin plastic QFP (14 × 14 mm, thickness: 2.7 mm)     80-pin plastic TQFP (fine pitch) (12 × 12 mm)                                                 |                                                                    |                                                      |                  |                           |             |  |  |
|                                    |                         |                                                    |                                                                                                                                                      |                                                                    | plich) (12 $\times$ 12<br>4 $\times$ 14 mm): $\mu$ P |                  | nly                       |             |  |  |
|                                    |                         |                                                    | - ou-pin cera                                                                                                                                        | unic vvQrIV (I                                                     | - ^ 1 - 111111). μP                                  | וט ז סכט+ וט ז ט | ıı y                      |             |  |  |

Note The pins with additional functions are included in the I/O pins.

#### 1.4.5 Block diagram



Remarks 1. Internal ROM and RAM capacities vary depending on the products.

- **2.** VPP applies to the  $\mu$ PD78P4038Y only.
- 3. The pins in parenthesis are used in the PROM programming mode.

#### **\*** 1.5 Product Outline of $\mu$ PD784046 Subseries

( $\mu$ PD784044,784054,784046,78F4046,784044(A),784044(A1),784044(A2),784046(A),784046(A1),784046(A2),784054(A),784054(A1),784054(A2))

#### 1.5.1 Features

• Minimum instruction execution time:

125 ns (at internal 16-MHz operation).......  $\mu$ PD784044, 784046, 784054, 78F4046 160 ns (at internal 12.5-MHz operation)......  $\mu$ PD784044(A), 784046(A), 784054(A) 200 ns (at internal 10-MHz operation).......  $\mu$ PD784044(A1), (A2), 784046(A1), (A2), 784054(A1), (A2)

On-chip memory

ROM

Mask ROM : 64 Kbytes ( $\mu$ PD784046, 784046(A), (A1), (A2))

: 32 Kbytes (μPD784044, 784044(A), (A1), (A2), 784054, 784054(A), (A1), (A2))

Flash memory : 64 Kbytes ( $\mu$ PD78F4046)

• RAM : 2,048 bytes (μPD784046, 784046(A), (A1), (A2), 78F4046)

1,024 bytes ( $\mu$ PD784044, 784044(A), (A1), (A2), 784054, 784054(A), (A1), (A2))

- I/O port: 65 (64 for only μPD784054 and 784054(A), (A1), (A2))
- Timer/counter: 16-bit timer/counter × 2 units

16-bit timer × 3 units

(only 16-bit timer  $\times$  3 units for  $\mu$ PD784054 and 784054(A), (A1), (A2))

- Watchdog timer: 1 channel
- A/D converter: 10-bit resolution × 16 channels (VDD = 4.5 to 5.5 V)
- Serial interface

UART/IOE (3-wire serial I/O): 2 channels (on-chip baud rate generator)

• Interrupt controller (4-level priority)

Vectored interrupt/macro service/context switching

Standby function

HALT/STOP/IDLE mode (/standby invalid function mode ... μPD784054 and 784054(A), (A1), (A2) only)

Power supply voltage: VDD = 4.0 to 5.5 V

#### 1.5.2 Applications

- Standard: Water heaters, vending machines, office automation equipment such as PPCs or printers, and factory automation equipment such as robots or automation machine tools
- Special: Automobile electrical systems, etc.

# 1.5.3 Ordering information and quality grade

# (1) Ordering information

| Part Number                                       | Package                                | Internal ROM |
|---------------------------------------------------|----------------------------------------|--------------|
| μPD784044GC-××-3B9                                | 80-pin plastic QFP (14 × 14 mm)        | Mask ROM     |
| $\mu$ PD784044GC(A)- $\times$ $\times$ -3B9       | 80-pin plastic QFP (14 × 14 mm)        | Mask ROM     |
| μPD784044GC(A1)-×××-3B9                           | 80-pin plastic QFP (14 $\times$ 14 mm) | Mask ROM     |
| $\mu$ PD784044GC(A2)-×××-3B9                      | 80-pin plastic QFP (14 $\times$ 14 mm) | Mask ROM     |
| $\mu$ PD784046GC- $\times$ $\times$ -3B9 Note     | 80-pin plastic QFP (14 $\times$ 14 mm) | Mask ROM     |
| $\mu$ PD784046GC(A)- $\times\times$ -3B9 Note     | 80-pin plastic QFP (14 $\times$ 14 mm) | Mask ROM     |
| $\mu$ PD784046GC(A1)- $\times$ $\times$ -3B9 Note | 80-pin plastic QFP (14 $\times$ 14 mm) | Mask ROM     |
| $\mu$ PD784046GC(A2)- $\times\times$ -3B9 Note    | 80-pin plastic QFP (14 $\times$ 14 mm) | Mask ROM     |
| $\mu$ PD784054GC- $\times$ $\times$ -3B9          | 80-pin plastic QFP (14 $\times$ 14 mm) | Mask ROM     |
| $\mu$ PD784054GC(A)-×××-3B9                       | 80-pin plastic QFP (14 $\times$ 14 mm) | Mask ROM     |
| $\mu$ PD784054GC(A1)-×××-3B9                      | 80-pin plastic QFP (14 $\times$ 14 mm) | Mask ROM     |
| $\mu$ PD784054GC(A2)-×××-3B9                      | 80-pin plastic QFP (14 $\times$ 14 mm) | Mask ROM     |
| $\mu$ PD78F4046GC-3B9 <sup>Note</sup>             | 80-pin plastic QFP (14 $\times$ 14 mm) | Flash Memory |

Remark xxx indicates ROM code suffix.

# (2) Quality grades

| Part Number                                              | Package                                | Quality Grade |
|----------------------------------------------------------|----------------------------------------|---------------|
| μPD784044GC-××-3B9                                       | 80-pin plastic QFP (14 $\times$ 14 mm) | Standard      |
| $\mu$ PD784046GC- $\times$ $\times$ -3B9 <sup>Note</sup> | 80-pin plastic QFP (14 $\times$ 14 mm) | Standard      |
| $\mu$ PD784054GC- $\times$ $\times$ -3B9                 | 80-pin plastic QFP (14 $\times$ 14 mm) | Standard      |
| $\mu$ PD78F4046GC-3B9 Note                               | 80-pin plastic QFP (14 $\times$ 14 mm) | Standard      |
| $\mu$ PD784044GC(A)- $\times$ $\times$ -3B9              | 80-pin plastic QFP (14 $\times$ 14 mm) | Special       |
| $\mu$ PD784044GC(A1)- $\times$ $\times$ -3B9             | 80-pin plastic QFP (14 $\times$ 14 mm) | Special       |
| $\mu$ PD784044GC(A2)- $\times$ $\times$ -3B9             | 80-pin plastic QFP (14 $\times$ 14 mm) | Special       |
| $\mu$ PD784046GC(A)- $\times\times$ -3B9 Note            | 80-pin plastic QFP (14 $\times$ 14 mm) | Special       |
| $\mu$ PD784046GC(A1)- $\times$ $\times$ -3B9 Note        | 80-pin plastic QFP (14 $\times$ 14 mm) | Special       |
| $\mu$ PD784046GC(A2)- $\times\times$ -3B9 Note           | 80-pin plastic QFP (14 $	imes$ 14 mm)  | Special       |
| $\mu$ PD784054GC(A)- $\times$ $\times$ -3B9              | 80-pin plastic QFP (14 $	imes$ 14 mm)  | Special       |
| $\mu$ PD784054GC(A1)- $\times$ $\times$ -3B9             | 80-pin plastic QFP (14 $	imes$ 14 mm)  | Special       |
| $\mu$ PD784054GC(A2)- $\times\times$ -3B9                | 80-pin plastic QFP (14 $	imes$ 14 mm)  | Special       |

Please refer to "Quality grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

Note Under development

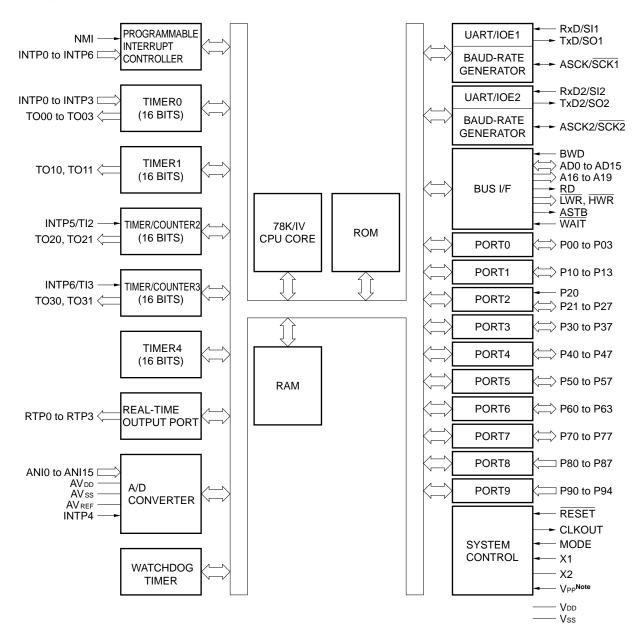
Remark xxx indicates ROM code suffix.

## 1.5.4 Outline of functions

# (1) μPD784044, 784044(A), (A1), (A2), 784046, 784046(A), (A1), (A2), 78F4046

| ۱ |                             | Pr                | oduct Name | μPD784044,                                                                                                                                                                                                             | μPD784046,                                      | μPD78F4046                                                 |  |
|---|-----------------------------|-------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------|--|
|   | Item                        |                   |            | 784044(A), (A1), (A2)                                                                                                                                                                                                  | 784046(A), (A1), (A2)                           |                                                            |  |
|   | Number of basic in          | nstructions (mner | monics)    | 113                                                                                                                                                                                                                    |                                                 |                                                            |  |
|   | General registers           |                   |            | 8 bits × 16 registers × 8 banks or 16 bits × 8 registers × 8 banks (memory mapped)                                                                                                                                     |                                                 |                                                            |  |
| * | Minimum instruction         | on execution time | •          | 125 ns (at internal clock 16-MHz operation) μPD784044, 78F4046 160 ns (at internal clock 12.5-MHz operation) μPD784044(A), 784046(A) 200 ns (at internal clock 10-MHz operation) μPD784044(A1), (A2), 784046(A1), (A2) |                                                 |                                                            |  |
|   | On-chip memory capacity ROM |                   |            | 32 Kbytes                                                                                                                                                                                                              | 64 Kbytes                                       | 64 Kbytes                                                  |  |
|   |                             |                   |            | (Mask ROM)                                                                                                                                                                                                             | (Mask ROM)                                      | (Flash memory)                                             |  |
|   |                             |                   | RAM        | 1,024 bytes                                                                                                                                                                                                            | 2,048 bytes                                     |                                                            |  |
|   | Memory space                |                   |            | 1 Mbyte total both prog                                                                                                                                                                                                | grams and data                                  |                                                            |  |
|   | I/O port                    | Total             |            | 65                                                                                                                                                                                                                     |                                                 |                                                            |  |
|   | Input   Input/Output        |                   |            | 17                                                                                                                                                                                                                     |                                                 |                                                            |  |
|   |                             |                   |            | 48                                                                                                                                                                                                                     |                                                 |                                                            |  |
|   |                             |                   |            | 29                                                                                                                                                                                                                     |                                                 |                                                            |  |
|   | Real-time output p          | oort              |            | 4 bits × 1                                                                                                                                                                                                             |                                                 |                                                            |  |
|   | Timer/counter               |                   |            |                                                                                                                                                                                                                        | Timer register × 1 Capture/compare register × 4 | Pulse output capability • Toggle output • Set/Reset output |  |
|   |                             |                   |            |                                                                                                                                                                                                                        | imer register × 1<br>Compare register × 2       | Pulse output capability  Toggle output  Set/Reset output   |  |
|   |                             |                   |            |                                                                                                                                                                                                                        | imer register × 1 Compare register × 2          | Pulse output capability  Toggle output  PWM/PPG output     |  |
|   |                             |                   |            |                                                                                                                                                                                                                        | imer register × 1 Compare register × 2          | Pulse output capability  Toggle output  PWM/PPG output     |  |
|   |                             |                   |            |                                                                                                                                                                                                                        | imer register × 1 Compare register × 2          | Pulse output capability • Real-time output (4 bits × 1)    |  |
|   | A/D converter               |                   |            | 10-bit resolution × 16                                                                                                                                                                                                 | channels (AVDD = 4.5 to 5                       | .5 V)                                                      |  |
|   | Serial interface            |                   |            | UART/IOE (3-wire ser                                                                                                                                                                                                   | ial I/O): 2 channels (on-ch                     | ip baud rate generator)                                    |  |
|   | Watchdog timer              |                   |            | 1 channel                                                                                                                                                                                                              |                                                 |                                                            |  |
|   | Interrupt                   | Hardware sour     | ces        | 27 (internal: 23, externa                                                                                                                                                                                              | al: 8 (compatible with interr                   | al: 4))                                                    |  |
|   |                             | Software source   | es         | BRK instruction, BRK                                                                                                                                                                                                   | CS instruction, operand er                      | ror                                                        |  |
|   |                             | Non-maskable      |            | Internal: 1, external: 1                                                                                                                                                                                               |                                                 |                                                            |  |
|   |                             | Maskable          |            | Internal: 22, external: 7 (compatible with internal: 4)                                                                                                                                                                |                                                 |                                                            |  |
|   |                             |                   |            | 4-level programmable priority     3 processing modes (vectored interrupt, macro service, context switching)                                                                                                            |                                                 |                                                            |  |
| ŀ | Bus sizing function         | า                 |            | 8-bit/16-bit external da                                                                                                                                                                                               | •                                               |                                                            |  |
| 1 | Standby function            |                   |            | HALT/STOP/IDLE mode                                                                                                                                                                                                    |                                                 |                                                            |  |
|   | Power supply volta          | age               |            | V <sub>DD</sub> = 4.0 to 5.5 V                                                                                                                                                                                         |                                                 |                                                            |  |
| 1 | Package                     |                   |            | 80-pin plastic QFP (14                                                                                                                                                                                                 | 1 × 14 mm)                                      |                                                            |  |
| L |                             |                   |            |                                                                                                                                                                                                                        |                                                 |                                                            |  |

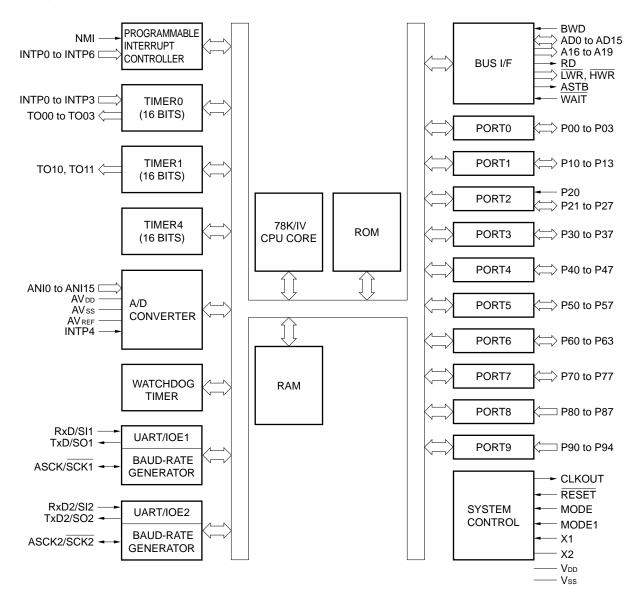
Note The pins with additional functions are included in the I/O pins.


# (2) μPD784054, 784054(A), (A1), (A2)

|                                                        | Pr                          | oduct Name        |                                                                                                                                                                                  | μPD784054, 784054(A), (A                          | 1), (A2)                                                 |  |
|--------------------------------------------------------|-----------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------|--|
| Item                                                   |                             |                   |                                                                                                                                                                                  |                                                   |                                                          |  |
| Number of basic in                                     | nstructions (mner           | monics)           | 113                                                                                                                                                                              |                                                   |                                                          |  |
| General registers                                      | General registers           |                   |                                                                                                                                                                                  | s $\times$ 8 banks or 16 bits $\times$ 8 register | rs × 8 banks (memory mapped)                             |  |
| Minimum instruction execution time                     |                             |                   | 125 ns (at internal clock 16-MHz operation) μPD784054 160 ns (at internal clock 12.5-MHz operation) μPD784054(A) 200 ns (at internal clock 10-MHz operation) μPD784054(A1), (A2) |                                                   |                                                          |  |
| On-chip memory c                                       | On-chip memory capacity ROM |                   | 32 Kbytes (Mask                                                                                                                                                                  | ROM)                                              |                                                          |  |
|                                                        |                             |                   | 1,024 bytes                                                                                                                                                                      |                                                   |                                                          |  |
| Memory space                                           |                             | 1 Mbyte total bot | h programs and data                                                                                                                                                              |                                                   |                                                          |  |
| I/O port Total Input                                   |                             | 64                |                                                                                                                                                                                  |                                                   |                                                          |  |
|                                                        |                             |                   | 17                                                                                                                                                                               |                                                   |                                                          |  |
|                                                        | Input/Output                |                   | 47                                                                                                                                                                               |                                                   |                                                          |  |
| Additional Pin with pull-up resistor function pin Note |                             | 29                |                                                                                                                                                                                  |                                                   |                                                          |  |
| Timer                                                  |                             |                   | Timer 0:<br>(16-bit)                                                                                                                                                             | Timer register × 1 Capture/compare register × 4   | Pulse output capability  Toggle output  Set/Reset output |  |
|                                                        |                             |                   | Timer 1:<br>(16-bit)                                                                                                                                                             | Timer register × 1<br>Compare register × 2        | Pulse output capability  Toggle output  Set/Reset output |  |
|                                                        |                             |                   | Timer 4:<br>(16-bit)                                                                                                                                                             | Timer register × 1 Compare register × 2           |                                                          |  |
| A/D converter                                          |                             |                   | 10-bit resolution × 16 channels (AVDD = 4.5 to 5.5 V)                                                                                                                            |                                                   |                                                          |  |
| Serial interface                                       |                             |                   | UART/IOE (3-wire serial I/O): 2 channels (on-chip baud rate generator)                                                                                                           |                                                   |                                                          |  |
| Watchdog timer                                         |                             |                   | 1 channel                                                                                                                                                                        |                                                   |                                                          |  |
| Interrupt                                              | Hardware sour               | ces               | 23 (internal: 19, e                                                                                                                                                              | xternal: 8 (compatible with inter                 | nal: 4))                                                 |  |
|                                                        | Software source             | es                | BRK instruction, BRKCS instruction, operand error                                                                                                                                |                                                   |                                                          |  |
|                                                        | Non-maskable                |                   | Internal: 1, external: 1                                                                                                                                                         |                                                   |                                                          |  |
|                                                        | Maskable                    |                   | Internal: 18, external: 7 (compatible with internal: 4)                                                                                                                          |                                                   |                                                          |  |
|                                                        |                             |                   | 4-level programmable priority     3 processing modes (vectored interrupt, macro service, context switching)                                                                      |                                                   |                                                          |  |
| Bus sizing function                                    | 1                           |                   | 8-bit/16-bit external data bus selectable                                                                                                                                        |                                                   |                                                          |  |
| Standby function                                       |                             |                   | HALT/STOP/IDLE mode/standby invalid function mode                                                                                                                                |                                                   |                                                          |  |
| Power supply voltage                                   |                             |                   | V <sub>DD</sub> = 4.0 to 5.5 V                                                                                                                                                   |                                                   |                                                          |  |
| Package                                                |                             |                   | 80-pin plastic QFP (14 × 14 mm)                                                                                                                                                  |                                                   |                                                          |  |

Note The pins with additional functions are included in the I/O pins.

#### 1.5.5 Block diagram


## (1) $\mu$ PD784044, 784044(A), (A1), (A2), 784046, 784046(A), (A1), (A2), 78F4046



**Note** VPP applies to the  $\mu$ PD78F4046 only.

Remark Internal ROM and RAM capacities vary depending on the products.

## (2) $\mu$ PD784054, 784054(A), (A1), (A2)



# 1.6 Product Outline of $\mu$ PD784216 Subseries ( $\mu$ PD784214, 784215, 784216, 78F4216)

## 1.6.1 Features

- Peripheral functions of  $\mu$ PD78078 are inherited
- Minimum instruction execution time: 160 ns (at 12.5-MHz main system clock operation)

61 μs (at 32.768-kHz subsystem clock operation)

- On-chip memory
  - ROM

Mask ROM : 96 Kbytes (μPD784214)

128 Kbytes (μPD784215, 784216)

Flash memory : 128 Kbytes (μPD78F4216)

• RAM : 3,584 bytes (μPD784214)

: 5,120 bytes (μPD784215)

4,352 bytes (μPD784216, 78F4216)

• I/O port: 86

 $\bullet \quad \text{Timer/counter:} \quad \text{16-bit timer/counter} \times \text{1 unit}$ 

8-bit timer/counter × 6 units

Watch timer: 1 channelWatchdog timer: 1 channel

A/D converter: 8-bit resolution × 8 channels
 D/A converter: 8-bit resolution × 2 channels

• Serial interface: 3 channels

UART/IOE (3-wire serial I/O): 2 channels (on-chip baud rate generator)

CSI (3-wire serial I/O): 1 channel

• Interrupt controller (4-level priority)

Vectored interrupt/macro service/context switching

Clock output function

Selectable from fxx, fxx/2, fxx/2<sup>2</sup>, fxx/2<sup>3</sup>, fxx/2<sup>4</sup>, fxx/2<sup>5</sup>, fxx/2<sup>6</sup>, fxx/2<sup>7</sup>, fxT

Buzzer output function

Selectable from fxx/2<sup>10</sup>, fxx/2<sup>11</sup>, fxx/2<sup>12</sup>, fxx/2<sup>13</sup>

Standby function

HALT/STOP/IDLE mode

Low power consumption mode: HALT/IDLE mode (subsystem clock operation)

• Power supply voltage: VDD = 1.8 to 5.5 V

#### 1.6.2 Applications

Cellular phones, PHS, cordless phones, CD-ROMs, audiovisual equipment, etc.

## 1.6.3 Ordering information and quality grade

## (1) Ordering information

| Part Number                              | Package                                 | Internal ROM |
|------------------------------------------|-----------------------------------------|--------------|
| μPD784214GC-×××-8EU                      | 100-pin plastic LQFP (fine pitch)       | Mask ROM     |
|                                          | $(14 \times 14 \text{ mm})$             |              |
| $\mu$ PD784214GF- $\times$ $\times$ -3BA | 100-pin plastic QFP (14 $\times$ 20 mm) | Mask ROM     |
| $\mu$ PD784215GC- $\times$ $\times$ -8EU | 100-pin plastic LQFP (fine pitch)       | Mask ROM     |
|                                          | (14 × 14 mm)                            |              |
| $\mu$ PD784215GF- $\times$ $\times$ -3BA | 100-pin plastic QFP (14 $\times$ 20 mm) | Mask ROM     |
| $\mu$ PD784216GC-×××-8EU                 | 100-pin plastic LQFP (fine pitch)       | Mask ROM     |
|                                          | $(14 \times 14 \text{ mm})$             |              |
| $\mu$ PD784216GF- $\times$ $\times$ -3BA | 100-pin plastic QFP (14 $\times$ 20 mm) | Mask ROM     |
| $\mu$ PD78F4216GC-8EU                    | 100-pin plastic LQFP (fine pitch)       | Flash memory |
|                                          | (14 × 14 mm)                            |              |
| $\mu$ PD78F4216GF-3BA                    | 100-pin plastic QFP (14 $\times$ 20 mm) | Flash memory |

Remark xxx indicates ROM code suffix.

# $\star$ Caution $\mu$ PD78F4216GC-8EU and $\mu$ PD78F4216GF-3BA are under development.

# (2) Quality grades

| Part Number                              | Package                                 | Quality Grade |
|------------------------------------------|-----------------------------------------|---------------|
| μPD784214GC-×××-8EU                      | 100-pin plastic LQFP (fine pitch)       | Standard      |
|                                          | (14 × 14 mm)                            |               |
| $\mu$ PD784214GF- $\times$ $\times$ -3BA | 100-pin plastic QFP (14 × 20 mm)        | Standard      |
| $\mu$ PD784215GC-×××-8EU                 | 100-pin plastic LQFP (fine pitch)       | Standard      |
|                                          | (14 × 14 mm)                            |               |
| $\mu$ PD784215GF-×××-3BA                 | 100-pin plastic QFP (14 × 20 mm)        | Standard      |
| $\mu$ PD784216GC-×××-8EU                 | 100-pin plastic LQFP (fine pitch)       | Standard      |
|                                          | (14 × 14 mm)                            |               |
| $\mu$ PD784216GF-×××-3BA                 | 100-pin plastic QFP (14 × 20 mm)        | Standard      |
| $\mu$ PD78F4216GC-8EU                    | 100-pin plastic LQFP (fine pitch)       | Standard      |
|                                          | (14 × 14 mm)                            |               |
| $\mu$ PD78F4216GF-3BA                    | 100-pin plastic QFP (14 $\times$ 20 mm) | Standard      |

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

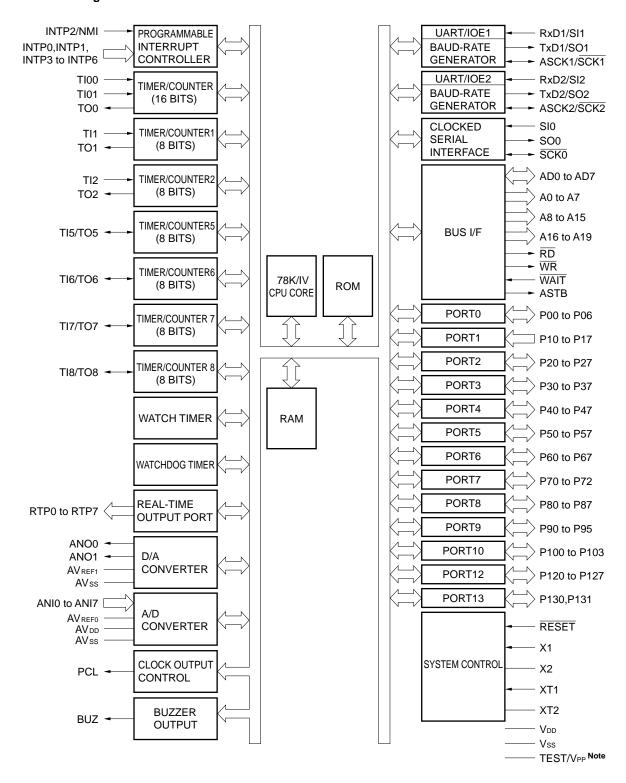
Remark xxx indicates ROM code suffix.

**\*** Caution  $\mu$ PD78F4216GC-8EU and  $\mu$ PD78F4216GF-3BA are under development.

# 1.6.4 Outline of functions

(1/2)

| Item   |                         | Product Name            | μPD784214                                                     | μPD784215                            | μPD784         | 1216           | μPD78F4216                        |  |
|--------|-------------------------|-------------------------|---------------------------------------------------------------|--------------------------------------|----------------|----------------|-----------------------------------|--|
|        | er of basic instruction | ns (mnemonics)          | 113                                                           |                                      |                |                |                                   |  |
|        | ral registers           |                         | 8 bits × 16 registers                                         | < 8 banks or 16 bits                 | × 8 registers  | × 8 banks      | (memory mapped)                   |  |
|        | um instruction          | When main system        | 160 n/320 ns/640 ns/1,280 ns/2,560 ns (at 12.5-MHz operation) |                                      |                |                |                                   |  |
|        | ition time              | clock is selected       | 100 11/020 110/010 1                                          | 10/ 1,200 110/ 2,000                 | 110 (41 12.0 1 | iz opo         | ration,                           |  |
|        |                         | When subsystem          | 61 us (at 32.768-k                                            | 61 μs (at 32.768-kHz operation)      |                |                |                                   |  |
|        |                         | clock is selected       | (                                                             | 01 po (at 02.700 tt 12 opolation)    |                |                |                                   |  |
| Intern | al memory capacity      | ROM                     | 96 Kbytes                                                     | 128 Kbytes                           |                |                | 128 Kbytes                        |  |
|        |                         |                         | (Mask ROM)                                                    | (Mask ROM)                           | (Flash me      | emory)         |                                   |  |
|        |                         | RAM                     | 3,584 bytes                                                   | 5,120 bytes                          | 8,192 byte     | es             |                                   |  |
| Memo   | ory space               |                         | 1 Mbyte total both                                            | programs and dat                     | ta             |                |                                   |  |
| I/O po | ort                     | Total                   | 86                                                            |                                      |                |                |                                   |  |
|        |                         | CMOS input              | 2                                                             |                                      |                |                |                                   |  |
|        |                         | CMOS I/O                | 72                                                            |                                      |                |                |                                   |  |
|        |                         | N-ch open-drain         | 6                                                             |                                      |                |                |                                   |  |
|        |                         | I/O                     |                                                               |                                      |                |                |                                   |  |
|        | Additional              | Pin with pull-up        | 70                                                            |                                      |                |                |                                   |  |
|        | function pin Note       | resistor                |                                                               |                                      |                |                |                                   |  |
|        |                         | LED direct drive output | 22                                                            |                                      |                |                |                                   |  |
|        |                         | Medium voltage          | 6                                                             |                                      |                |                |                                   |  |
|        |                         | resistance pin          |                                                               |                                      |                |                |                                   |  |
|        | time output port        |                         | 4 bits $\times$ 2, or 8 bits $\times$ 1                       |                                      |                |                |                                   |  |
| Timer  | /counter                |                         | 16-bit timer/counte                                           | r: Timer register<br>Capture/compare |                | • PWM/         | utput capability<br>PPG output    |  |
|        |                         |                         |                                                               |                                      |                |                | e wave output<br>hot pulse output |  |
|        |                         |                         | 8-bit timer/counter                                           | 1: Timer register                    | · ∨ 1          |                | utput capability                  |  |
|        |                         |                         | o-bit timer/counter                                           | Compare register                     |                | • PWM          |                                   |  |
|        |                         |                         |                                                               |                                      |                |                | e wave output                     |  |
|        |                         |                         | 8-bit timer/counter                                           | 2: Timer register                    | r×1            | Pulse o        | utput capability                  |  |
|        |                         |                         |                                                               | Compare register $\times$ 1          |                | • PWM          | •                                 |  |
|        |                         |                         |                                                               |                                      |                |                | e wave output                     |  |
|        |                         |                         | 8-bit timer/counter                                           | •                                    |                |                | utput capability                  |  |
|        |                         |                         |                                                               | Compare regi                         | ster × i       | • PWM • Square | e wave output                     |  |
|        |                         |                         | 8-bit timer/counter                                           | 6: Timer register                    | · × 1          | -              | utput capability                  |  |
|        |                         |                         | 5 Dit amonocantor                                             | Compare regis                        |                | • PWM          |                                   |  |
|        |                         |                         |                                                               | , ,                                  |                |                | e wave output                     |  |
|        |                         |                         | 8-bit timer/counter                                           | 7: Timer register                    | r × 1          | Pulse o        | utput capability                  |  |
|        |                         |                         |                                                               | Compare regi                         | ster × 1       | • PWM          | •                                 |  |
|        |                         |                         |                                                               |                                      |                |                | e wave output                     |  |
|        |                         |                         | 8-bit timer/counter                                           | _                                    |                |                | utput capability                  |  |
|        |                         |                         |                                                               | Compare regi                         | sier × 1       | • PWM • Square | output<br>e wave output           |  |
|        |                         |                         |                                                               |                                      |                | - Jquai        | a.o ouipui                        |  |


Note The pins with additional functions are included in the I/O pins.

(2/2)

|                      | Product Name     | μPD784214                                                                  | μPD784215                                                     | μPD784216                                       | μPD78F4216                              |  |
|----------------------|------------------|----------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------|-----------------------------------------|--|
| Item                 |                  |                                                                            |                                                               |                                                 |                                         |  |
| A/D converter        |                  | 8-bit resolution $\times$ 8 channels                                       |                                                               |                                                 |                                         |  |
| D/A converter        |                  | 8-bit resolution × 2                                                       | 2 channels                                                    |                                                 |                                         |  |
| Serial interface     |                  | UART/IOE (3-wire CSI (3-wire serial                                        | ,                                                             | nels (baud rate gene                            | erator on-chip)                         |  |
| Clock output         |                  | Selectable from fx                                                         | x, fxx/2, fxx/2 <sup>2</sup> , fxx/2 <sup>3</sup>             | $^{3}$ , fxx/ $2^{4}$ , fxx/ $2^{5}$ , fxx/ $2$ | <sup>6</sup> , fxx/2 <sup>7</sup> , fxT |  |
| Buzzer output        |                  | Selectable from fx                                                         | x/2 <sup>10</sup> , fxx/2 <sup>11</sup> , fxx/2 <sup>12</sup> | <sup>2</sup> , fxx/2 <sup>13</sup>              |                                         |  |
| Watch timer          |                  | 1 channel                                                                  |                                                               |                                                 |                                         |  |
| Watchdog timer       |                  | 1 channel                                                                  |                                                               |                                                 |                                         |  |
| Interrupt            | Hardware sources | ces 29 (internal: 20, external: 9)                                         |                                                               |                                                 |                                         |  |
|                      | Software sources | BRK instruction, BRKCS instructions, operand error                         |                                                               |                                                 |                                         |  |
|                      | Non-maskable     | Internal: 1, external: 1                                                   |                                                               |                                                 |                                         |  |
|                      | Maskable         | Internal: 19, external: 8                                                  |                                                               |                                                 |                                         |  |
|                      |                  | 4-level programmable priority                                              |                                                               |                                                 |                                         |  |
|                      |                  | • 3 processing modes: vectored interrupt, macro service, context switching |                                                               |                                                 |                                         |  |
| Standby function     |                  | HALT/STOP/IDL                                                              | E mode                                                        |                                                 |                                         |  |
|                      |                  | Low power consumption mode (CPU can operate on subsystem clock):           |                                                               |                                                 |                                         |  |
|                      |                  | HALT/IDLE mode                                                             |                                                               |                                                 |                                         |  |
| Power supply voltage |                  | V <sub>DD</sub> = 1.8 to 5.5 V                                             |                                                               |                                                 |                                         |  |
| Package              |                  | • 100-pin plastic LQFP (fine pitch) (14 × 14 mm)                           |                                                               |                                                 |                                         |  |
|                      |                  | • 100-pin plastic QFP (14 × 20 mm)                                         |                                                               |                                                 |                                         |  |

 $\star$ 

#### 1.6.5 Block diagram



**Note** VPP applies to the  $\mu$ PD78F4216 only.

Remark Internal ROM and RAM capacities vary depending on the products.

# 1.7 Product Outline of $\mu$ PD784216Y Subseries ( $\mu$ PD784214Y, 784215Y, 784216Y, 78F4216Y)

#### 1.7.1 Features

- I<sup>2</sup>C bus interface is added to μPD784216 Subseries
- Minimum instruction execution time: 160 ns (main system clock: at 12.5-MHz operation)

61 μs (subsystem clock: at 32.768-kHz operation)

- On-chip memory
  - ROM

Mask ROM : 96 Kbytes ( $\mu$ PD784214Y)

128 Kbytes (μPD784215Y, 784216Y)

Flash Memory : 128 Kbytes (μPD78F4216Y)

• RAM : 3,584 bytes (μPD784214Y)

5,120 bytes (μPD784215Y)

8,192 bytes (μPD784216Y, 78F4216Y)

• I/O port: 86

ullet Timer/counter: 16-bit timer/counter imes 1 unit

8-bit timer/counter × 6 units

Watch timer: 1 channelWatchdog timer: 1 channel

A/D converter: 8-bit resolution × 8 channels
 D/A converter: 8-bit resolution × 2 channels

• Serial interface: 3 channels

UART/IOE (3-wire serial I/O): 2 channels (on-chip baud rate generator) CSI (3-wire serial I/O, multimaster supported I<sup>2</sup>C bus): 1 channel

• Interrupt controller (4-level priority)

Vectored interrupt/macro service/context switching

Clock output functions

Selectable from fxx, fxx/2, fxx/2<sup>2</sup>, fxx/2<sup>3</sup>, fxx/2<sup>4</sup>, fxx/2<sup>5</sup>, fxx/2<sup>6</sup>, fxx/2<sup>7</sup>, fxT

Buzzer output functions

Selectable from fxx/2<sup>10</sup>, fxx/2<sup>11</sup>, fxx/2<sup>12</sup>, fxx/2<sup>13</sup>

Standby function

HALT/STOP/IDLE mode

Low power consumption mode: HALT/IDLE mode (subsystem clock operation)

• Power supply voltage: VDD = 1.8 to 5.5 V

#### 1.7.2 Applications

Cellular phones, PHS, cordless phones, CD-ROMs, audiovisual equipment, etc.

## 1.7.3 Ordering information and quality grade

# (1) Ordering information

|   | Part Number                               | Package                                 | Internal ROM |
|---|-------------------------------------------|-----------------------------------------|--------------|
|   | μPD784214YGC-×××-8EU                      | 100-pin plastic LQFP (fine pitch)       | Mask ROM     |
|   |                                           | (14 × 14 mm)                            |              |
|   | $\mu$ PD784214YGF- $\times$ $\times$ -3BA | 100-pin plastic QFP (14 $\times$ 20 mm) | Mask ROM     |
|   | $\mu$ PD784215YGC- $\times$ $\times$ -8EU | 100-pin plastic LQFP (fine pitch)       | Mask ROM     |
|   |                                           | (14 × 14 mm)                            |              |
|   | $\mu$ PD784215YGF-×××-3BA                 | 100-pin plastic QFP (14 × 20 mm)        | Mask ROM     |
|   | $\mu$ PD784216YGC- $\times$ $\times$ -8EU | 100-pin plastic LQFP (fine pitch)       | Mask ROM     |
|   |                                           | (14 × 14 mm)                            |              |
|   | $\mu$ PD784216YGF- $\times$ $\times$ -3BA | 100-pin plastic QFP (14 × 20 mm)        | Mask ROM     |
| * | μPD78F4216YGC-8EU                         | 100-pin plastic LQFP (fine pitch)       | Flash memory |
|   |                                           | (14 × 14 mm)                            |              |
|   | $\mu$ PD78F4216YGF-3BA                    | 100-pin plastic QFP (14 × 20 mm)        | Flash memory |

Remark xxx indicates ROM code suffix.

# **\star** Caution $\mu$ PD78F4216YGC-8EU and $\mu$ PD78F4216YGF-3BA are under development.

# (2) Quality grades

| Part Number |                                           | Package                                 | Quality Grade |
|-------------|-------------------------------------------|-----------------------------------------|---------------|
|             | μPD784214YGC-×××-8EU                      | 100-pin plastic LQFP (fine pitch)       | Standard      |
|             |                                           | (14 × 14 mm)                            |               |
|             | $\mu$ PD784214YGF-×××-3BA                 | 100-pin plastic QFP (14 × 20 mm)        | Standard      |
|             | $\mu$ PD784215YGC- $\times$ $\times$ -8EU | 100-pin plastic LQFP (fine pitch)       | Standard      |
|             |                                           | (14 × 14 mm)                            |               |
|             | $\mu$ PD784215YGF-×××-3BA                 | 100-pin plastic QFP (14 $\times$ 20 mm) | Standard      |
|             | $\mu$ PD784216YGC-××-8EU                  | 100-pin plastic LQFP (fine pitch)       | Standard      |
|             |                                           | (14 × 14 mm)                            |               |
|             | $\mu$ PD784216YGF-×××-3BA                 | 100-pin plastic QFP (14 $\times$ 20 mm) | Standard      |
| *           | $\mu$ PD78F4216YGC-8EU                    | 100-pin plastic LQFP (fine pitch)       | Standard      |
|             |                                           | (14 × 14 mm)                            |               |
|             | $\mu$ PD78F4216YGF-3BA                    | 100-pin plastic QFP (14 $\times$ 20 mm) | Standard      |
|             |                                           |                                         |               |

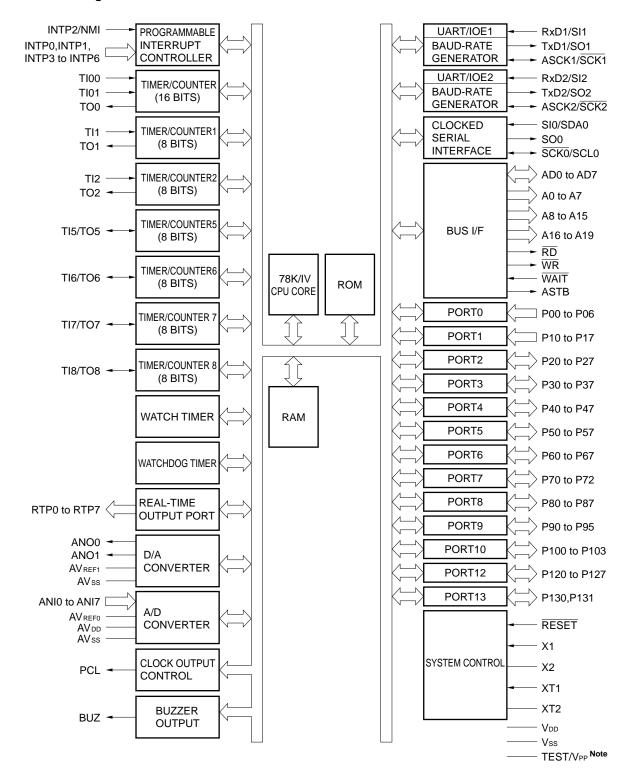
Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

Remark xxx indicates ROM code suffix.

**\star** Caution  $\mu$ PD78F4216YGC-8EU and  $\mu$ PD78F4216YGF-3BA are under development.

# 1.7.4 Outline of functions

(1/2)


| Item    |                              | Product Name                       | μPD784214Y                                                                         | μPD784215Y                           | μPD78421         | 6Y μPD78F4216                                                                           |  |
|---------|------------------------------|------------------------------------|------------------------------------------------------------------------------------|--------------------------------------|------------------|-----------------------------------------------------------------------------------------|--|
|         | per of basic instruction     | une (mnemonice)                    | 113                                                                                |                                      |                  |                                                                                         |  |
|         | ral registers                | ms (milemonics)                    | 8 bits × 16 registers × 8 banks or 16 bits × 8 registers × 8 banks (memory mapped) |                                      |                  |                                                                                         |  |
|         |                              | When main avatam                   | 160 ns/320 ns/640 ns/1.280 ns/2,560 ns (12.5-MHz operation)                        |                                      |                  |                                                                                         |  |
|         | um instruction<br>tion time  | When main system clock is selected | 100 HS/320 HS/040 HS/1,200 HS/2,300 HS (12.5-WHZ OPERATION)                        |                                      |                  |                                                                                         |  |
|         |                              | When subsystem clock is selected   | 61 μs (32.768-kHz)                                                                 |                                      |                  |                                                                                         |  |
| Interna | al memory capacity           | ROM<br>(Mask ROM)                  | 96 Kbytes<br>(Mask ROM)                                                            | 128 Kbytes<br>(Flash memory)         |                  | 128 Kbytes                                                                              |  |
|         |                              | RAM                                | 3,584 bytes                                                                        | 5,120 bytes                          | 8,192 bytes      | · ·                                                                                     |  |
| Memo    | ry space                     |                                    | 1 Mbyte total both                                                                 | programs and data                    | <u> </u>         |                                                                                         |  |
| I/O po  | I/O port Total               |                                    | 86                                                                                 |                                      |                  |                                                                                         |  |
|         | CMOS input                   |                                    | 2                                                                                  |                                      |                  |                                                                                         |  |
|         |                              | CMOS I/O                           | 72                                                                                 |                                      |                  |                                                                                         |  |
|         | N-ch open-drain I/O          |                                    | 6                                                                                  |                                      |                  |                                                                                         |  |
|         | Additional function pin Note | Pin with pull-up resistor          | 70                                                                                 |                                      |                  |                                                                                         |  |
|         |                              | LED direct drive output            | 22                                                                                 |                                      |                  |                                                                                         |  |
|         |                              | Medium voltage resistance pin      | 6                                                                                  |                                      |                  |                                                                                         |  |
| Real-t  | Real-time output port        |                                    | 4 bits × 2, or 8 bits × 1                                                          |                                      |                  |                                                                                         |  |
| Timer/  | /counter                     |                                    | 16-bit timer/counter                                                               | r: Timer register<br>Capture/compare | register × 2 • : | ulse output capability<br>PWM/PPG output<br>Square wave output<br>One-shot pulse output |  |
|         |                              |                                    | 8-bit timer/counter                                                                | Timer register     Compare regis     | ×1 P             | ulse output capability PWM output Square wave output                                    |  |
|         |                              |                                    | 8-bit timer/counter                                                                | 2: Timer register<br>Compare regis   | ster × 1 • I     | ulse output capability<br>PWM output<br>Square wave output                              |  |
|         |                              |                                    | 8-bit timer/counter                                                                | 5: Timer register<br>Compare regis   | ster × 1 •       | ulse output capability<br>PWM output<br>Square wave output                              |  |
|         |                              |                                    | 8-bit timer/counter                                                                | 6: Timer register<br>Compare regis   | ster × 1 •       | ulse output capability<br>PWM output<br>Square wave output                              |  |
|         |                              |                                    | 8-bit timer/counter                                                                | 7: Timer register<br>Compare regis   | ster × 1 •       | ulse output capability PWM output Square wave output                                    |  |
|         |                              |                                    | 8-bit timer/counter                                                                | 8: Timer register<br>Compare regis   | ×1 P<br>ster×1 • | ulse output capability PWM output Square wave output                                    |  |
| A/D co  | onverter                     |                                    | 8-bit resolution × 8                                                               | channels                             |                  |                                                                                         |  |
|         | onverter                     |                                    | 8-bit resolution × 2                                                               |                                      |                  |                                                                                         |  |

 $\textbf{Note} \quad \text{The pins with additional functions are included in the I/O pins.}$ 

(2/2)

|                      | Product Name     | μPD784214Y                                                                 | μPD784215Y                                                    | μPD784216Y                                                     | μPD78F4216Y                               |  |  |
|----------------------|------------------|----------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------|--|--|
| Item                 |                  |                                                                            |                                                               |                                                                |                                           |  |  |
| Serial interface     |                  | UART/IOE (3-wire serial I/O): 2 channels (on-chip baud rate generator)     |                                                               |                                                                |                                           |  |  |
|                      |                  | CSI (3-wire serial)                                                        | al I/O, multimaster s                                         | supported I <sup>2</sup> C bus):                               | 1 channel                                 |  |  |
| Clock output         |                  | Selectable from f                                                          | $xx$ , $fxx/2$ , $fxx/2^2$ , $fxx/2$                          | <sup>3</sup> , fxx/2 <sup>4</sup> , fxx/2 <sup>5</sup> , fxx/2 | 2 <sup>6</sup> , fxx/2 <sup>7</sup> , fxT |  |  |
| Buzzer output        |                  | Selectable from f                                                          | xx/2 <sup>10</sup> , fxx/2 <sup>11</sup> , fxx/2 <sup>1</sup> | <sup>2</sup> , fxx/2 <sup>13</sup>                             |                                           |  |  |
| Watch timer          |                  | 1 channel                                                                  |                                                               |                                                                |                                           |  |  |
| Watchdog timer       |                  | 1 channel                                                                  |                                                               |                                                                |                                           |  |  |
| Interrupt            | Hardware sources | s 29 (internal: 20, external: 9)                                           |                                                               |                                                                |                                           |  |  |
|                      | Software sources |                                                                            | BRK instruction, BRKCS instruction, operand error             |                                                                |                                           |  |  |
|                      | Non-maskable     | Internal: 1, external: 1                                                   |                                                               |                                                                |                                           |  |  |
|                      | Maskable         | Internal: 19, external: 8                                                  |                                                               |                                                                |                                           |  |  |
|                      |                  | 4-level programmable priority                                              |                                                               |                                                                |                                           |  |  |
|                      |                  | • 3 processing modes: vectored interrupt, macro service, context switching |                                                               |                                                                |                                           |  |  |
| Standby function     |                  | HALT/STOP/IDLE mode                                                        |                                                               |                                                                |                                           |  |  |
|                      |                  | Low power consumption mode (CPU can operate on subsystem clock):           |                                                               |                                                                |                                           |  |  |
|                      |                  | HALT/IDLE mode                                                             |                                                               |                                                                |                                           |  |  |
| Power supply voltage |                  | V <sub>DD</sub> = 1.8 to 5.5 V                                             |                                                               |                                                                |                                           |  |  |
| Package              |                  | 100-pin plastic LQFP (fine pitch) (14 × 14 mm)                             |                                                               |                                                                |                                           |  |  |
|                      |                  | • 100-pin plastic QFP (14 × 20 mm)                                         |                                                               |                                                                |                                           |  |  |

#### 1.7.5 Block diagram



**Note** VPP applies to the  $\mu$ PD78F4216Y only.

Remark Internal ROM and RAM capacities vary depending on the products.

# 1.8 Product Outline of $\mu$ PD784218 Subseries ( $\mu$ PD784217, 784218, 78F4218)

#### 1.8.1 Features

- Internal ROM correction
- Inherits the peripheral functions of the  $\mu$ PD78078 Subseries
- Minimum instruction execution time
  - 160 ns (main system clock: fxx = 12.5-MHz operation)
  - 61  $\mu$ s (subsystem clock: fxT = 32.768-kHz operation)
- Instruction set suited for control applications
- Interrupt controller (4-level priority)
  - · Vectored interrupt servicing/macro service/context switching
- Standby function
  - HALT/STOP/IDLE mode
  - In the low power consumption mode: HALT/IDLE mode (subsystem clock operation)
- On-chip memory: Mask ROM 256 Kbytes (μPD784218)

192 Kbytes (μPD784217)

Flash memory 256 Kbytes (µPD78F4218)

RAM 12,800 bytes

- I/O pins: 86
  - Software programmable pull-up resistors: 70 inputs
  - LED direct drive possible: 22 outputs
  - · Transistor direct drive possible: 6 outputs
- Timer/counter: 16-bit timer/counter × 1 unit

8-bit timer/counter × 6 units

- Watch timer: 1 channel
- Watchdog timer: 1 channel
- Serial interfaces
  - UART/IOE (3-wire serial I/O): 2 channels (on-chip baud rate generator)
  - CSI (3-wire serial I/O): 1 channel
- A/D converter: 8-bit resolution × 8 channels
- D/A converter: 8-bit resolution × 2 channels
- Real-time output port (by combining with the timer/counter, two systems of stepping motors can be independently controlled.)
- Clock frequency dividing function
- Clock output function: Selectable from fxx, fxx/2, fxx/2³, fxx/2³, fxx/2⁴, fxx/2⁵, fxx/2⁶, fxx/2⊓, fxT
- Buzzer output function: Selectable from fxx/2<sup>10</sup>, fxx/2<sup>11</sup>, fxx/2<sup>12</sup>, fxx/2<sup>13</sup>
- External access status function
- Power supply voltage: VDD = 1.8 to 5.5 V

## 1.8.2 Applications

Cellular phones, PHS, cordless phones, CD-ROM, audiovisual equipment, etc.

## 1.8.3 Ordering information and quality grade

# (1) Ordering information

| Part Number                              | Package                                              | Internal ROM |
|------------------------------------------|------------------------------------------------------|--------------|
| μPD784217GC-×××-7EA                      | 100-pin plastic QFP (fine pitch) (14 $\times$ 14 mm) | Mask ROM     |
| $\mu$ PD784217GF- $\times$ $\times$ -3BA | 100-pin plastic QFP (14 $\times$ 20 mm)              | Mask ROM     |
| $\mu$ PD784218GC- $\times$ $\times$ -7EA | 100-pin plastic QFP (fine pitch) (14 $\times$ 14 mm) | Mask ROM     |
| $\mu$ PD784218GF- $\times$ $\times$ -3BA | 100-pin plastic QFP (14 $\times$ 20 mm)              | Mask ROM     |
| μPD78F4218GC-7EA                         | 100-pin plastic QFP (fine pitch) (14 $\times$ 14 mm) | Flash memory |
| μPD78F4218GF-3BA                         | 100-pin plastic QFP (14 $\times$ 20 mm)              | Flash memory |

Remark xxx indicates ROM code suffix.

# (2) Quality grade

| Part Number                              | Package                                              | Quality Grade |
|------------------------------------------|------------------------------------------------------|---------------|
| $\mu$ PD784217GC-×××-7EA                 | 100-pin plastic QFP (fine pitch) (14 $\times$ 14 mm) | Standard      |
| $\mu$ PD784217GF- $\times$ $\times$ -3BA | 100-pin plastic QFP (14 $\times$ 20 mm)              | Standard      |
| $\mu$ PD784218GC-×××-7EA                 | 100-pin plastic QFP (fine pitch) (14 $\times$ 14 mm) | Standard      |
| $\mu$ PD784218GF- $\times$ $\times$ -3BA | 100-pin plastic QFP (14 $\times$ 20 mm)              | Standard      |
| $\mu$ PD78F4218GC-7EA                    | 100-pin plastic QFP (fine pitch) (14 $\times$ 14 mm) | Standard      |
| μPD78F4218GF-3BA                         | 100-pin plastic QFP (14 × 20 mm)                     | Standard      |

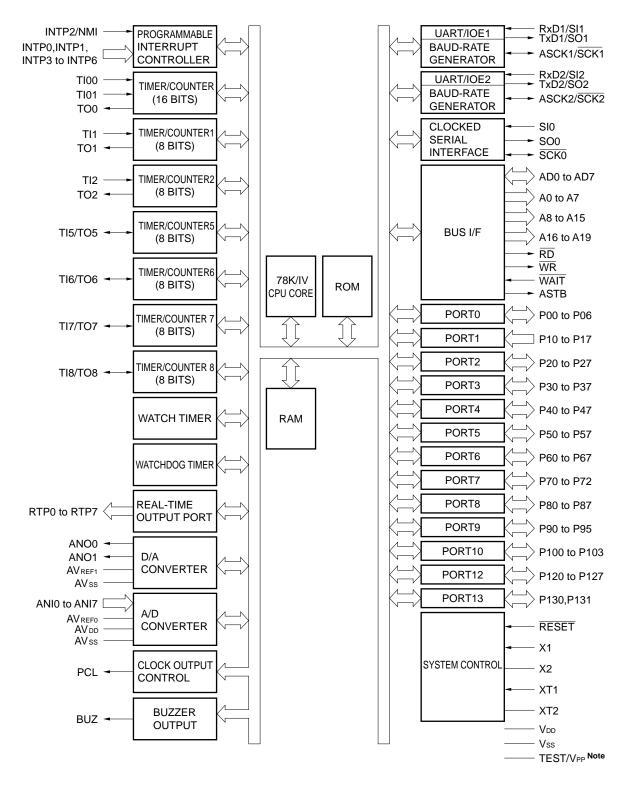
Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

Remark xxx indicates ROM code suffix.

Caution The  $\mu$ PD784218 Subseries is under development.

# 1.8.4 Outline of functions

(1/2)


|                                          | Product Name                | μPD784217                   | 7                      | μPD784218                                                     | μPD78F4218                                                                                |  |
|------------------------------------------|-----------------------------|-----------------------------|------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|
| Item                                     |                             |                             |                        |                                                               |                                                                                           |  |
| Number of basic instructions (mnemonics) |                             | 113                         |                        |                                                               |                                                                                           |  |
| General registers                        |                             | 8 bits × 16 registers       | s × 8 banks            | or 16 bits × 8 registers                                      | × 8 banks (memory mapping)                                                                |  |
| Minimum instruction e                    | execution time              |                             | clock: at 1            | 280 ns/2,560 ns<br>2.5-MHz operation)<br>at 32.768-kHz operat | tion)                                                                                     |  |
| Internal memory capacity                 | ROM                         | 192 Kbytes<br>(Mask ROM)    | <b>I</b>               | 56 Kbytes<br>Mask ROM)                                        | 256 Kbytes<br>(Flash memory)                                                              |  |
|                                          | RAM                         | 12,800 bytes                |                        |                                                               |                                                                                           |  |
| Memory space                             |                             | 1 Mbyte in total o          | of program             | and data                                                      |                                                                                           |  |
| I/O ports                                | Total                       | 86                          |                        |                                                               |                                                                                           |  |
|                                          | CMOS inputs                 | 8                           |                        |                                                               |                                                                                           |  |
|                                          | CMOS I/O                    | 72                          |                        |                                                               |                                                                                           |  |
|                                          | N-ch open-drain I/O         | 6                           |                        |                                                               |                                                                                           |  |
| Pins with added functions Note           | Pins with pull-up resistors | 70                          |                        |                                                               |                                                                                           |  |
|                                          | LED direct drive outputs    | 22                          |                        |                                                               |                                                                                           |  |
|                                          | Medium voltage pins         | 6                           |                        |                                                               |                                                                                           |  |
| Real-time output ports                   | S                           | 4 bits × 2, or 8 bits × 1   |                        |                                                               |                                                                                           |  |
| Timer/counters                           |                             | Timer/counter:<br>(16 bits) | Timer reg<br>Capture/o |                                                               | Pulse output possible     PWM/PPG output     Square wave output     One-shot pulse output |  |
|                                          |                             | Timer/counter 1: (8 bits)   | _                      | register × 1                                                  | Pulse output possible PWM output Square wave output                                       |  |
|                                          |                             | Timer/counter 2: (8 bits)   | _                      | register × 1                                                  | Pulse output possible PWM output Square wave output                                       |  |
| •                                        |                             | Timer/counter 5: (8 bits)   |                        | yister × 1<br>register × 1                                    | Pulse output possible     PWM output     Square wave output                               |  |
|                                          |                             | Timer/counter 6: (8 bits)   | -                      | ister × 1<br>register × 1                                     | Pulse output possible PWM output Square wave output                                       |  |
|                                          |                             | Timer/counter 7: (8 bits)   | _                      | yister × 1<br>register × 1                                    | Pulse output possible PWM output Square wave output                                       |  |
|                                          |                             | Timer/counter 8: (8 bits)   | _                      | register × 1                                                  | Pulse output possible PWM output Square wave output                                       |  |

 $\textbf{Note} \quad \text{The pins with additional functions are included in the I/O pins.}$ 

(2/2)

|                                                     | Product Name        | μPD784217                                                                          | μPD784218                                                              | μPD78F4218                                                   |  |
|-----------------------------------------------------|---------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------|--|
| Item                                                |                     |                                                                                    |                                                                        |                                                              |  |
| Serial interfaces                                   |                     | UART/IOE (3-wire serial I/O): CSI (3-wire serial I/O):                             | ial I/O): 2 channels (on-c<br>: 1 channel                              | hip baud rate generator)                                     |  |
| A/D converter                                       |                     | 8-bit resolution × 8 chan                                                          | nels                                                                   |                                                              |  |
| D/A converter                                       |                     | 8-bit resolution × 2 chan                                                          | nels                                                                   |                                                              |  |
| Clock output                                        |                     | Selectable from fxx, fxx/2                                                         | , fxx/2 <sup>2</sup> , fxx/2 <sup>3</sup> , fxx/2 <sup>4</sup> , fxx/2 | <sup>5</sup> , fxx/2 <sup>6</sup> , fxx/2 <sup>7</sup> , fxT |  |
| Buzzer output                                       |                     | Selectable from fxx/2 <sup>10</sup> , f                                            | fxx/2 <sup>11</sup> , fxx/2 <sup>12</sup> , fxx/2 <sup>13</sup>        |                                                              |  |
| Watch timer                                         |                     | 1 channel                                                                          |                                                                        |                                                              |  |
| Watchdog timer                                      |                     | 1 channel                                                                          |                                                                        |                                                              |  |
| Standby function                                    | HALT/STOP/IDLE mode |                                                                                    |                                                                        |                                                              |  |
|                                                     |                     | In the low power cons                                                              | umption mode                                                           |                                                              |  |
|                                                     |                     | (CPU operation by sub                                                              | osystem clock): HALT/IDL                                               | .E mode                                                      |  |
| Interrupts                                          | Hardware sources    | 29 (internal: 20, externa                                                          | ıl: 9)                                                                 |                                                              |  |
|                                                     | Software sources    | BRK instruction, BRKCS instruction, operand error                                  |                                                                        |                                                              |  |
|                                                     | Non-maskable        | Internal: 1, external: 1                                                           |                                                                        |                                                              |  |
|                                                     | Maskable            | Internal: 19, external: 8                                                          |                                                                        |                                                              |  |
|                                                     |                     | 4-level programmable priority                                                      |                                                                        |                                                              |  |
|                                                     |                     | Three processing formats: Vectored interrupt, macro service, context switching     |                                                                        |                                                              |  |
| Power supply voltage V <sub>DD</sub> = 1.8 to 5.5 V |                     |                                                                                    |                                                                        |                                                              |  |
| Package                                             |                     | 100-pin plastic QFP (fine pitch) (14 × 14 mm)     100-pin plastic QFP (14 × 20 mm) |                                                                        |                                                              |  |

#### 1.8.5 Block diagram



**Note** The VPP pin applies to the  $\mu$ PD78F4218 only.

**Remark** Internal ROM capacity varies depending on the products.

# 1.9 Product Outline of $\mu$ PD784218Y Subseries ( $\mu$ PD784217Y, 784218Y, 78F4218Y)

#### 1.9.1 Features

- Adds the I<sup>2</sup>C bus interface to the  $\mu$ PD784218 Subseries.
- Internal ROM correction
- Inherits the peripheral functions of the  $\mu$ PD78078Y Subseries
- · Minimum instruction execution time
  - 160 ns (main system clock: fxx = 12.5-MHz operation)
  - 61  $\mu$ s (subsystem clock: fxT = 32.768-kHz operation)
- Instruction set suited for control applications
- Interrupt controller (4-level priority)
  - · Vectored interrupt servicing/macro service/context switching
- Standby function
  - HALT/STOP/IDLE mode
  - In the low power consumption mode: HALT/IDLE mode (subsystem clock operation)
- On-chip memory: Mask ROM 256 Kbytes (μPD784218Y)

192 Kbytes (μPD784217Y)

Flash memory 256 Kbytes (µPD78F4218Y)

RAM 12,800 bytes

- I/O pins: 86
  - Software programmable pull-up resistors: 70 inputs
  - LED direct drive possible: 22 outputs
  - Transistor direct drive possible: 6 outputs
- Timer/counter: 16-bit timer/counter × 1 unit

8-bit timer/counter × 6 units

- Watch timer: 1 channel
- Watchdog timer: 1 channel
- Serial interfaces
  - UART/IOE (3-wire serial I/O): 2 channels (on-chip baud rate generator)
  - CSI (3-wire serial I/O, multimaster supported I<sup>2</sup>C bus): 1 channel
- A/D converter: 8-bit resolution × 8 channels
- D/A converter: 8-bit resolution × 2 channels
- Real-time output port (by combining with the timer/counter, two systems of stepping motors can be independently controlled.)
- Clock frequency dividing function
- Clock output function: Selectable from fxx, fxx/2, fxx/22, fxx/23, fxx/24, fxx/25, fxx/26, fxx/27, fxT
- Buzzer output function: Selectable from fxx/2<sup>10</sup>, fxx/2<sup>11</sup>, fxx/2<sup>12</sup>, fxx/2<sup>13</sup>
- External access status function
- Power supply voltage: VDD = 1.8 to 5.5 V

## 1.9.2 Applications

Cellular phones, PHS, cordless phones, CD-ROM, audiovisual equipment, etc.

## 1.9.3 Ordering information and quality grade

# (1) Ordering information

| Part Number                               | Package                                              | Internal ROM |
|-------------------------------------------|------------------------------------------------------|--------------|
| $\mu$ PD784217YGC- $\times\times$ -7EA    | 100-pin plastic QFP (fine pitch) (14 $\times$ 14 mm) | Mask ROM     |
| $\mu$ PD784217YGF- $\times$ $\times$ -3BA | 100-pin plastic QFP (14 $	imes$ 20 mm)               | Mask ROM     |
| $\mu$ PD784218YGC- $\times\times$ -7EA    | 100-pin plastic QFP (fine pitch) (14 $\times$ 14 mm) | Mask ROM     |
| $\mu$ PD784218YGF-××-3BA                  | 100-pin plastic QFP (14 × 20 mm)                     | Mask ROM     |
| μPD78F4218YGC-7EA                         | 100-pin plastic QFP (fine pitch) (14 $\times$ 14 mm) | Flash memory |
| μPD78F4218YGF-3BA                         | 100-pin plastic QFP (14 × 20 mm)                     | Flash memory |

**Remark** ××× indicates ROM code suffix.

# (2) Quality grade

| Part Number                               | Package                                              | Quality Grade |
|-------------------------------------------|------------------------------------------------------|---------------|
| $\mu$ PD784217YGC- $\times\times$ -7EA    | 100-pin plastic QFP (fine pitch) (14 $\times$ 14 mm) | Standard      |
| $\mu$ PD784217YGF- $\times$ $\times$ -3BA | 100-pin plastic QFP (14 $\times$ 20 mm)              | Standard      |
| $\mu$ PD784218YGC- $\times$ $\times$ -7EA | 100-pin plastic QFP (fine pitch) (14 $\times$ 14 mm) | Standard      |
| $\mu$ PD784218YGF-××-3BA                  | 100-pin plastic QFP (14 $\times$ 20 mm)              | Standard      |
| $\mu$ PD78F4218YGC-7EA                    | 100-pin plastic QFP (fine pitch) (14 $\times$ 14 mm) | Standard      |
| μPD78F4218YGF-3BA                         | 100-pin plastic QFP (14 × 20 mm)                     | Standard      |

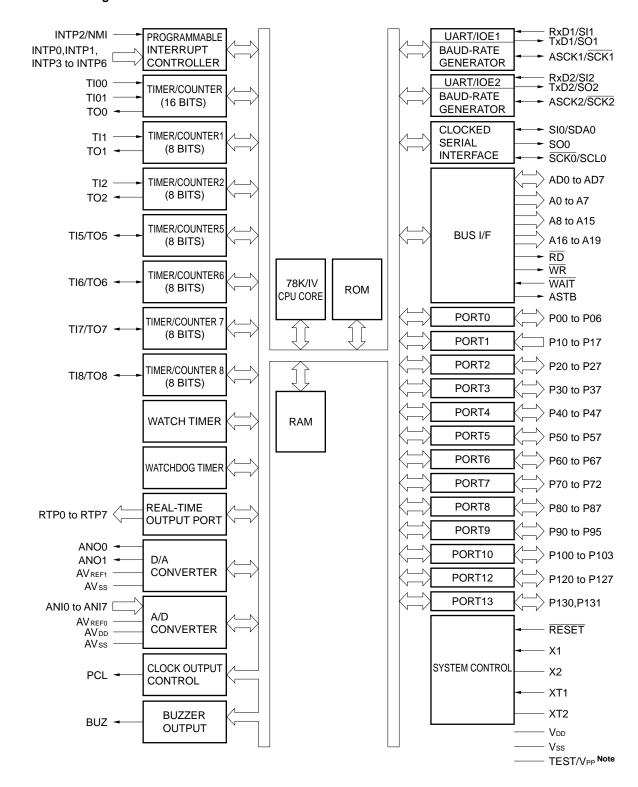
Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

Remark xxx indicates ROM code suffix.

Caution The  $\mu$ PD784218Y Subseries is under development.

# 1.9.4 Outline of functions

(1/2)


| Item                                     | Product Name                | μPD784217`                                                                                                                                                      | Y         | μPD784218Y                                     | μPD78F4218Y                                                                   |  |
|------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------|-------------------------------------------------------------------------------|--|
| Number of basic instructions (mnemonics) |                             | 113                                                                                                                                                             |           |                                                |                                                                               |  |
| General registers                        |                             | 8 bits × 16 registers                                                                                                                                           | s × 8 ban | ks or 16 bits × 8 registers                    | × 8 banks (memory mapping)                                                    |  |
| Minimum instruction e.                   | xecution time               | <ul> <li>160 ns/320 ns/640 ns/1,280 ns/2,560 ns (main system clock: at 12.5-MHz operation)</li> <li>61 μs (subsystem clock: at 32.768-kHz operation)</li> </ul> |           |                                                |                                                                               |  |
| Internal memory capacity                 | ROM                         | 192 Kbytes<br>(Mask ROM)                                                                                                                                        |           | 250 Kbytes<br>(Mask ROM)                       | 256 Kbytes<br>(Flash memory)                                                  |  |
|                                          | RAM                         | 12,800 bytes                                                                                                                                                    |           |                                                |                                                                               |  |
| Memory space                             | ,                           | 1 Mbyte in total of                                                                                                                                             | of progra | am and data                                    |                                                                               |  |
| I/O ports                                | Total                       | 86                                                                                                                                                              |           |                                                |                                                                               |  |
|                                          | CMOS inputs                 | 8                                                                                                                                                               |           |                                                |                                                                               |  |
|                                          | CMOS I/O                    | 72                                                                                                                                                              |           |                                                |                                                                               |  |
|                                          | N-ch open-drain I/O         | 6                                                                                                                                                               |           |                                                |                                                                               |  |
| Pins with added functions Note           | Pins with pull-up resistors | 70                                                                                                                                                              |           |                                                |                                                                               |  |
|                                          | LED direct drive outputs    | 22                                                                                                                                                              |           |                                                |                                                                               |  |
|                                          | Medium voltage pins         | 6                                                                                                                                                               |           |                                                |                                                                               |  |
| Real-time output ports                   |                             | 4 bits × 2, or 8 bits × 1                                                                                                                                       |           |                                                |                                                                               |  |
| Timer/counters                           |                             | Timer/counter:<br>(16 bits)                                                                                                                                     |           | register × 1<br>e/compare register × 2         | Pulse output possible PWM/PPG output Square wave output One-shot pulse output |  |
|                                          |                             | Timer/counter 1: (8 bits)                                                                                                                                       |           | register × 1<br>are register × 1               | Pulse output possible PWM output Square wave output                           |  |
|                                          |                             | Timer/counter 2: (8 bits)                                                                                                                                       |           | register × 1<br>are register × 1               | Pulse output possible PWM output Square wave output                           |  |
| ,                                        |                             | Timer/counter 5: (8 bits)                                                                                                                                       |           | register $\times$ 1<br>are register $\times$ 1 | Pulse output possible PWM output Square wave output                           |  |
|                                          |                             | Timer/counter 6: (8 bits)                                                                                                                                       |           | register × 1<br>are register × 1               | Pulse output possible PWM output Square wave output                           |  |
|                                          |                             | Timer/counter 7: (8 bits)                                                                                                                                       |           | register × 1<br>are register × 1               | Pulse output possible PWM output Square wave output                           |  |
|                                          |                             | Timer/counter 8: (8 bits)                                                                                                                                       |           | register × 1<br>ure register × 1               | Pulse output possible PWM output Square wave output                           |  |

Note The pins with additional functions are included in the I/O pins.

(2/2)

|                                                     | Product Name                                                                       | μPD784217Y                                                                                                                                | μPD784218Y                                                              | μPD78F4218Y                                                    |  |
|-----------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------|--|
| Item                                                |                                                                                    |                                                                                                                                           |                                                                         |                                                                |  |
| Serial interfaces                                   |                                                                                    | ,                                                                                                                                         | ial I/O): 2 channels (on-omultimaster supported I <sup>2</sup> 0        | ,                                                              |  |
| A/D converter                                       |                                                                                    | 8-bit resolution × 8 chan                                                                                                                 | nels                                                                    |                                                                |  |
| D/A converter                                       |                                                                                    | 8-bit resolution × 2 chan                                                                                                                 | nels                                                                    |                                                                |  |
| Clock output                                        |                                                                                    | Selectable from fxx, fxx/2                                                                                                                | 2, fxx/2 <sup>2</sup> , fxx/2 <sup>3</sup> , fxx/2 <sup>4</sup> , fxx/2 | 2 <sup>5</sup> , fxx/2 <sup>6</sup> , fxx/2 <sup>7</sup> , fxt |  |
| Buzzer output                                       |                                                                                    | Selectable from fxx/2 <sup>10</sup> ,                                                                                                     | fxx/2 <sup>11</sup> , fxx/2 <sup>12</sup> , fxx/2 <sup>13</sup>         |                                                                |  |
| Watch timer                                         |                                                                                    | 1 channel                                                                                                                                 |                                                                         |                                                                |  |
| Watchdog timer                                      |                                                                                    | 1 channel                                                                                                                                 |                                                                         |                                                                |  |
| Standby function                                    |                                                                                    | HALT/STOP/IDLE mode     In the low power consumption mode     (CPU operation by subsystem clock): HALT/IDLE mode                          |                                                                         |                                                                |  |
| Interrupts                                          | Hardware sources                                                                   | 29 (internal: 20, external: 9)                                                                                                            |                                                                         |                                                                |  |
|                                                     | Software sources                                                                   | BRK instruction, BRKCS instruction, operand error                                                                                         |                                                                         |                                                                |  |
|                                                     | Non-maskable                                                                       | Internal: 1, external: 1                                                                                                                  |                                                                         |                                                                |  |
|                                                     | Maskable                                                                           | Internal: 19, external: 8                                                                                                                 |                                                                         |                                                                |  |
|                                                     |                                                                                    | <ul> <li>4-level programmable priority</li> <li>Three processing formats: Vectored interrupt, macro service, context switching</li> </ul> |                                                                         |                                                                |  |
| Power supply voltage V <sub>DD</sub> = 1.8 to 5.5 V |                                                                                    |                                                                                                                                           |                                                                         |                                                                |  |
| Package                                             | • 100-pin plastic QFP (fine pitch) (14 × 14 mm) • 100-pin plastic QFP (14 × 20 mm) |                                                                                                                                           |                                                                         |                                                                |  |

#### 1.9.5 Block diagram



**Note** The VPP pin applies to the  $\mu$ PD78F4218Y only.

Remark Internal ROM capacity varies depending on the products.

# 1.10 Product Outline of $\mu$ PD784225 Subseries ( $\mu$ PD784224, 784225, 78F4225)

#### 1.10.1 Features

- Inherits the peripheral functions of the  $\mu$ PD780058 Subseries
- Minimum instruction execution time
  - 160 ns (main system clock: fxx = 12.5-MHz operation)
  - 61  $\mu$ s (subsystem clock: fxT = 32.768-kHz operation)
- Instruction set suited for control applications
- Interrupt controller (4-level priority)
  - · Vectored interrupt servicing/macro service/context switching
- Standby function
  - HALT/STOP/IDLE mode
  - In the low power consumption mode: HALT/IDLE mode (subsystem clock operation)
- On-chip memory: Mask ROM 128 Kbytes (μPD784225)

96 Kbytes (μPD784224)

Flash memory 128 Kbytes ( $\mu$ PD78F4225)

RAM 4,352 bytes (μPD784225, 78F4225)

3,584 bytes ( $\mu$ PD784224)

- I/O pins: 67
  - Software programmable pull-up resistors: 50 inputs
- LED direct drive possible: 16 outputs
  Timer/counter: 16-bit timer/counter × 1 unit

8-bit timer/counter  $\times$  4 units

- Watch timer: 1 channelWatchdog timer: 1 channel
- Serial interfaces
  - UART/IOE (3-wire serial I/O): 2 channels (on-chip baud rate generator)
  - CSI (3-wire serial I/O): 1 channel
- A/D converter: 8-bit resolution × 8 channels
- D/A converter: 8-bit resolution × 2 channels
- Real-time output port (by combining with the timer/counter, two systems of stepping motors can be independently controlled.)
- Clock frequency division function
- Clock output function: Selectable from fxx, fxx/2, fxx/2³, fxx/2³, fxx/2⁴, fxx/2⁵, fxx/2⁶, fxx/2⊓, fxx
- Buzzer output function: Selectable from fxx/2<sup>10</sup>, fxx/2<sup>11</sup>, fxx/2<sup>12</sup>, fxx/2<sup>13</sup>
- Power supply voltage: VDD = 1.8 to 5.5 V

## 1.10.2 Applications

Car audio, portable audio, air conditioner, telephone, etc.

## 1.10.3 Ordering information and quality grade

# (1) Ordering information

| Part Number                              | Package                                              | Internal ROM |
|------------------------------------------|------------------------------------------------------|--------------|
| μPD784224GC-×××-8BT                      | 80-pin plastic QFP (14 × 14 mm)                      | Mask ROM     |
| $\mu$ PD784224GK- $\times$ $\times$ -BE9 | 80-pin plastic TQFP (fine pitch) (12 $\times$ 12 mm) | Mask ROM     |
| $\mu$ PD784225GC- $\times$ $\times$ -8BT | 80-pin plastic QFP (14 $\times$ 14 mm)               | Mask ROM     |
| $\mu$ PD784225GK- $\times$ $\times$ -BE9 | 80-pin plastic TQFP (fine pitch) (12 $\times$ 12 mm) | Mask ROM     |
| $\mu$ PD78F4225GC-8BT                    | 80-pin plastic QFP (14 $\times$ 14 mm)               | Flash memory |
| μPD78F4225GK-BE9                         | 80-pin plastic TQFP (fine pitch) (12 $\times$ 12 mm) | Flash memory |

Remark xxx indicates ROM code suffix.

# (2) Quality grade

| Part Number              | Package                                              | Quality Grade |
|--------------------------|------------------------------------------------------|---------------|
| $\mu$ PD784224GC-×××-8BT | 80-pin plastic QFP (14 × 14 mm)                      | Standard      |
| $\mu$ PD784224GK-×××-BE9 | 80-pin plastic TQFP (fine pitch) (12 $\times$ 12 mm) | Standard      |
| $\mu$ PD784225GC-×××-8BT | 80-pin plastic QFP (14 × 14 mm)                      | Standard      |
| $\mu$ PD784225GK-×××-BE9 | 80-pin plastic TQFP (fine pitch) (12 $\times$ 12 mm) | Standard      |
| $\mu$ PD78F4225GC-8BT    | 80-pin plastic QFP (14 × 14 mm)                      | Standard      |
| μPD78F4225GK-BE9         | 80-pin plastic TQFP (fine pitch) (12 $\times$ 20 mm) | Standard      |

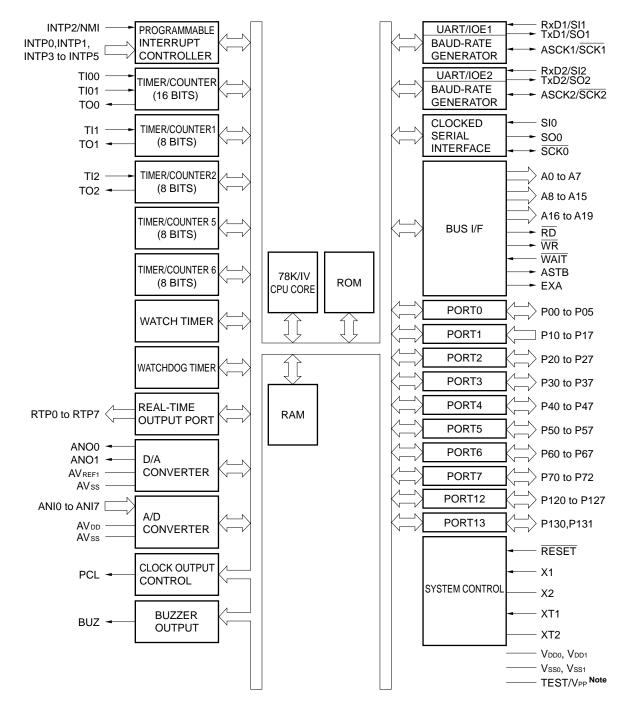
Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

Remark xxx indicates ROM code suffix.

Caution The  $\mu$ PD784225 Subseries is under development.

# 1.10.4 Outline of functions

(1/2)


|                                | Product Name                | μPD784224                                                                                                                                                       |          | μPD784225                             | μPD78F4225                                                                    |
|--------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------|-------------------------------------------------------------------------------|
| Item                           |                             |                                                                                                                                                                 |          |                                       |                                                                               |
| Number of basic instru         | ctions (mnemonics)          | 113                                                                                                                                                             |          |                                       |                                                                               |
| General registers              |                             | 8 bits × 16 registers                                                                                                                                           | ×8 ban   | ks or 16 bits × 8 registers           | × 8 banks (memory mapping)                                                    |
| Minimum instruction ex         | recution time               | <ul> <li>160 ns/320 ns/640 ns/1,280 ns/2,560 ns (main system clock: at 12.5-MHz operation)</li> <li>61 μs (subsystem clock: at 32.768-kHz operation)</li> </ul> |          |                                       |                                                                               |
| Internal memory capacity       | ROM                         | 96 Kbytes<br>(Mask ROM)                                                                                                                                         |          | 128 Kbytes<br>(Mask ROM)              | 128 Kbytes<br>(Flash memory)                                                  |
|                                | RAM                         | 3,584 bytes                                                                                                                                                     |          | 4,352 bytes                           |                                                                               |
| Memory space                   |                             | 1 Mbyte in total o                                                                                                                                              | f progra | m and data                            |                                                                               |
| I/O ports                      | Total                       | 67                                                                                                                                                              |          |                                       |                                                                               |
|                                | CMOS inputs                 | 8                                                                                                                                                               |          |                                       |                                                                               |
|                                | CMOS I/O                    | 59                                                                                                                                                              |          |                                       |                                                                               |
| Pins with added functions Note | Pins with pull-up resistors | 57                                                                                                                                                              |          |                                       |                                                                               |
|                                | LED direct drive outputs    | 16                                                                                                                                                              |          |                                       |                                                                               |
| Real-time output ports         |                             | 4 bits × 2, or 8 bits × 1                                                                                                                                       |          |                                       |                                                                               |
| Timer/counters                 |                             | Timer/counter:<br>(16 bits)                                                                                                                                     |          | egister × 1<br>e/compare register × 2 | Pulse output possible PWM/PPG output Square wave output One-shot pulse output |
|                                |                             | Timer/counter 1: (8 bits)                                                                                                                                       |          | register × 1<br>re register × 1       | Pulse output possible PWM output Square wave output                           |
|                                |                             | Timer/counter 2: (8 bits)                                                                                                                                       |          | register × 1 re register × 1          | Pulse output possible PWM output Square wave output                           |
| ,                              |                             | Timer/counter 5: (8 bits)                                                                                                                                       |          | egister × 1 re register × 1           |                                                                               |
|                                |                             | Timer/counter 6: Timer register × 1 (8 bits) Compare register × 1                                                                                               |          |                                       |                                                                               |
| Serial interfaces              |                             | UART/IOE (3-wire serial I/O): 2 channels (on-chip baud rate generator)     CSI (3-wire serial I/O): 1 channel                                                   |          |                                       |                                                                               |
| A/D converter                  |                             | 8-bit resolution × 8 channels                                                                                                                                   |          |                                       |                                                                               |
| D/A converter                  |                             | 8-bit resolution × 2 channels                                                                                                                                   |          |                                       |                                                                               |
| Clock output                   |                             | Selectable from fxx, fxx/2, fxx/2 <sup>2</sup> , fxx/2 <sup>3</sup> , fxx/2 <sup>4</sup> , fxx/2 <sup>5</sup> , fxx/2 <sup>6</sup> , fxx/2 <sup>7</sup> , fxT   |          |                                       |                                                                               |
| Buzzer output                  |                             | Selectable from fxx/2 <sup>10</sup> , fxx/2 <sup>11</sup> , fxx/2 <sup>12</sup> , fxx/2 <sup>13</sup>                                                           |          |                                       |                                                                               |
| Watch timer                    |                             | 1 channel                                                                                                                                                       |          |                                       |                                                                               |
| Watchdog timer                 |                             | 1 channel                                                                                                                                                       |          |                                       |                                                                               |

Note The pins with additional functions are included in the I/O pins.

(2/2)

|                      | Product Name     | μPD784224                                                                                                        | μPD784225 | μPD78F4225 |  |
|----------------------|------------------|------------------------------------------------------------------------------------------------------------------|-----------|------------|--|
| Item                 |                  |                                                                                                                  |           |            |  |
| Standby function     |                  | HALT/STOP/IDLE mode     In the low power consumption mode     (CPU operation by subsystem clock): HALT/IDLE mode |           |            |  |
| Interrupts           | Hardware sources | 25 (internal: 18, external: 7)                                                                                   |           |            |  |
|                      | Software sources | BRK instruction, BRKCS instruction, operand error                                                                |           |            |  |
|                      | Non-maskable     | Internal: 1, external: 1                                                                                         |           |            |  |
|                      | Maskable         | Internal: 17, external: 6                                                                                        |           |            |  |
|                      |                  | 4-level programmable priority     Three processing formats: Vectored interrupt, macro service, context switching |           |            |  |
| Power supply voltage |                  | V <sub>DD</sub> = 1.8 to 5.5 V                                                                                   |           |            |  |
| Package              |                  | <ul> <li>80-pin plastic TQFP (fine pitch) (12 × 12 mm)</li> <li>80-pin plastic QFP (14 × 14 mm)</li> </ul>       |           |            |  |

#### 1.10.5 Block diagram



**Note** The VPP pin applies to the  $\mu$ PD78F4225 only.

**Remark** Internal ROM and RAM capacities vary depending on the products.

# 1.11 Product Outline of $\mu$ PD784225Y Subseries ( $\mu$ PD784224Y, 784225Y, 78F4225Y)

#### 1.11.1 Features

- Adds the I<sup>2</sup>C bus interface to the μPD784225 Subseries.
- Inherits the peripheral functions of the μPD780058Y Subseries
- Minimum instruction execution time
  - 160 ns (main system clock: fxx = 12.5-MHz operation)
  - 61  $\mu$ s (subsystem clock: fxT = 32.768-kHz operation)
- Instruction set suited for control applications
- Interrupt controller (4-level priority)
  - Vectored interrupt servicing/macro service/context switching
- Standby function
  - HALT/STOP/IDLE mode
  - In the low power consumption mode: HALT/IDLE mode (subsystem clock operation)
- On-chip memory: Mask ROM 128 Kbytes (μPD784225Y)

96 Kbytes (μPD784224Y)

Flash memory 128 Kbytes (µPD78F4225Y)

RAM 4,352 bytes ( $\mu$ PD784225Y, 78F4225Y)

3,584 bytes ( $\mu$ PD784224Y)

- I/O pins: 67
  - Software programmable pull-up resistors: 50 inputs
  - LED direct drive possible: 16 outputs
- $\bullet$  Timer/counter: 16-bit timer/counter  $\times$  1 unit

8-bit timer/counter × 4 units

- Watch timer: 1 channel
- Watchdog timer: 1 channel
- Serial interfaces
  - UART/IOE (3-wire serial I/O): 2 channels (on-chip baud rate generator)
  - CSI (3-wire serial I/O, multimaster supported I2C bus): 1 channel
- A/D converter: 8-bit resolution × 8 channels
- D/A converter: 8-bit resolution × 2 channels
- Real-time output port (by combining with the timer/counter, two stepping motors can be independently controlled.)
- Clock frequency dividing function
- Clock output function: Selectable from fxx, fxx/2, fxx/2³, fxx/2³, fxx/2⁴, fxx/2⁵, fxx/2⁶, fxx/2⁷, fxx
- Buzzer output function: Selectable from fxx/2<sup>10</sup>, fxx/2<sup>11</sup>, fxx/2<sup>12</sup>, fxx/2<sup>13</sup>
- External access status function
- Power supply voltage: VDD = 1.8 to 5.5 V

## 1.11.2 Applications

Car audios, portable audios, air conditioners, telephones, etc.

# 1.11.3 Ordering information and quality grade

# (1) Ordering information

| Part Number                               | Package                                              | Internal ROM |
|-------------------------------------------|------------------------------------------------------|--------------|
| $\mu$ PD784224YGC-×××-8BT                 | 80-pin plastic QFP (14 $\times$ 14 mm)               | Mask ROM     |
| $\mu$ PD784224YGK- $\times$ $\times$ -BE9 | 80-pin plastic TQFP (fine pitch) (12 $\times$ 12 mm) | Mask ROM     |
| $\mu$ PD784225YGC-×××-8BT                 | 80-pin plastic QFP (14 $\times$ 14 mm)               | Mask ROM     |
| $\mu$ PD784225YGK- $\times$ $\times$ -BE9 | 80-pin plastic TQFP (fine pitch) (12 $\times$ 12 mm) | Mask ROM     |
| $\mu$ PD78F4225YGC-8BT                    | 80-pin plastic QFP (14 $\times$ 14 mm)               | Flash memory |
| $\mu$ PD78F4225YGK-BE9                    | 80-pin plastic TQFP (fine pitch) (12 $\times$ 12 mm) | Flash memory |

**Remark** ××× indicates ROM code suffix.

# (2) Quality grade

| Part Number                            | Package                                              | Quality Grade |
|----------------------------------------|------------------------------------------------------|---------------|
| μPD784224YGC-×××-8BT                   | 80-pin plastic QFP (14 $\times$ 14 mm)               | Standard      |
| $\mu$ PD784224YGK- $\times\times$ -BE9 | 80-pin plastic TQFP (fine pitch) (12 $\times$ 12 mm) | Standard      |
| $\mu$ PD784225YGC-×××-8BT              | 80-pin plastic QFP (14 $\times$ 14 mm)               | Standard      |
| $\mu$ PD784225YGK-××-BE9               | 80-pin plastic TQFP (fine pitch) (12 $\times$ 12 mm) | Standard      |
| $\mu$ PD78F4225YGC-8BT                 | 80-pin plastic QFP (14 $\times$ 14 mm)               | Standard      |
| $\mu$ PD78F4225YGK-BE9                 | 80-pin plastic TQFP (fine pitch) (12 $\times$ 12 mm) | Standard      |

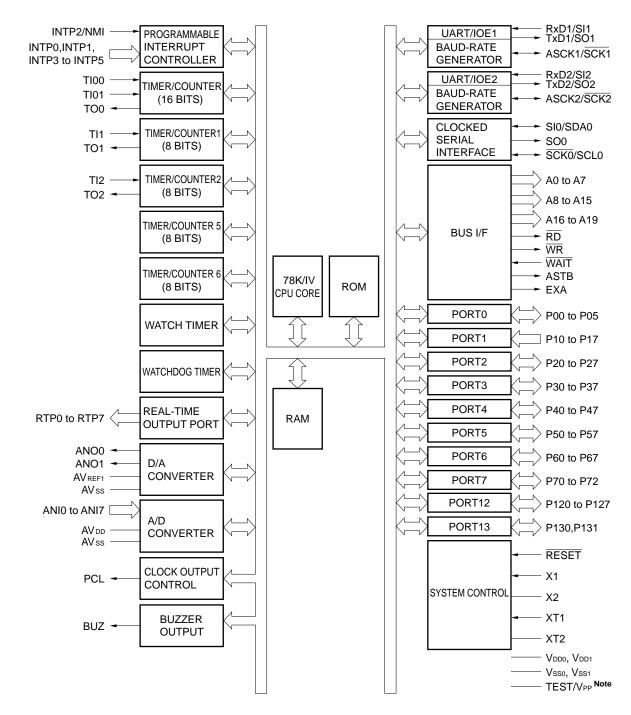
Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

Remark xxx indicates ROM code suffix.

Caution The  $\mu$ PD784225Y Subseries is under development.

# 1.11.4 Outline of functions

(1/2)


| Product Name                                          |                                  | μPD784224\                                                                                                                                                                                                                                                   | Y         | μPD784225Y                            | μPD78F4225Y                                                                   |  |
|-------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------|-------------------------------------------------------------------------------|--|
| Number of basis instructions (magnetics)              |                                  | 113                                                                                                                                                                                                                                                          |           |                                       |                                                                               |  |
| Number of basic instructions (mnemonics)              |                                  | -                                                                                                                                                                                                                                                            |           |                                       |                                                                               |  |
| General registers  Minimum instruction execution time |                                  | <ul> <li>8 bits × 16 registers × 8 banks or 16 bits × 8 registers × 8 banks (memory mapping)</li> <li>160 ns/320 ns/640 ns/1,280 ns/2,560 ns (main system clock: at 12.5-MHz operation)</li> <li>61 µs (subsystem clock: at 32.768-kHz operation)</li> </ul> |           |                                       |                                                                               |  |
| Internal memory capacity                              | ROM                              | 96 Kbytes<br>(Mask ROM)                                                                                                                                                                                                                                      |           | 128 Kbytes<br>(Mask ROM)              | 128 Kbytes<br>(Flash memory)                                                  |  |
|                                                       | RAM                              | 3,584 bytes 4,352 bytes                                                                                                                                                                                                                                      |           |                                       |                                                                               |  |
| Memory space                                          |                                  | 1 Mbyte in total o                                                                                                                                                                                                                                           | of progra | m and data                            |                                                                               |  |
| • I/O ports                                           | Total                            | 67                                                                                                                                                                                                                                                           |           |                                       |                                                                               |  |
|                                                       | CMOS inputs                      | 8                                                                                                                                                                                                                                                            |           |                                       |                                                                               |  |
|                                                       | • CMOS I/O                       | 59                                                                                                                                                                                                                                                           |           |                                       |                                                                               |  |
| Pins with added                                       | Pins with pull-up functions Note | 57                                                                                                                                                                                                                                                           |           |                                       |                                                                               |  |
|                                                       | LED direct drive outputs         | 16                                                                                                                                                                                                                                                           |           |                                       |                                                                               |  |
| Real-time output por                                  | ts                               | 4 bits × 2, or 8 bits × 1                                                                                                                                                                                                                                    |           |                                       |                                                                               |  |
| Timer/counters                                        |                                  | Timer/counter:<br>(16 bits)                                                                                                                                                                                                                                  |           | egister × 1<br>e/compare register × 2 | Pulse output possible PWM/PPG output Square wave output One-shot pulse output |  |
|                                                       |                                  | Timer/counter 1: (8 bits)                                                                                                                                                                                                                                    |           | egister × 1<br>re register × 1        | Pulse output possible PWM output Square wave output                           |  |
|                                                       |                                  | Timer/counter 2: (8 bits)                                                                                                                                                                                                                                    |           | egister × 1<br>re register × 1        | Pulse output possible PWM output Square wave output                           |  |
|                                                       |                                  | Timer/counter 5: (8 bits)                                                                                                                                                                                                                                    |           | egister × 1<br>re register × 1        |                                                                               |  |
|                                                       |                                  | Timer/counter 6: Timer register × 1 (8 bits) Compare register × 1                                                                                                                                                                                            |           |                                       |                                                                               |  |
| Serial interfaces                                     |                                  | UART/IOE (3-wire serial I/O): 2 channels (on-chip baud rate generator)     CSI (3-wire serial I/O, multimaster supported I <sup>2</sup> C bus): 1 channel                                                                                                    |           |                                       |                                                                               |  |
| A/D converter                                         |                                  | 8-bit resolution × 8 channels                                                                                                                                                                                                                                |           |                                       |                                                                               |  |
| D/A converter                                         |                                  | 8-bit resolution × 2 channels                                                                                                                                                                                                                                |           |                                       |                                                                               |  |
| Clock output                                          |                                  | Selectable from fxx, fxx/2, fxx/2 <sup>2</sup> , fxx/2 <sup>3</sup> , fxx/2 <sup>4</sup> , fxx/2 <sup>5</sup> , fxx/2 <sup>6</sup> , fxx/2 <sup>7</sup> , fxt                                                                                                |           |                                       |                                                                               |  |
| Buzzer output                                         |                                  | Selectable from fxx/2 <sup>10</sup> , fxx/2 <sup>11</sup> , fxx/2 <sup>12</sup> , fxx/2 <sup>13</sup>                                                                                                                                                        |           |                                       |                                                                               |  |
| Watch timer                                           |                                  | 1 channel                                                                                                                                                                                                                                                    |           |                                       |                                                                               |  |
| Watchdog timer                                        |                                  | 1 channel                                                                                                                                                                                                                                                    |           |                                       |                                                                               |  |

Note The pins with additional functions are included in the I/O pins.

(2/2)

|                      | Product Name     | μPD784224Y                                                                                                       | μPD784225Y | μPD78F4225Y |  |  |
|----------------------|------------------|------------------------------------------------------------------------------------------------------------------|------------|-------------|--|--|
| Item                 |                  |                                                                                                                  |            |             |  |  |
| Standby function     |                  | HALT/STOP/IDLE mode     In the low power consumption mode     (CPU operation by subsystem clock): HALT/IDLE mode |            |             |  |  |
| Interrupts           | Hardware sources | 25 (internal: 18, external: 7)                                                                                   |            |             |  |  |
|                      | Software sources | BRK instruction, BRKCS instruction, operand error                                                                |            |             |  |  |
|                      | Non-maskable     | Internal: 1, external: 1                                                                                         |            |             |  |  |
|                      | Maskable         | Internal: 17, external: 6                                                                                        |            |             |  |  |
|                      |                  | 4-level programmable priority     Three processing formats: Vectored interrupt, macro service, context switching |            |             |  |  |
| Power supply voltage |                  | V <sub>DD</sub> = 1.8 to 5.5 V                                                                                   |            |             |  |  |
| Package              |                  | 80-pin plastic TQFP (fine pitch) (12 × 12 mm)     80-pin plastic QFP (14 × 14 mm)                                |            |             |  |  |

### 1.11.5 Block diagram



**Note** The VPP pin applies to the  $\mu$ PD78F4225Y only.

 $\mbox{\bf Remark}\;$  Internal ROM and RAM capacities vary depending on the products.

# 1.12 Product Outline of $\mu$ PD784908 Subseries ( $\mu$ PD784907, 784908, 78P4908)

### 1.12.1 Features

- Minimum instruction execution time: 160 ns (at 12.58-MHz operation)
  - On-chip memory
    - Mask ROM: 96 Kbytes (μPD784907)

128 Kbytes (μPD784908)

PROM : 128 Kbytes (μPD78P4908)
• RAM : 3,584 bytes (μPD784907)

4,352 bytes (μPD784908, 78P4908)

• I/O port: 80

• Timer/counter: 16-bit timer/counter × 3 units

16-bit timer × 1 unit

Watch timer: 1 channelWatchdog timer: 1 channelSerial interfaces: 4 channels

• UART/IOE (3-wire serial I/O): 2 channels

• CSI (3-wire serial I/O): 2 channels

- Standby function
- HALT/STOP/IDLE mode
- Clock frequency dividing function
- Clock output function: Selectable from fclk, fclk/2, fclk/4, fclk/8, fclk/16
- A/D converter: 8-bit resolution × 8 channels
- Internal IEBus controller
- Low power consumption
- ★ Power supply voltage: VDD = 3.5 to 5.5 V (Mask ROM version)

 $V_{DD} = 4.0$  to 5.5 V (PROM version)

# 1.12.2 Applications

Car audios, etc.

# 1.12.3 Ordering information and quality grade

# (1) Ordering information

| Part Number                              | Package                                 | Internal ROM  |
|------------------------------------------|-----------------------------------------|---------------|
| $\mu$ PD784907GF- $\times$ $\times$ -3BA | 100-pin plastic QFP (14 $\times$ 20 mm) | Mask ROM      |
| $\mu$ PD784908GF- $\times$ $\times$ -3BA | 100-pin plastic QFP (14 $\times$ 20 mm) | Mask ROM      |
| $\mu$ PD78P4908GF-3BA                    | 100-pin plastic QFP (14 $\times$ 20 mm) | One-time PROM |

Remark xxx indicates ROM code suffix.

# (2) Quality grade

| Part Number              | Package                                 | Quality Grade |
|--------------------------|-----------------------------------------|---------------|
| μPD784907GF-×××-3BA      | 100-pin plastic QFP (14 $\times$ 20 mm) | Standard      |
| $\mu$ PD784908GF-×××-3BA | 100-pin plastic QFP (14 $\times$ 20 mm) | Standard      |
| $\mu$ PD78P4908GF-3BA    | 100-pin plastic QFP (14 $\times$ 20 mm) | Standard      |

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

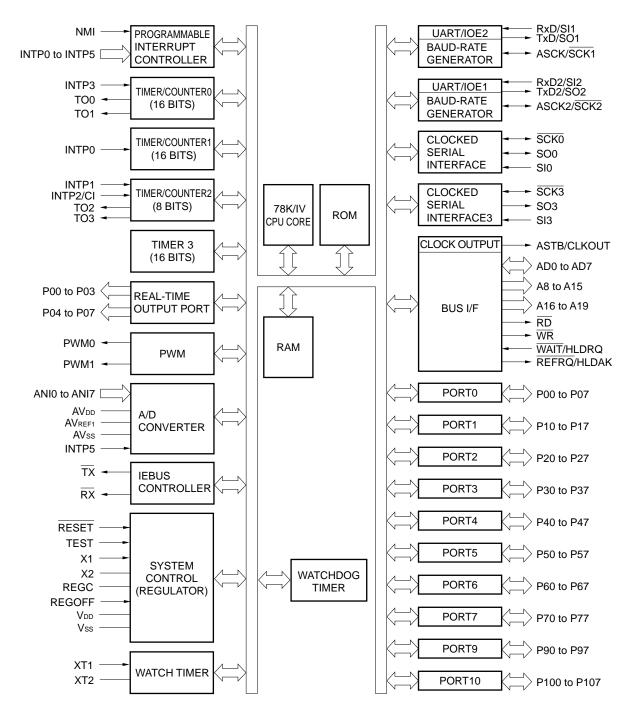
Remark xxx indicates ROM code suffix.

Caution The  $\mu$ PD784908 Subseries is under development.

# 1.12.4 Outline of functions

(1/2)

| capacity (Mask ROM) (Mask ROM) (PReference of the companies of the compani | (1/2)                                                                                                                                                                                                                                                           |                                            |                                     | 1                     |                         |                        | ,            |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------|-----------------------|-------------------------|------------------------|--------------|--|
| ## A bits × 16 registers × 8 banks or 16 bits × 8 registers × 8 banks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | μPD78P4908                                                                                                                                                                                                                                                      | μPD784908                                  | μΡΙ                                 | μPD784907             | Product Name            | Item                   |              |  |
| Minimum instruction execution time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                 |                                            |                                     | 113                   | ctions (mnemonics)      | Number of basic instru |              |  |
| Internal memory capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nks (memory mapping)                                                                                                                                                                                                                                            | 16 bits × 8 registers × 8 ba               | × 8 banks or 16 bit                 | 8 bits × 16 registers |                         | General registers      | ĺ            |  |
| capacity (Mask ROM) (Mask ROM) (PReference of the companies of the compani | )                                                                                                                                                                                                                                                               | (at 12.58-kHz operation                    | 6 ns/1.27 μs (at 1                  | 160 ns/320 ns/63      | ecution time            | Minimum instruction ex | *            |  |
| Memory space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28 Kbytes<br>PROM)                                                                                                                                                                                                                                              | -                                          |                                     |                       | ROM                     | · ·                    |              |  |
| I/O ports                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                 | 52 bytes                                   | 4,352 by                            | 3,584 bytes           | RAM                     |                        |              |  |
| Inputs    Inputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                 | nd data                                    | f program and da                    | 1 Mbyte in total of   |                         | Memory space           |              |  |
| I/O   72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                 |                                            |                                     | 80                    | I/O ports Total         |                        | ĺ            |  |
| Pins with added functions Note    ED direct drive outputs   24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 |                                            |                                     | 8                     | Inputs                  |                        |              |  |
| functionsNote    Transistor direct drive   Real-time output ports   4 bits × 2, or 8 bits × 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                 |                                            |                                     | 72                    | I/O                     |                        |              |  |
| N-ch open-drain   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                 |                                            |                                     | 24                    |                         |                        |              |  |
| Real-time output ports  IEBus controller  Timer/counters  Timer/counters  Timer/counter 0: Timer register × 1 Pulse of Capture register × 2 PWM on One-time register × 1  Capture register × 1  Capture/compare register × 1  Capture/compare register × 1  Timer/counter 2: Timer register × 1  Capture/compare register × 1  Timer/counter 2: Timer register × 1  Capture register × 1  Timer 3: Timer register × 1  Timer 3: Timer register × 1  Compare register × 1  Vatch timer  Interrupt occurs at an interval of 0.5 sec. (Has an internal register input clock can be selected from among the main cloth (12.58 MHz) or clock (32.7 kHz).  Clock output  Selectable from fclk, fclk/2, fclk/4, fclk/8, fclk/16, (also usal pwM output)  12-bit resolution × 2 channels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                 |                                            |                                     | 8                     | Transistor direct drive |                        |              |  |
| IteBus controller  Timer/counters  Timer/counter 0: Timer register × 1 Pulse of (16 bits) Capture register × 2 • PWM • Ones:  Timer/counter 1: Timer register × 1 Real-ting (16 bits) Capture register × 1  Capture register × 1  Capture register × 1  Capture register × 1  Compare register × 1  Timer/counter 2: Timer register × 1 • Togg Capture register × 1 • Togg Capture register × 1 • Togg Capture/compare register × 1 • Togg Capture/compare register × 1  Timer 3: Timer register × 1  Compare register × 1  Timer 3: Timer register × 1  Compare register × 1  Selectable from fclk, fclk/2, fclk/4, fclk/8, fclk/16, (also usal PWM output)  **  Clock output Selectable from fclk, fclk/2, fclk/4, fclk/8, fclk/16, (also usal PWM output)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                 |                                            | 4                                   |                       |                         |                        |              |  |
| Timer/counters  Timer/counter 0: Timer register × 1 Pulse of Compare register × 2 PWM  Timer/counter 1: Timer register × 1 Pulse of Compare register × 1  Timer/counter 1: Timer register × 1  Capture register × 1  Capture register × 1  Capture register × 1  Capture register × 1  Timer/counter 2: Timer register × 1  Capture register × 1 Pulse of Capture register × 1  Timer/counter 2: Timer register × 1  Timer / Compare register × 1  Timer 3: Timer register × 1  Timer 3: Timer register × 1  Watch timer  Interrupt occurs at an interval of 0.5 sec. (Has an internation of Capture / Cap | 4 bits × 2, or 8 bits × 1                                                                                                                                                                                                                                       |                                            |                                     |                       |                         | Real-time output ports | Real-time ou |  |
| (16 bits) Capture register × 1 • Togg Compare register × 2 • PWM • One- Timer/counter 1: Timer register × 1 (16 bits) Capture register × 1 Capture/compare register × 1 Capture/compare register × 1 Compare register × 1 Timer/counter 2: Timer register × 1 • Togg Capture/compare register × 1 • Togg Capture/compare register × 1 Timer 3: Timer register × 1 Compare register × 1 Timer 3: Timer register × 1 Compare register × 1 Compare register × 1 Compare register × 1 Selectable from fclk, fclk/2, fclk/4, fclk/8, fclk/16, (also usa PWM output)  Clock output 12-bit resolution × 2 channels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Internal (simplify)                                                                                                                                                                                                                                             |                                            |                                     |                       | IEBus controller        |                        |              |  |
| (16 bits) Capture register × 1 Capture/compare register × 1 Compare register × 1  Timer/counter 2: Timer register × 1 Capture register × 1  Pulse of Capture register × 1  Capture register × 1  Togg Capture/compare register × 1  Timer 3: Timer register × 1  Compare register × 1  Watch timer  Interrupt occurs at an interval of 0.5 sec. (Has an interval of 0.5 sec.)  Interrupt clock can be selected from among the main cloth (12.58 MHz) or clock (32.7 kHz).  Clock output  Selectable from fclk, fclk/2, fclk/4, fclk/8, fclk/16, (also usal pwm output)  12-bit resolution × 2 channels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e output capability<br>ggle output<br>/M/PPG output<br>e-shot pulse output                                                                                                                                                                                      |                                            | Capture register                    |                       | Timer/counters          |                        |              |  |
| Capture register × 1 • Togg Capture/compare register × 1 • PWM Compare register × 1  Timer 3: Timer register × 1  Compare register × 1  Watch timer  Interrupt occurs at an interval of 0.5 sec. (Has an interval the input clock can be selected from among the main clock can be selecte | time output port                                                                                                                                                                                                                                                | ister $\times$ 1 npare register $\times$ 1 | Capture register Capture/compare    |                       |                         |                        |              |  |
| Compare register × 1  Watch timer  Interrupt occurs at an interval of 0.5 sec. (Has an interval of 0.5 sec.)  The input clock can be selected from among the main clock can be selected from among the main clock (32.7 kHz).  Clock output  Selectable from fclk, fclk/2, fclk/4, fclk/8, fclk/16, (also usal pww output)  12-bit resolution × 2 channels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | output capability<br>ggle output<br>/M/PPG output                                                                                                                                                                                                               |                                            | Capture register<br>Capture/compare | Timer/counter 2:      |                         |                        |              |  |
| The input clock can be selected from among the main cl (12.58 MHz) or clock (32.7 kHz).  Clock output  Selectable from fclk, fclk/2, fclk/4, fclk/8, fclk/16, (also usa 12-bit resolution × 2 channels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                 |                                            | Timer 3:                            |                       |                         |                        |              |  |
| PWM output 12-bit resolution × 2 channels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Interrupt occurs at an interval of 0.5 sec. (Has an internal clock oscillator.) The input clock can be selected from among the main clock (12.58 MHz) or clock (32.7 kHz).  Selectable from fclk, fclk/2, fclk/4, fclk/8, fclk/16, (also usable as output port) |                                            |                                     | /atch timer           |                         |                        |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                 |                                            |                                     |                       | Clock output            |                        |              |  |
| Serial interfaces ITART/IOF (3-wire serial I/O): 2 channels (on-chin haud                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12-bit resolution × 2 channels                                                                                                                                                                                                                                  |                                            |                                     |                       | PWM output              |                        |              |  |
| CSI (3-wire serial I/O): 2 channels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UART/IOE (3-wire serial I/O): 2 channels (on-chip baud rate generator) CSI (3-wire serial I/O): 2 channels                                                                                                                                                      |                                            |                                     | Serial interfaces     |                         |                        |              |  |
| A/D converter 8-bit resolution × 8 channels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8-bit resolution $\times$ 8 channels                                                                                                                                                                                                                            |                                            |                                     | A/D converter         |                         |                        |              |  |
| Watchdog timer 1 channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 channel                                                                                                                                                                                                                                                       |                                            |                                     | Watchdog timer        |                         | Ì                      |              |  |
| Standby function HALT/STOP/IDLE mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HALT/STOP/IDLE mode                                                                                                                                                                                                                                             |                                            |                                     |                       | Standby function        |                        |              |  |


 $\textbf{Note} \quad \text{The pins with additional functions are included in the I/O pins.}$ 

(2/2)

|                      |                  |                                |                              | ` '                            |
|----------------------|------------------|--------------------------------|------------------------------|--------------------------------|
|                      | Product Name     | μPD784907                      | μPD784908                    | μPD78F4908                     |
| Item                 |                  |                                |                              |                                |
| Interrupts           | Hardware sources | 27 (internal: 20, externa      | al: 7 (sampling clock varia  | able input: 1))                |
|                      | Software sources | BRK instruction, BRKCS         | s instruction, operand error | r                              |
|                      | Non-maskable     | Internal: 1, external: 1       |                              |                                |
|                      | Maskable         | Internal: 19, external: 6      | 5                            |                                |
|                      |                  | 4-level programmable pr        | riority                      |                                |
|                      |                  | Three processing formats:      | : Vectored interrupt, macro  | service, context switching     |
| Power supply voltage |                  | V <sub>DD</sub> = 3.5 to 5.5 V |                              | V <sub>DD</sub> = 4.0 to 5.5 V |
| Package              |                  | 100-pin plastic QFP (14        | × 20 mm)                     |                                |

.

### 1.12.5 Block diagram



Remark Internal ROM and RAM capacities vary depending on the products.

# 1.13 Product Outline of $\mu$ PD784915 Subseries ( $\mu$ PD784915, 784915A, 784916A, 784915B, 784916B, 78P4916)

#### 1.13.1 Features

- 78K/IV Series (16-bit CPU core employed): Minimum instruction execution time: 250 ns (at 8-MHz internal clock)
- Internal timer unit for VCR servo control (super timer unit)
- Internal analog circuit for VHS type VCR
  - · CTL amplifier
  - RECCTL driver (supports rewriting)
  - DPFG separation circuit (ternary separation circuit)
  - · DFG amplifier, DPG comparator, CFG amplifier
  - Reel FG comparator (2 channels), CSYNC comparator
- I/O port: 54
- Serial interface: 2 channels (3-wire serial I/O)
- A/D converter: 12 channels (conversion time: 10  $\mu$ s)
- PWM output: 16-bit resolution × 3 channels, 8-bit resolution × 3 channels
- Interrupt function
  - · Vectored interrupt function
  - · Macro service function
  - · Context switching function
- Low-frequency oscillation mode supported: Main system clock frequency = internal clock frequency
- Low-power consumption mode: CPU can operate on subsystem clock.
- Hardware watch function: Watch operation on low voltage (VDD = 2.5 V (MIN.)) and with low current consumption
- Package for high-density mounting: 100-pin plastic QFP (0.65-mm pitch, 14 × 20 mm)

# 1.13.2 Applications

For controlling system/servo/timer of VCR (stationary type and camcorder type)

# 1.13.3 Ordering information and quality grade

# (1) Ordering information

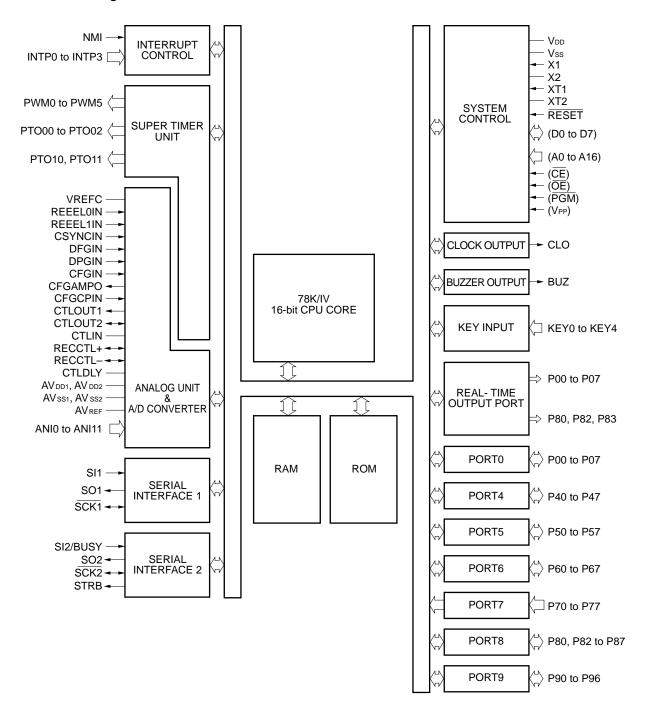
|   | Part Number                               | Package                                 | Internal ROM  |  |
|---|-------------------------------------------|-----------------------------------------|---------------|--|
|   | $\mu$ PD784915GF- $\times$ $\times$ -3BA  | 100-pin plastic QFP (14 $\times$ 20 mm) | Mask ROM      |  |
|   | $\mu$ PD784915AGF- $\times$ $\times$ -3BA | 100-pin plastic QFP (14 $\times$ 20 mm) | Mask ROM      |  |
|   | $\mu$ PD784916AGF- $\times$ $\times$ -3BA | 100-pin plastic QFP (14 $\times$ 20 mm) | Mask ROM      |  |
| * | $\mu$ PD784915BGF-×××-3BA                 | 100-pin plastic QFP (14 $\times$ 20 mm) | Mask ROM      |  |
| * | $\mu$ PD784916BGF-×××-3BA                 | 100-pin plastic QFP (14 $\times$ 20 mm) | Mask ROM      |  |
|   | $\mu$ PD78P4916GF-3BA                     | 100-pin plastic QFP (14 $\times$ 20 mm) | One-time PROM |  |

**Remark** ××× indicates ROM code suffix.

# (2) Quality grades

|   | Part Number                              | Package                                 | Quality Grade | _ |
|---|------------------------------------------|-----------------------------------------|---------------|---|
|   | $\mu$ PD784915GF- $\times$ $\times$ -3BA | 100-pin plastic QFP (14 $\times$ 20 mm) | Standard      |   |
|   | $\mu$ PD784915AGF-×××-3BA                | 100-pin plastic QFP (14 $\times$ 20 mm) | Standard      |   |
|   | $\mu$ PD784916AGF-×××-3BA                | 100-pin plastic QFP (14 $\times$ 20 mm) | Standard      |   |
| * | $\mu$ PD784915BGF-×××-3BA                | 100-pin plastic QFP (14 $\times$ 20 mm) | Standard      |   |
| * | $\mu$ PD784916BGF-×××-3BA                | 100-pin plastic QFP (14 $\times$ 20 mm) | Standard      |   |
|   | $\mu$ PD78P4916GF-3BA                    | 100-pin plastic QFP (14 $\times$ 20 mm) | Standard      |   |

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.


Remark xxx indicates ROM code suffix.

#### 1.13.4 Outline of functions

**Product Name** μPD784915, *μ*PD784915B | *μ*PD784916A μPD784916B μPD78P4916 784915A Number of instructions 113 Minimum instruction execution time 250 ns (8-MHz internal clock operation) Internal memory capacity 48 Kbytes 62 Kbytes 62 Kbytes ROM (Mask ROM) (Mask ROM) (One-time PROM) **RAM** 2,048 bytes 1,280 bytes Interrupt 4 levels (programmable), vector interrupt, macro service, context switching External source 9 (including NMI) Internal source 19 Number of interrupts that can use macro 25 service Types of macro services 4 types, 10 macro services I/O port Input: 8, I/O: 46 Time base counter • 22-bit FRC · Resolution: 125 ns, Maximum count time: 524 ms Capture register Input signal Number of bits Measurement cycle Operating edge **CFG** 22 125 ns to 524 ms  $\uparrow$  $\uparrow$ DFG 22 125 ns to 524 ms  $\uparrow$  $\downarrow$ **HSW** 16 1  $\mu$ s to 65.5 ms 22 1 VSYNC 125 ns to 524 ms  $\uparrow$ CTL 16 1  $\mu$ s to 65.5 ms TREEL 22 125 ns to 524 ms  $\uparrow$  $\uparrow$ Ι. 125 ns to 524 ms SREEL 22 16-bit timer  $\times$  3 General-purpose timer PBCTL duty identification · Duty of playback control signal · VISS detection, wide aspect detection Linear time counter 5-bit UDC for counting CTL signal Real-time output port Serial interface Clocked (3-wire): 2 channels A/D converter 8-bit resolution  $\times$  12 channels, conversion time: 10  $\mu$ s PWM output • 16-bit resolution × 3 channels, 8-bit resolution × 3 channels · Carrier frequency: 62.5 kHz Watch function 0.5-sec measurement, low-voltage operation Standby function HALT mode/STOP mode Analog circuit · CTL amplifier • RECCTL driver (supports rewriting) · DPFG separation circuit (ternary separation circuit) · DFG amplifier, DPG comparator, CFG amplifier · Reel FG comparator · CSYNC comparator Power supply voltage  $V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$ Package 100-pin plastic QFP (14 × 20 mm)

4

### 1.13.5 Block diagram



Remarks 1. Internal ROM and RAM capacities vary depending on the products.

- **2.** VPP applies to the  $\mu$ PD78P4916 only.
- 3. The pins in parentheses are used in the PROM programming mode.

# \* 1.14 Product Outline of $\mu$ PD784928 Subseries ( $\mu$ PD784927, 78F4928)

### 1.14.1 Features

- 16-bit CPU core: Minimum instruction execution time: 250 ns (with 8-MHz internal clock)
- · Internal timer unit (super timer unit) for VCR servo control
- I/O ports: 74
- Internal analog circuits for VHS type VCR
  - · CTL amplifier
  - RECCTL driver (supporting rewrite)
  - · CFG amplifier
  - · DFG amplifier
  - · DPG amplifier
  - DPFG separation circuit (ternary separation circuit)
  - Reel FG comparator (2 channels)
  - CSYNC comparator
- · Serial interface: 2 channels
  - · 3-wire serial I/O: 2 channels
- A/D converter: 12 channels (conversion time: 10  $\mu$ s)
- PWM output: 16-bit resolution × 3 channels, 8-bit resolution × 3 channels
- Interrupt function
  - · Vector interrupt function
  - · Macro service function
  - Context switching function
- · Low frequency oscillation mode: main system clock frequency = internal clock frequency
- Low power consumption mode: CPU can operate on subsystem clock.
- Power supply voltage: VDD = 2.7 to 5.5 V
- Hardware watch function: Low-voltage (VDD = 2.7 V MIN.), low-current consumption operation

### 1.14.2 Applications

For stationary type and camcorder type VCRs.

# **★ 1.14.3 Ordering information**

# (1) Ordering information

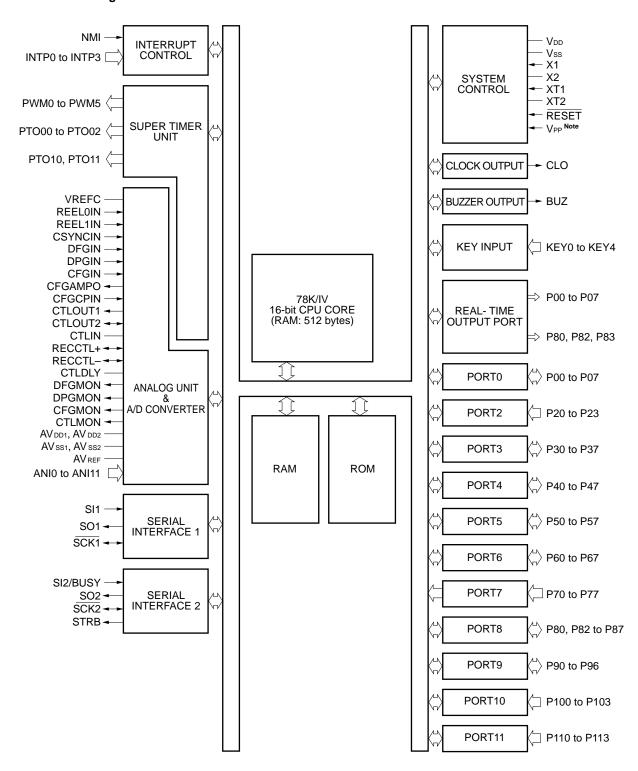
| Part Number           | Package                                 | Internal ROM |
|-----------------------|-----------------------------------------|--------------|
| μPD784927GF-××-3BA    | 100-pin plastic QFP (14 $\times$ 20 mm) | Mask ROM     |
| $\mu$ PD78F4928GF-3BA | 100-pin plastic QFP (14 $\times$ 20 mm) | Flash memory |

**Remark** ××× indicates ROM code suffix.

# (2) Quality grade

| Part Number              | Package                                 | Quality Grade |
|--------------------------|-----------------------------------------|---------------|
| $\mu$ PD784927GF-×××-3BA | 100-pin plastic QFP (14 $\times$ 20 mm) | Standard      |
| $\mu$ PD78F4928GF-3BA    | 100-pin plastic QFP (14 $\times$ 20 mm) | Standard      |

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.


Remark xxx indicates ROM code suffix.

# 1.14.4 Outline of functions

\*

|                                       | Proc         | luct Name                             | "PI                                                                                                                                                                                                       | <br>D784927                                  | μPD78F4928                                                           |     |
|---------------------------------------|--------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------|-----|
| Item                                  |              | μι                                    | D104321                                                                                                                                                                                                   | μι Β/οι 4320                                 |                                                                      |     |
| Number of instructions                |              | 113                                   |                                                                                                                                                                                                           |                                              |                                                                      |     |
| Minimum instru                        | ction exec   | ution time                            | 250 ns (internal cl                                                                                                                                                                                       | ock: 8-MHz operati                           | on)                                                                  |     |
| Internal memor                        | y capacity   | ROM                                   | 96 Kbytes (Mask I                                                                                                                                                                                         | ROM)                                         | 128 Kbytes (Flash memory)                                            |     |
|                                       |              | RAM                                   | 2,048 bytes                                                                                                                                                                                               |                                              | 3,584 bytes                                                          |     |
| Interrupt source                      | s            | External                              | 9 (including NMI)                                                                                                                                                                                         |                                              |                                                                      |     |
|                                       |              | Internal                              | 22 (including softv                                                                                                                                                                                       | vare interrupt)                              |                                                                      |     |
|                                       |              |                                       | 4 levels progran                                                                                                                                                                                          | mmable priority                              |                                                                      |     |
|                                       |              |                                       | 3 types of proce<br>Vectored interru                                                                                                                                                                      | essing methods upt, macro service, o         | context switching                                                    |     |
| I/O ports                             | Input        |                                       | 20                                                                                                                                                                                                        |                                              |                                                                      |     |
|                                       | I/O          |                                       | 54 (including LED                                                                                                                                                                                         | direct drive ports:                          | 3)                                                                   |     |
| Time base cour                        | nter         |                                       | <ul><li>22-bit FRC</li><li>Resolution: 125</li></ul>                                                                                                                                                      | 5 ns, maximum cou                            | nt time: 524 ms                                                      |     |
| Capture registe                       | rs           |                                       | Input signal                                                                                                                                                                                              | Number of bits                               | Measuring cycle                                                      |     |
|                                       |              |                                       | CFG                                                                                                                                                                                                       | 22                                           | 125 ns to 524 ms ↑ ↓                                                 |     |
|                                       |              |                                       | DFG                                                                                                                                                                                                       | 22                                           | 125 ns to 524 ms ↑                                                   |     |
|                                       |              |                                       | HSW                                                                                                                                                                                                       | 16                                           | 1 $\mu$ s to 65.5 ms $\uparrow$ $\downarrow$                         |     |
|                                       |              |                                       | Vsync                                                                                                                                                                                                     | 22                                           | 125 ns to 524 ms ↑                                                   |     |
|                                       |              | CTL                                   | 16                                                                                                                                                                                                        | 1 $\mu$ s to 65.5 ms $\uparrow \downarrow$   |                                                                      |     |
|                                       |              |                                       | TREEL                                                                                                                                                                                                     | 22                                           | 125 ns to 524 ms                                                     |     |
|                                       |              |                                       | SREEL                                                                                                                                                                                                     | 22                                           | 125 ns to 524 ms ↑ ↓                                                 |     |
| General-purpos                        |              |                                       | 16-bit timer × 3                                                                                                                                                                                          |                                              |                                                                      |     |
| PBCTL duty ide                        | entification |                                       | 1                                                                                                                                                                                                         | of recording control s<br>wide aspect detect | · ·                                                                  |     |
| Linear time cou                       | nter         |                                       | 5-bit UDC counts                                                                                                                                                                                          | CTL signal                                   |                                                                      |     |
| Real-time outpu                       | ıt port      |                                       | 11                                                                                                                                                                                                        |                                              |                                                                      |     |
| Serial interface                      |              |                                       | 3-wire serial I/O:                                                                                                                                                                                        | 2 channels (includir                         | g BUSY/STRB control possible: 1 channe                               | el) |
| Buzzer output f                       | unction      |                                       |                                                                                                                                                                                                           |                                              | Hz (internal: 8-MHz operation) ubsystem clock: 32.768-kHz operation) |     |
| A/D converter                         |              |                                       | 8-bit resolution × 1                                                                                                                                                                                      | 12 channels, conver                          | sion time: 10 μs                                                     |     |
| PWM output                            |              |                                       | 16-bit resolution     Carrier frequence                                                                                                                                                                   | ·                                            | resolution × 3 channels                                              |     |
| Watch function                        |              |                                       | 0.5-second measu                                                                                                                                                                                          | rement, low-voltage                          | operation (V <sub>DD</sub> = 2.7 V) possible                         |     |
| Standby functio                       | n            |                                       | HALT mode/STOP mode/low power consumption mode/low power consumption                                                                                                                                      |                                              |                                                                      |     |
| Analog circuits                       |              |                                       | <ul> <li>CTL amplifier</li> <li>RECCTL driver (rewriting supported)</li> <li>CFG amplifier</li> <li>DFG amplifier</li> <li>DFG amplifier</li> <li>Reel FG comparator</li> <li>CSYNC comparator</li> </ul> |                                              |                                                                      |     |
| Power supply v                        | oltage       | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                           |                                              |                                                                      |     |
| Package                               |              |                                       | 100-pin plastic QFP (14 × 20 mm)                                                                                                                                                                          |                                              |                                                                      |     |
| - 25 Fitt Bidding 20 1 (1 1 / 25 min) |              |                                       |                                                                                                                                                                                                           |                                              |                                                                      |     |

### 1.14.5 Block diagram



**Note** The VPP pin applies to the  $\mu$ PD78F4928 only.

Remark Internal ROM and RAM capacities vary depending on the products.

# \* 1.15 Product Outline of $\mu$ PD784928Y Subseries ( $\mu$ PD784927Y, 78F4928Y)

### 1.15.1 Features

- Add the I<sup>2</sup>C bus interface to the  $\mu$ PD784928 Subseries.
- 16-bit CPU core: Minimum instruction execution time: 250 ns (at 8-MHz internal clock)
- Internal timer unit (super timer unit) for VCR servo control
- I/O ports: 74
- · Internal analog circuits for VHS type VCR
  - CTL amplifier
  - RECCTL driver (supporting rewrite)
  - CFG amplifier
  - DFG amplifier
  - DPG amplifier
  - DPFG separation circuit (ternary separation circuit)
  - Reel FG comparator (2 channels)
  - · CSYNC comparator
- · Serial interface: 2 channels
  - 3-wire serial I/O: 2 channels
  - I2C bus interface: 1 channel
- A/D converter: 12 channels (conversion time: 10  $\mu$ s)
- PWM output: 16-bit resolution  $\times$  3 channels, 8-bit resolution  $\times$  3 channels
- Interrupt function
  - Vector interrupt function
  - · Macro service function
  - · Context switching function
- Low frequency oscillation mode: main system clock frequency = internal clock frequency
- Low power consumption mode: CPU can operate on subsystem clock.
- Power supply voltage: VDD = 2.7 to 5.5 V
- Hardware watch function: Low-voltage (VDD = 2.7 V MIN.), low-current consumption operation

### 1.15.2 Applications

For stationary type and camcorder type VCRs.

# ★ 1.15.3 Ordering information

# (1) Ordering information

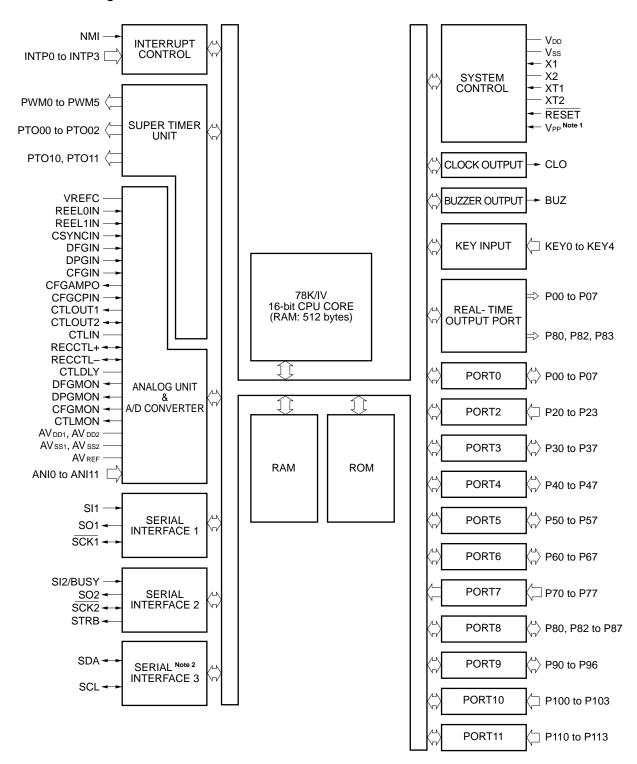
| Part Number                               | Package                                 | Internal ROM |
|-------------------------------------------|-----------------------------------------|--------------|
| $\mu$ PD784927YGF- $\times$ $\times$ -3BA | 100-pin plastic QFP (14 $\times$ 20 mm) | Mask ROM     |
| $\mu$ PD78F4928YGF-3BA                    | 100-pin plastic QFP (14 $\times$ 20 mm) | Flash memory |

Remark xxx indicates ROM code suffix.

# (2) Quality grade

| Part Number                               | Package                                 | Quality Grade |
|-------------------------------------------|-----------------------------------------|---------------|
| $\mu$ PD784927YGF- $\times$ $\times$ -3BA | 100-pin plastic QFP (14 $\times$ 20 mm) | Standard      |
| $\mu$ PD78F4928YGF-3BA                    | 100-pin plastic QFP (14 $\times$ 20 mm) | Standard      |

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.


Remark xxx indicates ROM code suffix.

#### 1.15.4 Outline of functions

μPD784927Y **μPD78F4928Y Product Name** Item Number of instructions 113 Minimum instruction execution time 250 ns (internal clock: 8-MHz operation) Internal memory capacity **ROM** 96 Kbytes (mask ROM) 128 Kbytes (flash memory) RAM 2,048 bytes 3,584 bytes Interrupt sources External 9 (including NMI) Internal 23 (including software interrupt) · 4 levels programmable priority • 3 types of processing methods Vectored interrupt, macro service, context switching I/O ports Input I/O 54 (including LED direct drive ports: 8) Time base counter • 22-bit FRC · Resolution: 125 ns, maximum count time: 524 ms Capture registers Number of bits Measuring cycle Operating edge Input signal CFG 22 125 ns to 524 ms  $\uparrow$ DFG 22 125 ns to 524 ms  $\uparrow$ **HSW** 16  $\uparrow$  $\downarrow$ 1  $\mu$ s to 65.5 ms  $\uparrow$ 22 VSYNC 125 ns to 524 ms  $\uparrow$  $\downarrow$ CTL 16 1  $\mu$ s to 65.5 ms  $\uparrow$  $\downarrow$ TREEL 22 125 ns to 524 ms 22 125 ns to 524 ms SREEL General-purpose timer 16-bit timer  $\times$  3 PBCTL duty identification · Identifies duty of recording control signal · VISS detection, wide aspect detection Linear time counter 5-bit UDC counts CTL signal Real-time output port 11 • 3-wire serial I/O: 2 channels (including BUSY/STRB control possible: 1 channel) Serial interface • I<sup>2</sup>C bus interface (multimaster supported): 1 channel Buzzer output function 1.95 kHz, 3.91 kHz, 7.81 kHz, 15.6 kHz (internal: 8-MHz operation) 2.048 kHz, 4.096 kHz, 32.768 kHz (subsystem clock: 32.768-kHz operation) A/D converter 8-bit resolution  $\times$  12 channels, conversion time: 10  $\mu$ s PWM output 16-bit resolution × 3 channels, 8-bit resolution × 3 channels · Carrier frequency: 62.5 kHz Watch function 0.5-second measurement, low-voltage operation (VDD = 2.7 V) possible Standby function HALT mode/STOP mode/low power consumption mode/low power consumption HALT mode · CTL amplifier DPG amplifier Analog circuits • RECCTL driver (rewriting supported) · DPFG separation circuit · CFG amplifier (ternary separation circuit) · DFG amplifier · Reel FG comparator · CSYNC comparator  $V_{DD} = +2.7 \text{ to } 5.5 \text{ V}$ Power supply voltage Package 100-pin plastic QFP (14  $\times$  20 mm)

•

### 1.15.5 Block diagram



**Notes 1.** The VPP pin applies to the  $\mu$ PD78F4928Y only.

2. I<sup>2</sup>C bus interface supported.

Remark Internal ROM and RAM capacities vary depending on the products.

# \* 1.16 Product Outline of $\mu$ PD784937 Subseries ( $\mu$ PD784935, 784936, 78F4937, 78F4937)

### 1.16.1 Features

- Inherits the peripheral functions of the  $\mu$ PD784908 Subseries
- Minimum instruction execution time: 160 ns (at fxx = 12.5-MHz operation)
- On-chip memory

• Mask ROM : 96 Kbytes (μPD784935)

128 Kbytes (μPD784936)192 Kbytes (μPD784937)

Flash memory : 192 Kbytes (μPD78F4937)
 RAM : 5,120 bytes (μPD784935)
 : 6,656 bytes (μPD784936)

: 8,192 bytes (μPD784937, 78F4937)

- I/O port: 80
- Timer/counter: 16-bit timer/counter  $\times$  1 unit

16-bit timer/counter × 2 units

16-bit timer × 1 unit

- · Serial interface: 4 channels
  - UART/IOE (3-wire serial I/O): 2 channels (on-chip baud-rate generator)
  - CSI (3-wire serial I/O): 2 channels
- PWM output: 2 outputs
- · Standby function

HALT/STOP/IDLE mode

- Clock frequency dividing function
- Clock output function: Selectable from fxx, fxx/2, fxx/2<sup>2</sup>, fxx/2<sup>3</sup>, fxx/2<sup>4</sup>, fxx/2<sup>5</sup>
- · External expansion function
- Internal ROM correction function
- A/D converter: 8-bit resolution × 8 channels
- Internal IEBus controller
- Watchdog timer: 1 channel
- Low power consumption
- Power supply voltage: VDD = 2.7 to 5.5 V

# 1.16.2 Applications

Car audios, etc.

# 1.16.3 Ordering information and quality grade

# (1) Ordering information

| Part Number                              | Package                                  | Internal ROM |
|------------------------------------------|------------------------------------------|--------------|
| μPD784935GF-×××-3BA                      | 100-pin plastic QFP (14 × 20 mm)         | Mask ROM     |
| $\mu$ PD784935GC- $\times$ $\times$ -8EU | 100-pin plastic LQFP (14 $\times$ 14 mm) | Mask ROM     |
| $\mu$ PD784936GF-×××-3BA                 | 100-pin plastic QFP (14 $\times$ 20 mm)  | Mask ROM     |
| $\mu$ PD784936GC- $\times$ $\times$ -8EU | 100-pin plastic LQFP (14 $\times$ 14 mm) | Mask ROM     |
| $\mu$ PD784937GF-×××-3BA                 | 100-pin plastic QFP (14 $\times$ 20 mm)  | Mask ROM     |
| $\mu$ PD784937GC- $\times$ $\times$ -8EU | 100-pin plastic LQFP (14 $\times$ 14 mm) | Mask ROM     |
| $\mu$ PD78F4937GF-3BA                    | 100-pin plastic QFP (14 $\times$ 20 mm)  | Flash Memory |
| $\mu$ PD78F4937GC-8EU                    | 100-pin plastic LQFP (14 $\times$ 14 mm) | Flash Memory |

**Remark** ××× indicates ROM code suffix.

# (2) Quality grades

| Part Number                              | Package                                  | Quality Grade |
|------------------------------------------|------------------------------------------|---------------|
| μPD784935GF-××-3BA                       | 100-pin plastic QFP (14 × 20 mm)         | Standard      |
| $\mu$ PD784935GC- $\times$ $\times$ -8EU | 100-pin plastic LQFP (14 × 14 mm)        | Standard      |
| $\mu$ PD784936GF-×××-3BA                 | 100-pin plastic QFP (14 × 20 mm)         | Standard      |
| $\mu$ PD784936GC- $\times$ $\times$ -8EU | 100-pin plastic LQFP (14 × 14 mm)        | Standard      |
| $\mu$ PD784937GF- $\times$ $\times$ -3BA | 100-pin plastic QFP (14 × 20 mm)         | Standard      |
| $\mu$ PD784937GC- $\times$ $\times$ -8EU | 100-pin plastic LQFP (14 $\times$ 14 mm) | Standard      |
| $\mu$ PD78F4937GF-3BA                    | 100-pin plastic QFP (14 $\times$ 20 mm)  | Standard      |
| $\mu$ PD78F4937GC-8EU                    | 100-pin plastic LQFP (14 × 14 mm)        | Standard      |

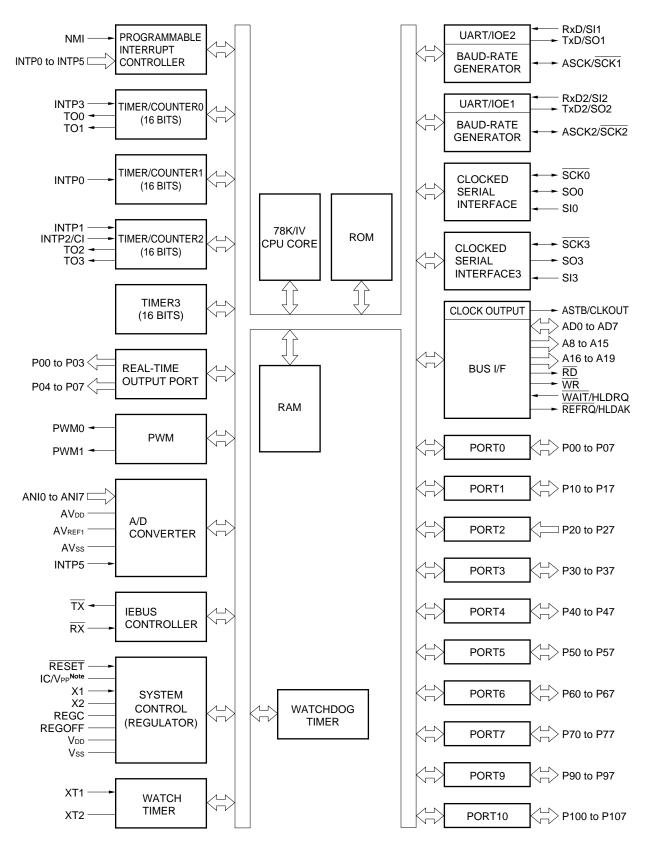
Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

Remark xxx indicates ROM code suffix.

Caution The  $\mu$ PD784937 Subseries is under development.

# 1.16.4 Outline of functions

(1/2)


|                                          | Product Name             | μPD784935                                                                                                  | μPD784936                                                                  | μPD784937                      | μPD78F4937                                                            |  |
|------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------|--|
| Item                                     |                          | 110                                                                                                        |                                                                            |                                |                                                                       |  |
| Number of basic instructions (mnemonics) |                          | 113                                                                                                        |                                                                            |                                |                                                                       |  |
| General registers                        |                          | 8 bits × 16 registers                                                                                      | s × 8 banks or 16 bits                                                     | × 8 registers × 8 bank         | s (memory mapping                                                     |  |
| Minimum instruction execution time       |                          | 160 ns/320 ns/63                                                                                           | 6 ns/1.27 μs (at 12                                                        | .58-kHz operation)             | 1                                                                     |  |
| Internal memory capacity                 | ROM                      | 92 Kbytes<br>(Mask ROM)                                                                                    | 128 Kbytes<br>(Mask ROM)                                                   | 192 Kbytes<br>(Mask ROM)       | 192 Kbytes<br>(Flash memory                                           |  |
|                                          | RAM                      | 5,120 bytes                                                                                                | 6,656 bytes                                                                | 8,192 bytes                    |                                                                       |  |
| Memory space                             |                          | 1 Mbyte in total o                                                                                         | f program and data                                                         |                                |                                                                       |  |
| I/O ports                                | Total                    | 80                                                                                                         |                                                                            |                                |                                                                       |  |
|                                          | Inputs                   | 8                                                                                                          |                                                                            |                                |                                                                       |  |
|                                          | I/O                      | 72                                                                                                         |                                                                            |                                |                                                                       |  |
| Pins with added functions Note           | LED direct drive outputs | 24                                                                                                         |                                                                            |                                |                                                                       |  |
|                                          | Transistor direct drive  | 8                                                                                                          |                                                                            |                                |                                                                       |  |
|                                          | N-ch open-drain          | 4                                                                                                          |                                                                            |                                |                                                                       |  |
| Real-time output ports                   | S                        | 4 bits × 2, or 8 bits × 1                                                                                  |                                                                            |                                |                                                                       |  |
| IEBus controller                         |                          | Internal (simplify)                                                                                        |                                                                            |                                |                                                                       |  |
| Timer/counters                           |                          | Timer/counter 0: (16 bits)                                                                                 | Timer register × 1 Capture register × Compare register >                   | 1 • Togg<br>< 2 • PWN          | output capability<br>gle output<br>M/PPG output<br>-shot pulse output |  |
|                                          |                          | Timer/counter 1: (16 bits)                                                                                 | Timer register × 1 Capture register × Capture/compare r Compare register > | 1<br>register × 1              | me output port                                                        |  |
|                                          |                          | Timer/counter 2: (16 bits)                                                                                 | Timer register × 1 Capture register × Capture/compare r Compare register > | 1 • Togg<br>register × 1 • PWN | output capability<br>gle output<br>M/PPG output                       |  |
|                                          |                          | Timer 3:<br>(16 bits)                                                                                      | Timer register × 1<br>Compare register >                                   | < 1 • Tog                      | output capability<br>gle output<br>M/PPG output                       |  |
| Watch timer                              |                          |                                                                                                            | at an interval of 0.5<br>an be selected from<br>lock (32.7 kHz).           | ,                              |                                                                       |  |
| PWM output                               |                          | 12-bit resolution × 2 channels                                                                             |                                                                            |                                |                                                                       |  |
| Serial interfaces                        |                          | UART/IOE (3-wire serial I/O): 2 channels (on-chip baud rate generator) CSI (3-wire serial I/O): 2 channels |                                                                            |                                |                                                                       |  |
| A/D converter                            |                          | 8-bit resolution × 8 channels                                                                              |                                                                            |                                |                                                                       |  |
| Clock output function                    |                          | Selectable from fclk, fclk/2, fclk/4, fclk/8, fclk/16 (can be used as 1-bit output port)                   |                                                                            |                                |                                                                       |  |
| Watchdog timer                           |                          | 1 channel                                                                                                  |                                                                            |                                |                                                                       |  |

 $\textbf{Note} \quad \text{The pins with additional functions are included in the I/O pins.}$ 

(2/2)

|                         | Product Name                                                                                             | μPD784935                                                         | μPD784936             | μPD784937         | μPD78F4937 |
|-------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------|-------------------|------------|
| Item                    |                                                                                                          |                                                                   |                       |                   |            |
| ROM correction function |                                                                                                          | Internal (can be se                                               | et for 4 points of co | rrection address) |            |
| External expansion fur  | nction                                                                                                   | Available (can be                                                 | set up to 1 Mbyte)    |                   |            |
| Standby function        |                                                                                                          | HALT/STOP/IDLE mode                                               |                       |                   |            |
| Interrupts              | Hardware sources                                                                                         | 27 (internal: 20, external: 7 (sampling clock variable input: 1)) |                       |                   |            |
| Software sources        |                                                                                                          | BRK instruction, BRKCS instruction, operand error                 |                       |                   |            |
|                         | Non-maskable                                                                                             | Internal: 1, external: 1                                          |                       |                   |            |
|                         | Maskable                                                                                                 | Internal: 19, external: 6                                         |                       |                   |            |
|                         | 4-level programmable priority  Three processing formats: Macro service/vectored interrupt/context switch |                                                                   |                       | context switching |            |
| Power supply voltage    |                                                                                                          | V <sub>DD</sub> = 2.7 to 5.5 V                                    |                       |                   |            |
| Package                 |                                                                                                          | 100-pin plastic QFP (14 × 20 mm)                                  |                       |                   |            |
|                         |                                                                                                          | • 100-pin plastic L                                               | QFP (14 × 14 mm)      |                   |            |

### 1.16.5 Block diagram



**Note** In the flash memory programming mode of the  $\mu$ PD78F4937.

Remark Internal ROM and RAM capacities vary depending on the products.

# \* 1.17 Product Outline of $\mu$ PD784955 Subseries ( $\mu$ PD784953, 784955, 78F4956)

### 1.17.1 Features

• Minimum instruction execution time: 160 ns (at fclk = 12.5-MHz operation)

On-chip memory

ROM

Mask ROM : 24 Kbytes ( $\mu$ PD784953)

48 Kbytes (μPD784955)

Flash memory : 64 Kbytes (μPD78F4956)
• RAM : 768 bytes (μPD784953)

: 2,048 bytes (μPD784955, 78F4956)

• I/O port : 67

• Timer/counter: 16-bit timer/counter × 6 units

8-bit timer/counter × 2 units

• Serial interface: 2 channels

UART: 1 channel (on-chip baud rate generator)

CSI (3-wire serial I/O): 1 channel

• A/D converter: 8-bit resolution × 8 channels

• Real-time output function: 6-bit resolution × 2 channels

• Watchdog timer: 1 channel

Standby function

HALT/STOP/IDLE mode

Low power consumption mode: HALT/IDLE mode (subsystem clock operation)

• Interrupt controller (4-level priority)

Vector interrupt/macro service/context switching

Power supply voltage: VDD = 4.5 to 5.5 V

### 1.17.2 Applications

Motor control for inverter air conditioners, etc.

# 1.17.3 Ordering information and quality grade

# (1) Ordering information

| Part Number              | Package                               | Internal ROM |
|--------------------------|---------------------------------------|--------------|
| μPD784935GC-×××-8BT      | 80-pin plastic QFP (14 $	imes$ 14 mm) | Mask ROM     |
| $\mu$ PD784955GC-×××-8BT | 80-pin plastic QFP (14 × 14 mm)       | Mask ROM     |
| $\mu$ PD78F4956GC-8BT    | 80-pin plastic QFP (14 × 14 mm)       | Flash Memory |

Remark xxx indicates ROM code suffix.

# (2) Quality grades

| Part Number              | Package                                | Quality Grade |
|--------------------------|----------------------------------------|---------------|
| μPD784935GC-×××-8BT      | 80-pin plastic QFP (14 × 14 mm)        | Standard      |
| $\mu$ PD784955GC-×××-8BT | 80-pin plastic QFP (14 $\times$ 14 mm) | Standard      |
| $\mu$ PD78F4956GC-8BT    | 80-pin plastic QFP (14 × 14 mm)        | Standard      |

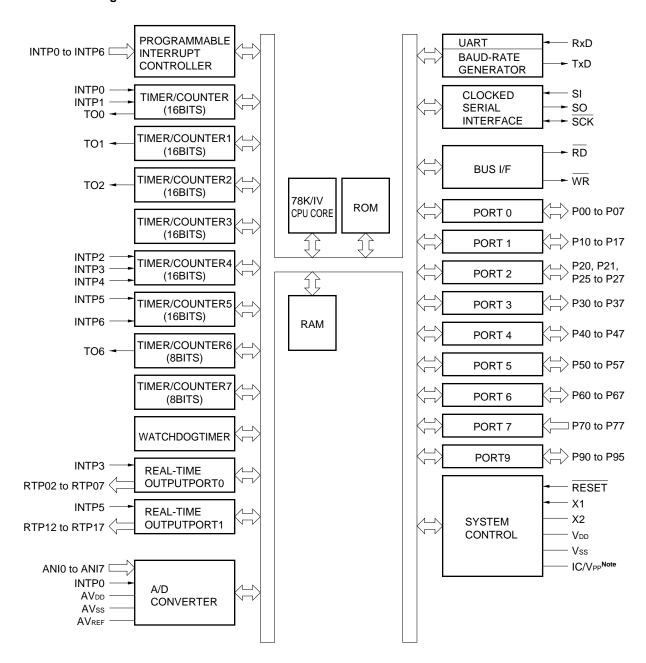
Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

Remark xxx indicates ROM code suffix.

Caution The  $\mu$ PD784955 Subseries is under development.

# 1.17.4 Outline of functions

(1/2)


| Item                               | Product Name              | μPD784953                                                                          | μPD784955                                                        | μPD78F4956                           |  |
|------------------------------------|---------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------|--|
| Number of basic instructio         | ns (mnemonics)            | 113                                                                                |                                                                  |                                      |  |
| General registers                  |                           | 8 bits × 16 registers × 8 banks or 16 bits × 8 registers × 8 banks (memory mapped) |                                                                  |                                      |  |
| Minimum instruction execution time |                           | 160 ns (at fclk = 12.5-MHz operation)                                              |                                                                  |                                      |  |
| Internal memory capacity ROM       |                           | 24 Kbytes<br>(Mask ROM)                                                            | 48 Kbytes<br>(Mask ROM)                                          | 64 Kbytes<br>(Flash memory)          |  |
|                                    | RAM                       | 768 bytes                                                                          | 2,048 bytes                                                      |                                      |  |
| I/O port                           | Total                     | 67                                                                                 |                                                                  |                                      |  |
|                                    | CMOS input                | 8                                                                                  |                                                                  |                                      |  |
|                                    | CMOS I/O                  | 59                                                                                 |                                                                  |                                      |  |
| Additional function pin Note       | Pin with pull-up resistor | 59                                                                                 |                                                                  |                                      |  |
|                                    | LED direct drive output   | 32                                                                                 |                                                                  |                                      |  |
| Real-time output port              |                           | 6 bits × 2                                                                         |                                                                  |                                      |  |
| Timer/counter                      |                           | 16-bit timer/counter:                                                              | Timer register × 1 Capture/compare register × 2                  | Pulse output capability  PWM output  |  |
|                                    |                           | 16-bit timer/counter 1:                                                            | Timer register × 1 Compare register × 2                          | Pulse output capability • PWM output |  |
|                                    |                           | 16-bit timer/counter 2:                                                            | Timer register × 1 Compare register × 2                          | Pulse output capability • PWM output |  |
|                                    |                           | 16-bit timer/counter 3:                                                            | Timer register × 1 Compare register × 2                          |                                      |  |
|                                    |                           | 16-bit timer/counter 4: Timer register × 1  Capture/compare register × 3           |                                                                  |                                      |  |
|                                    |                           | 16-bit timer/counter 5:                                                            | Timer register × 1 Compare register × 1 Capture/compare register | ×2                                   |  |
|                                    |                           | 8-bit timer/counter 6:                                                             | Timer register × 1 Compare register × 1                          | Pulse output capability • PWM output |  |
|                                    |                           | 8-bit timer/counter 7:                                                             | Timer register $\times$ 1 Compare register $\times$ 1            |                                      |  |
| Serial interface                   |                           | UART: 1 channel (or     CSI (3-wire serial I/C)                                    | n-chip baud rate generator<br>0): 1 channel                      |                                      |  |
| A/D converter                      |                           | 8-bit resolution × 8 cha                                                           | annels                                                           |                                      |  |
| Watchdog timer                     |                           | 1 channel                                                                          |                                                                  |                                      |  |
| Standby function                   |                           | HALT/STOP/IDLE mo                                                                  | de                                                               |                                      |  |

Note The pins with additional functions are included in the I/O pins.

(2/2)

|                                                                                     | Product Name                                                      | μPD784953                       | μPD784955 | μPD78F4956                 |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------|-----------|----------------------------|
| Item                                                                                |                                                                   |                                 |           |                            |
| Interrupt Hardware sources 28 (internal: 22, external: 8 (shared with internal: 2)) |                                                                   |                                 | 2))       |                            |
| Software sources BRK instruction, BRKCS instruction, operand error                  |                                                                   |                                 |           | r                          |
|                                                                                     | Non-maskable                                                      | ole Internal: 1, external: 1    |           |                            |
| Maskable                                                                            |                                                                   | Internal: 20, external: 7       |           |                            |
|                                                                                     |                                                                   | 4-level programmable priority   |           |                            |
|                                                                                     | 3 processing modes: vectored interrupt, macro service, context sw |                                 |           | service, context switching |
| Power supply voltage                                                                |                                                                   | V <sub>DD</sub> = 4.5 to 5.5 V  |           |                            |
| Package                                                                             |                                                                   | 80-pin plastic QFP (14 × 14 mm) |           |                            |

# 1.17.5 Block diagram



**Note** In the flash memory programming mode of the  $\mu$ PD78F4956.

Remark Internal ROM and RAM capacities vary depending on the products.

### **CHAPTER 2 MEMORY SPACE**

### 2.1 Memory Space

The 78K/IV Series can access a maximum memory space of 16 Mbytes. However, memory mapping varies from product to product according to the on-chip memory capacity and pin status. Therefore, the **User's Manual** — **Hardware** for the individual products should be consulted for details of the memory map address areas.

The 78K/IV Series can access a 16-Mbyte memory space. The mapping of the internal data area (special function registers and internal RAM) depends on the LOCATION instruction. A LOCATION instruction must be executed after reset release, and can only be used once.

The program after reset release must be as follows.

```
RSTVCT CSEG AT 0

DW RSTSTRT

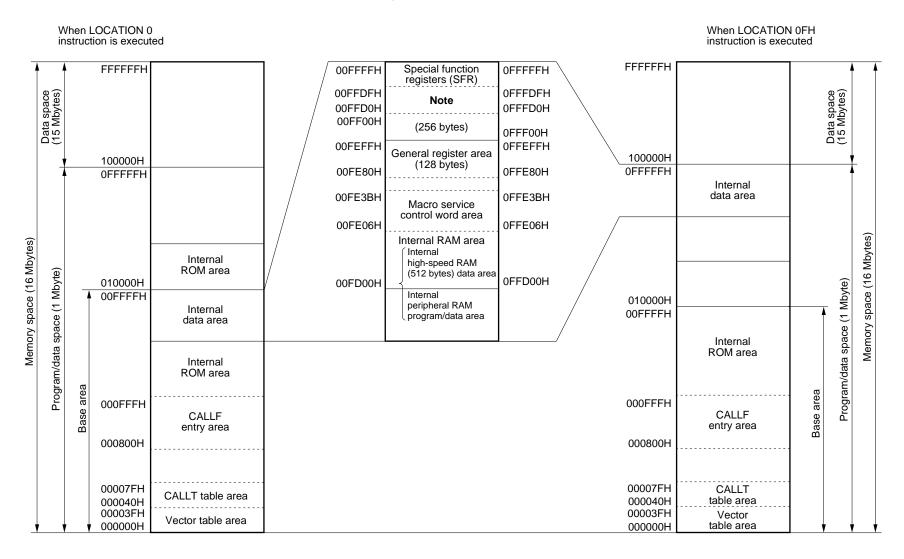
INITSEG CSEG BASE
RSTSTRT:LOCATION 0H; or LOCATION 0FH

MOVG SP, #STKBGN
```

### (1) When LOCATION 0 instruction is executed

The internal data area is mapped with the maximum address as FFFFH.

An area in the internal ROM that overlaps an internal data area cannot be used as internal ROM when the LOCATION 0 instruction is executed.


External memory is accessed in external memory extension mode.

### (2) When LOCATION 0FH instruction is executed

The internal data area is mapped with the maximum address as FFFFFH.

The  $\mu$ PD784915 Subseries is fixed to the LOCATION 0 instruction.

Figure 2-1. Memory Map



Note External SFR area

Caution The  $\mu$ PD784915 Subseries is fixed to the LOCATION 0 instruction.

### 2.2 Internal ROM Area

The 78K/IV Series products shown below incorporate ROM which is used to store programs, table data, etc. If the internal ROM area and internal data area overlap when the LOCATION 0 instruction is executed, the internal data area is accessed, and the overlapping part of the internal ROM area cannot be accessed.

The  $\mu$ PD784915 Subseries is fixed to the LOCATION 0 instruction.

Table 2-1. List of Internal ROM Space for 78K/IV Series Products (1/2)

| Subseries Name                              | Product                                                                        | Address Space    | Internal ROM   |
|---------------------------------------------|--------------------------------------------------------------------------------|------------------|----------------|
| μPD784026 Subseries                         | μPD784020<br>μPD784021                                                         | None             |                |
|                                             | μPD784025                                                                      | 00000H to 0BFFFH | 48 K × 8 bits  |
|                                             | μPD784026<br>μPD78P4026                                                        | 00000H to 0FFFFH | 64 K × 8 bits  |
| μPD784038 Subseries<br>μPD784038Y Subseries | μPD784031<br>μPD784031Y                                                        | None             |                |
|                                             | μPD784035<br>μPD784035Y                                                        | 00000H to 0BFFFH | 48 K × 8 bits  |
|                                             | μPD784036<br>μPD784036Y                                                        | 00000H to 0FFFFH | 64 K × 8 bits  |
|                                             | μPD784037<br>μPD784037Y                                                        | 00000H to 17FFFH | 96 K × 8 bits  |
|                                             | μPD784038<br>μPD78P4038<br>μPD784038Υ<br>μPD78P4038Υ                           | 00000H to 1FFFFH | 128 K × 8 bits |
| μPD784046 Subseries                         | μPD784044<br>μPD784054                                                         | 00000H to 07FFFH | 32 K × 8 bits  |
|                                             | μPD784046<br>μPD78F4046                                                        | 00000H to 0FFFFH | 64 K × 8 bits  |
| μPD784216 Subseries<br>μPD784216Y Subseries | μPD784214<br>μPD784214Y                                                        | 00000H to 17FFFH | 96 K × 8 bits  |
|                                             | μPD784215<br>μPD784215Y<br>μPD784216<br>μPD784216Y<br>μPD78F4216<br>μPD78F4216 | 00000H to 1FFFFH | 128 K × 8 bits |
| μPD784218 Subseries<br>μPD784218Y Subseries | μPD784217<br>μPD784217Y                                                        | 00000H to 2FFFFH | 192 K × 8 bits |
|                                             | μPD784218<br>μPD784218Υ<br>μPD78F4218<br>μPD78F4218Υ                           | 00000H to 3FFFFH | 256 K × 8 bits |

Remark In case of a ROM-less product, this address space is an external memory.

Table 2-1. List of Internal ROM Space for 78K/IV Series Products (2/2)

| Subseries Name                              | Product                                              | Address Space    | Internal ROM   |
|---------------------------------------------|------------------------------------------------------|------------------|----------------|
| μPD784225 Subseries<br>μPD784225Y Subseries | μPD784224<br>μPD784224Y                              | 00000H to 17FFFH | 96 K × 8 bits  |
|                                             | μPD784225<br>μPD784225Y<br>μPD78F4225<br>μPD78F4225Y | 00000H to 1FFFFH | 128 K × 8 bits |
| μPD784908 Subseries                         | μPD784907                                            | 00000H to 17FFFH | 96 K × 8 bits  |
|                                             | μPD784908<br>μPD78P4908                              | 00000H to 1FFFFH | 128 K × 8 bits |
| μPD784915 Subseries                         | μPD784915<br>μPD784915A                              | 00000H to 0BFFFH | 48 K × 8 bits  |
|                                             | μPD784916A<br>μPD78P4916                             | 00000H to 0F6FFH | 62 K × 8 bits  |
| μPD784928 Subseries $μ$ PD784928Y Subseries | μPD784927<br>μPD784927Y                              | 00000H to 17FFFH | 96 K × 8 bits  |
|                                             | μPD78F4928<br>μPD78F4928Y                            | 00000H to 1FFFFH | 128 K × 8 bits |
| μPD784937 Subseries                         | μPD784935                                            | 00000H to 17FFFH | 96 K × 8 bits  |
|                                             | μPD784936                                            | 00000H to 1FFFFH | 128 K × 8 bits |
|                                             | μPD784937<br>μPD78F4937                              | 00000H to 2FFFFH | 192 K × 8 bits |
| μPD784955 Subseries                         | μPD784953                                            | 00000H to 05FFFH | 24 K × 8 bits  |
|                                             | μPD784955                                            | 00000H to 0BFFFH | 48 K × 8 bits  |
|                                             | μPD78F4956                                           | 00000H to 0F6FFH | 64 K × 8 bits  |

### \*

### 2.3 Base Area

The space from 00000H to FFFFFH comprises the base area. The base area is the object for the following uses.

- · Reset entry address
- · Interrupt entry address
- · CALLT instruction entry address
- 16-bit immediate addressing mode (with instruction address addressing)
- 16-bit direct addressing mode
- 16-bit register addressing mode (with instruction address addressing)
- 16-bit register indirect addressing mode
- · Short direct 16-bit memory indirect addressing mode

The vector table area, CALLT instruction table area and CALLF instruction entry area are allocated to the base area.

When the LOCATION 0 instruction is executed, the internal data area is located in the base area. Note that, in the internal data area, program fetches cannot be performed from the internal high-speed RAM area and special function register (SFR) area. Also, internal RAM area data should only be used after initialization has been performed.

#### 2.3.1 Vector table area

The 64-byte area from 00000H to 0003FH is reserved as the vector table area. The vector table area holds the program start addresses used when a jump is performed as the result of RESET input or generation of an interrupt request. When context switching is used by an interrupt, the number of the register bank to be switched to is stored here.

Any portion not used by the vector table can be used as program memory or data memory.

16-bit values can be written to the vector table. Therefore, branches can only be made within the base area.

Vector Table Address Interrupts Reset (RESET input) 00000H 00002H NMI Note WDT Note 00004H 00006H to Differs for each product 0003AH 0003CH Operand error interrupt 0003EH **BRK** 

Table 2-2. Vector Table

Note Not used by some products.

#### 2.3.2 CALLT instruction table area

The 1-byte call instruction (CALLT) subroutine entry addresses can be stored in the 64-byte area from 00040H to 0007FH.

The CALLT instruction references this table, and branches to a base area address written in the table as a subroutine. As the CALLT instruction is one byte in length, use of the CALLT instruction for subroutine calls written frequently throughout the program enables the program object size to be reduced. The table can contain up to 32 subroutine entry addresses, and therefore it is recommended that they be recorded in order of frequency.

If this area is not used as the CALLT instruction table, it can be used as ordinary program memory or data memory. Values that can be written to the CALLT instruction table are 16-bit values. Therefore, a branch can only be made within the base area.

### 2.3.3 CALLF instruction entry area

A subroutine call can be made directly to the area from 00800H to 00FFFH with the 2-byte call instruction (CALLF). As the CALLF instruction is a two-byte call instruction, it enables the object size to be reduced compared with use of the direct subroutine call CALL instruction (3 bytes).

Writing subroutines directly in this area is an effective means of exploiting the high-speed capability of the device.

If you wish to reduce the object size, writing an unconditional branch (BR) instruction in this area and locating the subroutine itself outside this area will result in a reduced object size for subroutines that are called from five or more points. In this case, only the 4 bytes of the BR instruction are occupied in the CALLF entry area, enabling the object size to be reduced with a large number of subroutines.

#### 2.4 Internal Data Area

The internal data area comprises the internal RAM area and special function register area. In some products, memories dependent on other hardware are also allocated to this areas (see the **User's Manual — Hardware** of each product).

The final address of the internal data area can be specified by means of the LOCATION instruction as either FFFFH (when a LOCATION 0 instruction is executed) or FFFFH (when a LOCATION 0FH instruction is executed). Selection of the addresses of the internal data area by means of the LOCATION instruction must be executed once immediately after reset release, and once the selection is made, it cannot be changed. The program after reset release must be as shown in the example below. If the internal data area and another area are allocated to the same addresses, the internal data area is accessed and the other area cannot be accessed.

```
Example RSTVCT CSEG AT 0

DW RSTSTRT

INITSEG CSEG BASE

RSTSTRT:LOCATION 0H; or LOCATION 0FH

MOVG SP, #STKBGN
```

- Cautions 1. When the LOCATION 0 instruction is executed, it is necessary to ensure that the program after reset release does not overlap the internal data area. It is also necessary to make sure that the entry addresses of the service routines for non-maskable interrupts such as NMI do not overlap the internal data area. Also, initialization must be performed for maskable interrupt entry areas, etc., before the internal data area is referenced.
  - 2. The  $\mu$ PD784915 Subseries is fixed to the LOCATION 0 instruction.

### 2.4.1 Internal RAM area

78K/IV Series products incorporate general-purpose static RAM.

This area is configured as follows:

|                                       | Peripheral RAM (PRAM)          |
|---------------------------------------|--------------------------------|
| <ul> <li>Internal RAM area</li> </ul> |                                |
|                                       | Internal high-speed RAM (IRAM) |

Table 2-3. Internal RAM Area in 78K/IV Series Products (1/2)

| Subseries Name                                     | Product                                                                          | Internal RAM area                                 |                                                   | 1                               |
|----------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------|
|                                                    |                                                                                  |                                                   | Peripheral RAM: PRAM                              | Internal high-speed RAM: IRAM   |
| μPD784026 Subseries                                | μPD784020                                                                        | 512 Bytes<br>(0FD00H to 0FEFFH)                   | 0 Byte                                            | 512 Bytes<br>(0FD00H to 0FEFFH) |
|                                                    | μPD784021<br>μPD784025<br>μPD784026<br>μPD78P4026                                | 2,048 Bytes<br>(0F700H to 0FEFFH)                 | 1,536 Bytes<br>(0F700H to 0FCFFH)                 |                                 |
| $\mu$ PD784038 Subseries $\mu$ PD784038Y Subseries | μPD784031<br>μPD784031Y<br>μPD784035<br>μPD784036<br>μPD784035Y<br>μPD784036Y    | 2,048 Bytes<br>(0F700H to 0FEFFH)                 | 1,536 Bytes<br>(0F700H to 0FCFFH)                 |                                 |
|                                                    | μPD784037<br>μPD784037Y                                                          | 3,584 Bytes<br>(0F100H to 0FEFFH)                 | 3,072 Bytes<br>(0F100H to 0FCFFH)                 |                                 |
|                                                    | μPD784038<br>μPD78P4038<br>μPD784038Υ<br>μPD784038Υ<br>μPD78P4038Υ               | 4,352 Bytes<br>(0EE00H to 0FEFFH)                 | 3,840 Bytes<br>(0FE00H to 0FCFFH)                 |                                 |
| μPD784046 Subseries                                | μPD784044<br>μPD784045                                                           | 1,024 Bytes<br>(0FB00H to 0FEFFH)                 | 512 Bytes<br>(0FB00H to 0FCFFH)                   |                                 |
|                                                    | μPD784046<br>μPD78F4046                                                          | 2,048 Bytes<br>(0F700H to 0FEFFH)                 | 1,536 Bytes<br>(0F700H to 0FCFFH)                 |                                 |
| μPD784216 Subseries<br>μPD784216Y Subseries        | μPD784214<br>μPD784214Y                                                          | 3,584 Bytes<br>(0F100H to 0FEFFH)                 | 3,072 Bytes<br>(0F100H to 0FCFFH)                 |                                 |
|                                                    | μPD784215<br>μPD784215Y                                                          | 5,120 Bytes<br>(0EB00H to 0FEFFH)                 | 4,608 Bytes<br>(0FB00H to 0FCFFH)                 |                                 |
|                                                    | μPD784216<br>μPD784216Υ<br>μPD78F4216<br>μPD78F4216Υ                             | 8,192 Bytes<br>(0DF00H to 0FEFFH)                 | 7,680 Bytes<br>(0DF00H to 0FCFFH)                 |                                 |
| μPD784218 Subseries $μ$ PD784218Y Subseries        | μPD784217<br>μPD784217Y<br>μPD784218<br>μPD784218Y<br>μPD78F4218                 | 12,800 Bytes<br>(0CD00H to 0FEFFH)                | 12,288 Bytes<br>(0CD00H to 0FCFFH)                |                                 |
| μPD784225 Subseries                                | μPD78F4218Y<br>μPD784224                                                         | 3,584 Bytes                                       | 3,072 Bytes                                       |                                 |
| μPD784225Y Subseries                               | μPD784224Y<br>μPD784225<br>μPD784225Y<br>μPD78F4225<br>μPD78F4225<br>μPD78F4225Y | (0F100H to 0FEFFH) 4,352 Bytes (0EE00H to 0FEFFH) | (0CF10H to 0FCFFH) 3,840 Bytes (0EE00H to 0FCFFH) |                                 |

**Remark** The addresses in the table are the values that apply when the LOCATION 0 instruction is executed. When the LOCATION 0FH instruction is executed, 0F0000H should be added to the values shown above.

Table 2-3. Internal RAM Area in 78K/IV Series Products (2/2)

|   | Subseries Name            | Product     | Internal RAM area  |                      |                               |
|---|---------------------------|-------------|--------------------|----------------------|-------------------------------|
|   |                           |             |                    | Peripheral RAM: PRAM | Internal high-speed RAM: IRAM |
|   | μPD784908 Subseries       | μPD784907   | 3,584 Bytes        | 3,072 Byte           | 512 Bytes                     |
|   |                           |             | (0F100H to 0FEFFH) | (0F100H to 0FEFFH)   | (0FD00H to 0FEFFH)            |
|   |                           | μPD784908   | 4,352 Bytes        | 3,840 Bytes          |                               |
|   |                           | μPD78P4908  | (0EE00H to 0FEFFH) | (0EE00H to 0FCFFH)   |                               |
|   | $\mu$ PD784915 Subseries  | μPD784915   | 1,280 Bytes        | 768 Bytes            |                               |
|   |                           | μPD784915A  | (0FA00H to 0FEFFH) | (0FA00H to 0FCFFH)   |                               |
|   |                           | μPD784916A  |                    |                      |                               |
|   |                           | μPD78P4916  | 2,048 Bytes        | 1,536 Bytes          |                               |
|   |                           |             | (0F700H to 0FEFFH) | (0F700H to 0FCFFH)   |                               |
|   | $\mu$ PD784928 Subseries  | μPD784927   | 2,048 Bytes        | 1,536 Bytes          |                               |
|   | $\mu$ PD784928Y Subseries | μPD784927Y  | (0F700H to 0FEFFH) | (0F700H to 0FCFFH)   |                               |
| * |                           | μPD78F4928  | 3,584 Bytes        |                      |                               |
|   |                           | μPD78F4928Y | (0F100H to 0FEFFH) |                      |                               |
| * | $\mu$ PD784937 Subseries  | μPD784935   | 5,120 Bytes        | 4,608 Bytes          |                               |
|   |                           |             | (0EB00H to 0FEFFH) | (0EB00H to 0FCFFH)   |                               |
|   |                           | μPD784936   | 6,656 Bytes        | 6,144 Bytes          |                               |
|   |                           |             | (0E500H to 0FEFFH) | (0E500H to 0FCFFH)   |                               |
|   |                           | μPD784937   | 8,192 Bytes        | 7,680 Bytes          |                               |
|   |                           | μPD78F4937  | (0DF00H to 0FEFFH) | (0DF00H to 0FCFFH)   |                               |
| * | μPD784955 Subseries       | μPD784953   | 768 Bytes          | 256 Bytes            |                               |
|   |                           |             | (0FC00H to 0FEFFH) | (0FC00H to 0FCFFH)   |                               |
|   |                           | μPD784955   | 2,048 Bytes        | 1,536 Bytes          |                               |
|   |                           | μPD78F4956  | (0F700H to 0FEFFH) | (0F700H to 0FCFFH)   |                               |

**Remark** The addresses in the table are the values that apply when the LOCATION 0 instruction is executed. When the LOCATION 0FH instruction is executed, 0F0000H should be added to the values shown above. The  $\mu$ PD784915 Subseries is fixed to the LOCATION 0 instruction.

Internal RAM mapping is shown in Figure 2-2.

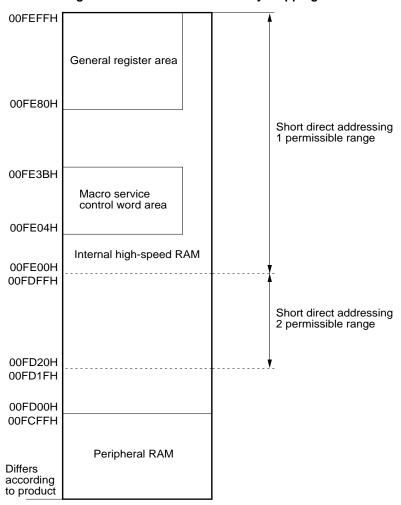



Figure 2-2. Internal RAM Memory Mapping

**Remark** The addresses in the figure are the values that apply when the LOCATION 0 instruction is executed. When the LOCATION 0FH instruction is executed, 0F0000H should be added to the values shown above. The  $\mu$ PD784915 Subseries is fixed to the LOCATION 0 instruction.

### (1) Internal high-speed RAM (IRAM)

The internal high-speed RAM (IRAM) allows high-speed accesses to be made. The short direct addressing mode for high-speed accesses can be used on 0FD20H to 0FEFFH in this area. There are two kinds of short direct addressing mode, short direct addressing 1 and short direct addressing 2, according to the target address. The function is the same in both of these addressing modes. With some instructions, the word length is shorter with short direct addressing 2 than with short direct addressing 1. See **CHAPTER 6 INSTRUCTION SET** for details.

A program fetch cannot be performed from IRAM. If a program fetch is performed from an address onto which IRAM is mapped, CPU runaway will result.

The following areas are reserved in IRAM.

General register area : 0FE80H to 0FEFFH

• Macro service control word area : 0FE06H to 0FE3BH (the addresses actually reserved differ from product

to product)

• Macro service channel area : 0FE00H to 0FEFFH (the address is specified by the macro service

control word)

If the reserved function is not used in these areas, they can be used as ordinary data memory.

**Remark** The addresses in this text are those that apply when the LOCATION 0 instruction is executed. When the LOCATION 0FH instruction is executed, 0F0000H should be added to the values shown. The  $\mu$ PD784915 Subseries is fixed to the LOCATION 0 instruction.

### (2) Peripheral RAM (PRAM)

The peripheral RAM (PRAM) is used as ordinary program memory or data memory. When used as program memory, he program must be written to the peripheral RAM beforehand by a program.

#### 2.4.2 Special function register (SFR) area

The on-chip peripheral hardware special function registers (SFRs) are mapped onto the area from 0FF00H to 0FFFFH (see the **User's Manual — Hardware** for the individual products).

In some products, the area from 0FFD0H to 0FFDFH is mapped as an external SFR area, and allows externally connected peripheral I/Os, etc., to be accessed in external memory extension mode (specified by the memory extension mode register (MM)) by ROM-less products or on-chip ROM products.

Caution Addresses onto which SFRs are not mapped should not be accessed in this area. If such an address is accessed by mistake, the CPU may become deadlocked. A deadlock can only be released by reset input.

**Remark** The addresses in this text are those that apply when the LOCATION 0 instruction is executed. When the LOCATION 0FH instruction is executed, 0F0000H should be added to the values shown. The  $\mu$ PD784915 Subseries is fixed to the LOCATION 0 instruction.

#### 2.4.3 External SFR area

In some 78K/IV Series products, the 16-byte area from 0FFD0H to 0FFDFH in the SFR area (when the LOCATION 0 instruction is executed; 0FFFD0H to 0FFFDFH when the LOCATION 0FH instruction is executed) is mapped as an external SFR area. When the external memory extension mode is set in a ROM-less product or on-chip ROM product, externally connected peripheral I/Os, etc., can be accessed using the address bus or address/data bus, etc.

As the external SFR area can be accessed by SFR addressing, peripheral I/O and similar operations can be performed easily, the object size can be reduced, and macro service can be used.

Bus operations for accesses to the external SFR area are performed in the same way as for ordinary memory accesses.

# 2.5 External Memory Space

The external memory space is a memory space that can be accessed in accordance with the setting of the memory extension mode register (MM). It can hold programs, table data, etc., and can have peripheral I/O devices allocated to it.

A program cannot be allocated to the area from 100000H to 0FFFFFH in the external memory space. Note also that some products do not have an external memory space.

#### **CHAPTER 3 REGISTERS**

# 3.1 Control Registers

Control registers consist of the program counter (PC), program status word (PSW), and stack pointer (SP).


# 3.1.1 Program counter (PC)

This is a 20-bit binary counter that holds information on the next program address to be executed (see **Figure 3-1**).

Normally, the PC is incremented automatically by the number of bytes in the fetched instruction. When an instruction associated with a branch is executed, the immediate data or register contents are set in the PC.

Upon RESET input, the 16-bit data in address 0 and address 1 is set in the low-order 16 bits of the PC, and 0000 in the high-order 4 bits.

Figure 3-1. Program Counter (PC) Configuration



## 3.1.2 Program status word (PSW)

The program status word (PSW) is a 16-bit register comprising various flags that are set or reset according to the result of instruction execution.

Read accesses and write accesses are performed in high-order 8-bit (PSWH) and low-order 8-bit (PSWL) units. Individual flags can be accessed by bit-manipulation instructions.

The contents of the PSW are automatically saved to the stack when a vectored interrupt request is acknowledged or a BRK instruction is executed, and automatically restored when an RETI or RETB instruction is executed. When context switching is used, the contents are automatically saved in RP3, and automatically restored when an RETCS or RETCSB instruction is executed.

RESET input resets (0) all bits.

"0" must always be written to the bits written as "0" in Figure 3-2. The contents of bits written as "-" are undefined when read.

Figure 3-2. Program Status Word (PSW) Configuration

|      | 7  | 6    | 5    | 4    | 3  | 2   | 1 | 0  |
|------|----|------|------|------|----|-----|---|----|
| PSWH | UF | RBS2 | RBS1 | RBS0 |    | _   |   | _  |
| •    |    |      |      |      |    |     |   |    |
| _    | 7  | 6    | 5    | 4    | 3  | 2   | 1 | 0  |
| PSWL | S  | Z    | RSS  | AC   | ΙE | P/V | 0 | CY |

The flags are described below.

### (1) Carry flag (CY)

The carry flag stores a carry or borrow resulting from an operation.

This flag also stores the shifted-out value when a shift/rotate instruction is executed, and functions as a bit accumulator when a bit-manipulation instruction is executed.

The status of the CY flag can be tested with a conditional branch instruction.

## (2) Parity/overflow flag (P/V)

The P/V flag performs the following two kinds of operation associated with execution of an operation instruction. The status of the P/V flag can be tested with a conditional branch instruction.

### · Parity flag operation

Set (1) when the number of bits set (1) as the result of execution of a logical operation instruction, shift/rotate instruction, or a CHKL or CHKLA instruction is even, and reset (0) if odd. When a 16-bit shift instruction is executed, however, only the low-order 8 bits of the operation result are valid for the parity flag.

# · Overflow flag operation

Set (1) when the numeric range expressed as a two's complement is exceeded as the result of execution of a logical operation instruction, and reset (0) otherwise. More specifically, the value of this flag is the exclusive OR of the carry into the MSB and the carry out of the MSB. For example, the two's complement range in an 8-bit arithmetic operation is 80H (–128) to 7FH (+127), and the flag is set (1) if the operation result is outside this range, and reset (0) if within this range.

Example The operation of the overflow flag when an 8-bit addition instruction is executed is shown below. When the addition of 78H (+120) and 69H (+105) is performed, the operation result is E1H (+225), and the two's complement limit is exceeded, with the result that the P/V flag is set (1). Expressed as a two's complement, E1H is -31.

When the following two negative numbers are added together, the operation result is within the two's complement range, and therefore the P/V flag is reset.

## (3) Interrupt request enable flag (IE)

This flag controls CPU interrupt request acknowledgment operations.

When "0", interrupts are disabled, and only non-maskable interrupts and unmasked macro service requests can be acknowledged. All other interrupts are disabled.

When "1", the interrupt enabled state is set, and enabling of interrupt request acknowledgment is controlled by the interrupt mask flags corresponding to the individual interrupt requests and the priority of the individual interrupts.

The IE flag is set (1) by execution of an EI instruction, and reset (0) by execution of a DI instruction or acknowledgment of an interrupt.

## (4) Auxiliary carry flag (AC)

The AC flag is set (1) when there is a carry out of bit 3 or a borrow into bit 3 as the result of an operation, and reset (0) otherwise.

This flag is used when the ADJBA or ADJBS instruction is executed.

### (5) Register set selection flag (RSS)

The RSS flag specifies the general registers that function as X, A, C, and B, and the general register pairs (16-bit) that function as AX and BC.

This flag is provided to maintain compatibility with the 78K/III Series, and must be set to 0 except when using a 78K/III Series program.

#### (6) Zero flag (Z)

The Z flag records that the result of an operation is "0".

It is set (1) when the result of an operation is "0", and reset (0) otherwise. The status of the Z flag can be tested with a conditional branch instruction.

# (7) Sign flag (S)

The S flag records that the MSB is "1" as the result of an operation.

It is set (1) when the MSB is "1" as the result of an operation, and reset (0) otherwise. The status of the S flag can be tested with a conditional branch instruction.

### (8) Register bank selection flag (RBS0 to RBS2)

This is a 3-bit flag used to select one of the 8 register banks (register bank 0 to register bank 7) (see **Table 3-1**).

It holds 3-bit information which indicates the register bank selected by execution of a SEL RBn instruction, etc.

RBS2 RBS1 RBS0 Specified Register Bank 0 0 0 Register bank 0 0 0 1 Register bank 1 0 1 0 Register bank 2 Register bank 3 1 0 1 0 0 Register bank 4 1 1 0 1 Register bank 5 0 Register bank 6 1 1 1 Register bank 7 1 1

Table 3-1. Register Bank Selection

# (9) User flag (UF)

This flag can be set and reset in the user program, and used for program control.

#### 3.1.3 Use of RSS bit

Basically, the RSS bit should be fixed at 0 at all times.

The following explanation refers to the case where a 78K/III Series program is used, and the program used sets the RSS bit to 1. This explanation can be skipped if the RSS bit is fixed at 0.

The RSS bit is provided to allow the functions of A (R1), X (R0), B (R3), C (R2), AX (RP0), and BC (RP1) to be used by registers R4 to R7 (RP2, RP3) as well. Effective use of this bit enables efficient programs to be written in terms of program size and program execution.

However, careless use can result in unforeseen problems. Therefore, the RSS bit should always be set to 0. The RSS bit should only be set to 1 when a 78K/III Series program is used.

Use of the RSS bit set to 0 in all programs will improve programming and debugging efficiency.

Even when using a program in which the RSS bit is used set to 1, it is recommended that the program be amended if possible so that it does not set the RSS bit to 1.

#### (1) RSS bit functions

- Registers used by instructions for which the A, X, B, C, and AX registers are directly entered in the operand column of the instruction operation list (see **6.2**.)
- Registers specified as implied by instructions that use the A, AX, B, and C registers by means of implied addressing
- Registers used in addressing by instructions that use the A, B, and C registers in indexed addressing and based indexed addressing

The registers used in these cases are switched as follows according to the RSS bit.

$$-$$
 When RSS = 0

$$\mathsf{A} \to \mathsf{R1},\,\mathsf{X} \to \mathsf{R0},\,\mathsf{B} \to \mathsf{R3},\,\mathsf{C} \to \mathsf{R2},\,\mathsf{AX} \to \mathsf{RP0},\,\mathsf{BC} \to \mathsf{RP1}$$

# – When RSS = 1

$$A \rightarrow R5, X \rightarrow R4, B \rightarrow R7, C \rightarrow R6, AX \rightarrow RP2, BC \rightarrow RP3$$

Registers used other than those mentioned above are always the same irrespective of the value of the RSS bit. With the NEC assembler (RA78K4), the register operation code generated when the A, X, B, C, AX, and BC registers are described by those names is determined by the assembler RSS pseudo-instruction. When the RSS bit is set or reset, an RSS pseudo-instruction must be written immediately before (or immediately after) the relevant instruction (see example below).

### <Program example>

### • When RSS is set to 0

RSS 0 ; RSS pseudo-instruction

CLR1 PSWL.5

MOV B, A ; This description is equivalent to "MOV R3, R1".

#### · When RSS is set to 1

RSS 1 ; RSS pseudo-instruction

SET1 PSWL.5

MOV B, A ; This description is equivalent to "MOV R7, R5".

# (2) Operation code generation method with RA78K4

• With RA78K4, if there is an instruction with the same function as an instruction for which A or AX is directly entered in the operand column of the instruction operation list, the operation code for which A or AX is directly entered in the operand column is generated first.

**Example** The function is the same when B is used for r in a MOV A, r instruction and when A is used as r and B is used as r' in a MOV r, r' instruction, and the same description (MOVA, B) is used in the assembler source program. In this case, RA78K4 generates code equivalent to the MOV A, r instruction.

**Remark** The register that is actually used with this instruction is determined when the program is run according to the contents of the RSS bit in the PSW. When RSS = 0, R1 or RP0 is used, and when RSS = 1, R5 or RP2 is used.

• If A, X, B, C, AX, or BC is written in an instruction for which r, r', rp and rp' are specified in the operand column, the A, X, B, C, AX, and BC instructions generate an operation code that specifies the following registers according to the operand of the RA78K4 pseudo-instruction.

| Register | RSS 0 | RSS 1 |
|----------|-------|-------|
| А        | R1    | R5    |
| Х        | R0    | R4    |
| В        | R3    | R7    |
| С        | R2    | R6    |
| AX       | RP0   | RP2   |
| ВС       | RP1   | RP3   |
| 1        |       |       |

- If R0 to R7 or RP0 to RP4 is written as r, r', rp or rp' in the operand column, an operation code in accordance with that specification is output (an operation code for which A or AX is directly entered in the operand column is not output.)
- Descriptions R1, R3, R2 or R5, R7, R6 cannot be used for registers A, B, and C used in indexed addressing and based indexed addressing.

### (3) Operating precautions

Switching the RSS bit has the same effect as having two register sets. However, the following point must be noted. If use with RSS = 1 is essential, these defects must be given full consideration when writing the program.

(a) When writing a program, care must be taken to ensure that the static program description and dynamic RSS bit changes at the time of program execution always coincide.

For example, when an MOV A, B instruction is assembled by RA78K4, MOV A, r code is generated. In this case, the registers actually used are as shown below according to the RSS pseudo-instruction written directly before the MOV A, B instruction in the source program and the RSS bit in the PSW when the program is run.

|                |   | RSS Pseudo-Instruction Operand |            |
|----------------|---|--------------------------------|------------|
|                |   | 0                              | 1          |
| RSS bit in PSW | 0 | MOV R1, R3                     | MOV R1, R7 |
|                | 1 | MOV R5, R3                     | MOV R5, R7 |

- (b) As a program that sets RSS to 1 cannot be used by a program that uses the context switching function, program applicability is poor.
- (c) If interrupts are used by a program with more than one section in which the RSS bit in the PSW is set to "1", it is necessary to set the RSS bit in the PSW to "0" or "1" at the beginning of the interrupt service program, and write an RSS pseudo-instruction corresponding to this in the source program. If this is not done, the execution results may sometimes be incorrect. For example, consider the following interrupt service program.

```
INT:
PUSH AX
MOV A, #byte
ADD !!addr24, A
POP AX
RETI
```

In this program, the register determined at assembly time by the RSS pseudo-instruction written immediately before is used as the AX or A register in the "PUSH AX", "MOV A, #byte", and "POP AX" instructions. However, in the "ADD !!addr24, A" instruction, the register used as the A register is determined by the value to which the interrupted program set the RSS bit in the PSW. Therefore, either the expected value or an unexpected value may be stored in the memory specified by !!addr24.

In this example, only the interrupt service program execution result is in error, but if, for example, the ADD instruction operands are reversed (ADD A, !!addr24), the contents of the register used by the interrupt program might be corrupted.

Since the phenomenon occurs in an irregular fashion with this kind of bug, it is extremely difficult to find the cause during debugging.

(d) As different registers are used under the same name, program legibility is poor and debugging is difficult.

## 3.1.4 Stack pointer (SP)

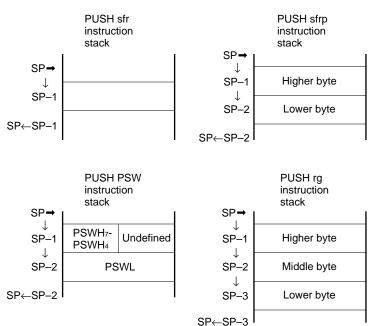
The stack pointer is a 24-bit register that holds the start address of the stack area (LIFO type: 000000H to FFFFFH) (see **Figure 3-3**). It is used to address the stack area when subroutine processing or interrupt servicing is performed.

The contents of the SP are decremented before a write to the stack area and incremented after a read from the stack area (see **Figures 3-4** and **3-5**).

The SP is accessed by special instructions.

The SP contents are undefined after RESET input, and therefore the SP must always be initialized by an initialization program directly after reset release (before a subroutine call or interrupt acknowledgment).

In some products a number of bits at the high-order end of the SP are fixed at 0. Please refer to the **User's Manual**— **Hardware** for the individual products for details.


# Example SP initialization

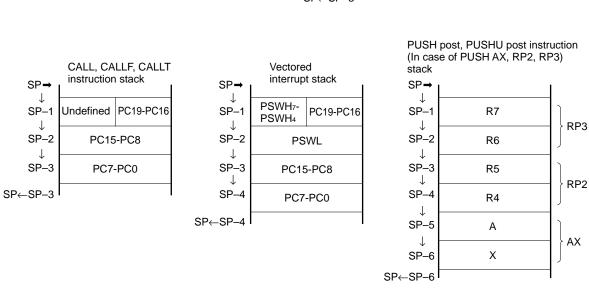

MOVG SP, #0FEE0H;SP ← 0FEE0H (when used from FEDFH)

Figure 3-3. Stack Pointer (SP) Configuration

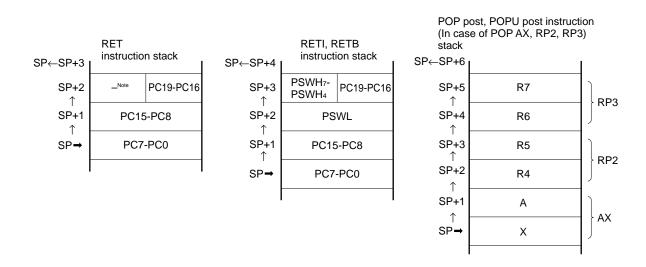


Figure 3-4. Data Saved to Stack Area





POP sfr POP sfrp instruction instruction stack stack SP←SP+2 SP←SP+1 SP+1 Higher byte SP→ SP→ Lower byte POP PSW POP rg instruction instruction stack stack SP←SP+2 SP←SP+3 PSWH7-SP+2 Higher byte SP+1 PSWH<sub>4</sub>


SP+1

SP→

Middle byte

Lower byte

Figure 3-5. Data Restored from Stack Area



**Note** This 4-bit data is ignored.

SP→

**PSWL** 

Cautions 1. With stack addressing, the entire 16-Mbyte space can be accessed but a stack area cannot be reserved in the SFR area or internal ROM area.

2. The SP is undefined after RESET input. Moreover, non-maskable interrupts can still be acknowledged when the SP is in an undefined state. An unanticipated operation may therefore be performed if a non-maskable interrupt request is generated when the SP is in the undefined state directly after reset release. To avoid this risk, the program after reset release must be written as follows.

The  $\mu$ PD784915 Subseries is fixed to the LOCATION 0 instruction.

RSTVCT CSEG AT 0

DW RSTSTRT

l

INITSEG CSEG BASE

RSTSTRT: LOCATION 0H; or LOCATION 0FH

MOVG SP, #STKBGN

### 3.2 General Registers

### 3.2.1 Configuration

There are sixteen 8-bit general registers. Also, two general registers can be used together as a 16-bit general register. In addition, four of the 16-bit general registers can be combined with an 8-bit register for address extension and used as 24-bit address specification registers.

General registers other than the V, U, T, and W registers for address extension are mapped onto internal RAM. These register sets are provided in 8 banks, and can be switched by means of software or the context switching function.

Upon RESET input, register bank 0 is selected. The register bank used during program execution can be checked by reading the register bank selection flag (RBS0, RBS1, RBS2) in the PSW.

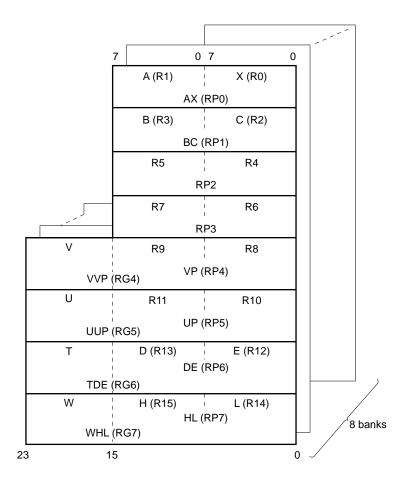



Figure 3-6. General Register Configuration

Remark Absolute names are shown in parentheses.

8-bit processing 16-bit processing FEFFH' H (R15) (FH) L (R14) (EH) HL (RP7) (EH) RBNK0 D (R13) (DH) RBNK1 DE (RP6) (CH) E (R12) (CH) RBNK2 R11  $_{(BH)}$ R10 (AH) UP (RP5) (AH) VP (RP4) (8H) RBNK3 R9 (9H) R8 (8H) R6 (6H) RP3 (6H) RBNK4 R7<sub>(7H)</sub> RBNK5 R4 (4H) RP2 (4H) R5 (5H) B (R3) (3H) C (R2) (2H) BC (RP1) (2H) RBNK6 AX (RP0) (OH) RBNK7 A (R1) X (R0) FE80H 15

Figure 3-7. General Register Addresses

**Note** When the LOCATION 0 instruction is executed. When the LOCATION 0FH instruction is executed, 0F0000H should be added to the address values shown.

The  $\mu$ PD784915 Subseries is fixed to the LOCATION 0 instruction.

Caution R4, R5, R6, R7, RP2, and RP3 can be used as the X, A, C, B, AX, and BC registers respectively by setting the RSS bit of the PSW to 1, but this function should only be used when using a 78K/ III Series program.

**Remark** When the register bank is switched, and it is necessary to return to the original register bank, an SEL RBn instruction should be executed after first saving the PSW to the stack with a PUSH PSW instruction. When returning to the original register bank, if the stack location does not change the POP PSW instruction should be used.

When the register bank is changed by a vectored interrupt service program, etc., the PSW is automatically saved to the stack when an interrupt is acknowledged and restored by an RETI or RETB instruction, so that, if only one register bank is used in the interrupt service program, only an SEL RBn instruction need be executed, and execution of a PUSH PSW and POP W instruction is not necessary.

Example 1. When register bank 2 is specified

::
PUSH PSW

SEL RB2
::
POP PSW

::
Operations in register bank 2
Operations in original register bank

2. When the register bank is specified by a vectored interrupt service program.

#### 3.2.2 Functions

In addition to being manipulated as 8-bit units, the general registers can also be manipulated as 16-bit units by pairing two 8-bit registers. Also, four of the 16-bit general registers can be combined with an 8-bit register for address extension and manipulated as 24-bit units.

Each register can be used in a general way for temporary storage of an operation result and as the operand of an inter-register operation instruction.

The area from 0FE80H to 0FEFFH (when the LOCATION 0 is executed; 0FFE80H to 0FFEFFH when the LOCATION 0FH instruction is executed) can be given an address specification and accessed as ordinary data memory irrespective of whether or not it is used as the general register area.

As 8 register banks are provided in the 78K/IV Series, efficient programs can be written by using different register banks for normal processing and processing in the event of an interrupt.

The registers have the following specific functions.

#### A (R1):

- Register mainly used for 8-bit data transfers and operation processing. Can be used in combination with all addressing modes for 8-bit data.
- · Can also be used for bit data storage.
- Can be used as the register that holds the offset value in indexed addressing and based indexed addressing.

# X (R0):

· Can be used for bit data storage.

#### **AX (RP0):**

• Register mainly used for 16-bit data transfers and operation processing. Can be used in combination with all addressing modes for 16-bit data.

#### AXDE:

• Used for 32-bit data storage when a DIVUX, MACW, or MACSW instruction is executed.

## B (R3):

- Has a loop counter function, and can be used by the DBNZ instruction.
- · Can be used as the register that holds the offset value in indexed addressing and based indexed addressing.
- Used as the MACW and MACSW instruction data pointer.

#### C (R2):

- Has a loop counter function, and can be used by the DBNZ instruction.
- Can be used as the register that holds the offset value in based indexed addressing.
- · Used as the counter in a string instruction and the SACW instruction.
- Used as the MACW and MACSW instruction data pointer.

#### RP2:

• Used to save the low-order 16 bits of the program counter (PC) when context switching is used.

#### RP3:

 Used to save the high-order 4 bits of the program counter (PC) and the program status word (PSW) (excluding bits 0 to 3 of PSWH) when context switching is used.

#### VVP (RG4):

 Has a pointer function, and operates as the register that specifies the base address in register indirect addressing, based addressing and based indexed addressing.

### UUP (RG5):

- Has a user stack pointer function, and enables a stack separate from the system stack to be implemented by means of the PUSHU and POPU instructions.
- Has a pointer function, and operates as the register that specifies the base address in register indirect addressing and based addressing.

#### DE (RP6), HL (RP7):

Operate as the registers that specify the offset value in indexed addressing and based indexed addressing.

#### TDE (RG6):

- Has a pointer function, and operates as the register that specifies the base address in register indirect addressing and based addressing.
- Used as the pointer in a string instruction and the SACW instruction.

## WHL (RG7):

- · Register used mainly for 24-bit data transfers and operation processing.
- Has a pointer function, and operates as the register that specifies the base address in register indirect addressing and based addressing.
- Used as the pointer in a string instruction and the SACW instruction.

In addition to the function name that emphasizes the specific function of the register (X, A, C, B, E, D, L, H, AX, BC, VP, UP, DE, HL, VVP, UUP, TDE, WHL), each register can also be described by its absolute name (R0 to R15, RP0 to RP7, RG4 to RG7). The correspondence between these names is shown in Table 3-2.

Table 3-2. Function Names and Absolute Names

# (a) 8-bit register

|               | Function Name |              |  |
|---------------|---------------|--------------|--|
| Absolute Name | RSS = 0       | RSS = 1 Note |  |
| R0            | Х             |              |  |
| R1            | А             |              |  |
| R2            | С             |              |  |
| R3            | В             |              |  |
| R4            |               | Х            |  |
| R5            |               | А            |  |
| R6            |               | С            |  |
| R7            |               | В            |  |
| R8            |               |              |  |
| R9            |               |              |  |
| R10           |               |              |  |
| R11           |               |              |  |
| R12           | E             | E            |  |
| R13           | D             | D            |  |
| R14           | L             | L            |  |
| R15           | Н             | Н            |  |

# (b) 16-bit register

| Absolute Name | Function Name |              |
|---------------|---------------|--------------|
| Absolute Name | RSS = 0       | RSS = 1 Note |
| RP0           | AX            |              |
| RP1           | ВС            |              |
| RP2           |               | AX           |
| RP3           |               | ВС           |
| RP4           | VP            | VP           |
| RP5           | UP            | UP           |
| RP6           | DE            | DE           |
| RP7           | HL            | HL           |

# (c) 24-bit register

| Absolute Name | Function Name |
|---------------|---------------|
| RG4           | VVP           |
| RG5           | UUP           |
| RG6           | TDE           |
| RG7           | WHL           |

Note RSS should only be set to 1 when a 78K/III Series program is used.

Remark R8 to R11 have no function name.

# 3.3 Special Function Registers (SFR)

These are registers to which a specific function is assigned, such as on-chip peripheral hardware mode registers, control registers, etc., and they are mapped onto the 256-byte space from 0FF00H to 0FFFFH Note. Please refer to the individual product documentation for details of the special function registers.

**Note** When the LOCATION 0 instruction is executed. When the LOCATION 0FH instruction is executed, the area is 0FFF00H to 0FFFFFH.

The  $\mu$ PD784915 Subseries is fixed to the LOCATION 0 instruction.

Caution Addresses onto which SFRs are not mapped should not be accessed in this area. If such an address is accessed by mistake, the CPU may become deadlocked. A deadlock can only be released by reset input.

# **CHAPTER 4 INTERRUPT FUNCTIONS**

The three kinds of processing shown in Table 4-1 can be programmed as servicing for interrupt requests.

Multiprocessing control using a 4-level priority system can easily be performed for maskable vectored interrupts.

Table 4-1. Interrupt Request Servicing

| Service Mode        | Service Performed by | Service                                                                                                  | PC/PSW Contents                                                     |
|---------------------|----------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Vectored interrupts | Software             | Executed by branching to service routine (any service contents)                                          | Associated saving to & restoration from stack                       |
| Context switching   |                      | Executed by automatic switching of register bank and branching to service routine (any service contents) | Associated saving to & restoration from fixed area in register bank |
| Macro service       | Firmware             | Execution of memory-I/O data transfers, etc. (fixed service contents)                                    | No change                                                           |

Remark Please refer to the User's Manual — Hardware for the individual products for details.

## 4.1 Kinds of Interrupt Request

There are three kinds of interrupt request, as follows:

- · Software interrupt requests
- · Non-maskable interrupt requests
- · Maskable interrupt requests

#### 4.1.1 Software interrupt requests

An interrupt request by software is generated when a BRK instruction or BRKCS RBn instruction is executed, or if here is an error in an operand of an MOV WDM, #byte instruction or MOV STBC, #byte instruction, LOCATION instruction (operand error interrupt). Interrupt requests by software are acknowledged even in the interrupt disabled (DI) state, and are not subject to interrupt priority control. Therefore, when an interrupt request is generated by software, a branch is made to the interrupt service routine unconditionally.

To return from a BRK instruction, an RETB instruction is executed.

To return from a BRKCS RBn instruction service routine, a RETCSB !addr16 instruction is executed.

As an operand error interrupt is an interrupt generated if there is an error in an operand, processing is required for branching to the initialization program by a reset release after the necessary processing has been performed, etc.

#### 4.1.2 Non-maskable interrupt requests

A non-maskable interrupt request is generated when a valid edge is input to the NMI pin or when the watchdog timer overflows. The provision of the NMI pin and watchdog timer functions varies from product to product. Please refer to the **User's Manual** — **Hardware** for the individual products for details.

Non-maskable interrupt requests are acknowledged unconditionally, even in the interrupt disabled (DI) state. Also, they are not subject to interrupt priority control, and are of higher priority that any other interrupt.

# 4.1.3 Maskable interrupt requests

A maskable interrupt request is one subject to masking control according to the setting of the interrupt control register. In addition, acknowledgment enabling/disabling can be set for all maskable interrupts by means of the IE flag in the PSW.

The priority order for maskable interrupt requests when interrupt requests of the same priority are generated simultaneously is predetermined (default priority). Also, multiprocessing can be performed with interrupt priorities divided into 4 levels in accordance with the specification of the interrupt control register. However, macro service requests are acknowledged without regard to priority control or the IE flag.

## 4.2 Interrupt Service Modes

#### 4.2.1 Vectored interrupts

A branch is made to the service routine using the memory contents of the vector table address corresponding to the interrupt source as the branch destination address.

The following operations are executed to enable the CPU to perform interrupt servicing.

- When branching: The CPU state (PC & PSW contents) is saved to the stack.
- When returning: CPU statuses (PC & PSW contents) are restored from the stack.

The return from the service routine to the main routine is performed by an RETI instruction (or an RETB instruction in the case of a BRK instruction or operand error interrupt).

The branch destination address is restricted to the base area from 0000H to FFFFH.

Please refer to the **User's Manual** — **Hardware** for the individual products for details of the vector table.

### 4.2.2 Context switching

The prescribed register bank is selected by hardware by generation of an interrupt request or execution of a BRKCS RBn instruction. With this function, a branch is made to the vector address stored beforehand in the register bank, and at the same time the contents of the program counter (PC) and program status word (PSW) are stacked in the register bank.

The return from the service routine is performed by a RETCS! addr16 instruction (or an RETCSB! addr16 instruction in the case of a BRKCS RBn instruction).

The branch destination address is restricted to the base area from 0000H to FFFFH.

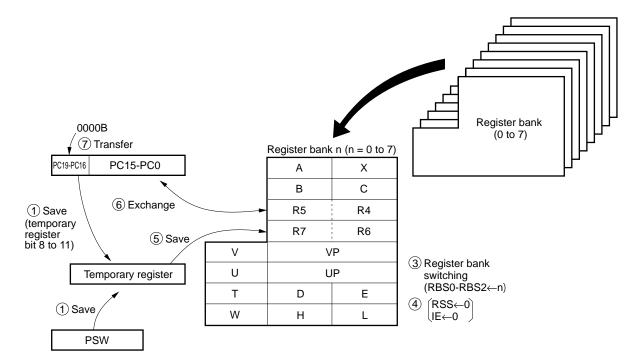



Figure 4-1. Context Switching Operation by Interrupt Request Generation

### 4.2.3 Macro service function

In macro service, CPU execution is temporarily suspended when an interrupt is acknowledged, and the service set by firmware is executed. Since macro service is performed without the intermediation of the CPU, it is not necessary to save CPU statuses such as the PC and PSW contents. This is therefore very effective in improving the CPU service time.

Please refer to the User's Manual — Hardware for the individual products for details of macro service.

# **CHAPTER 5 ADDRESSING**

# 5.1 Instruction Address Addressing

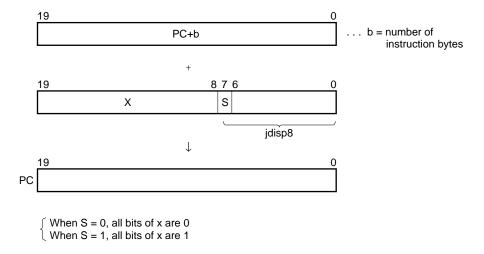
The instruction address is determined by the contents of the program counter (PC), and is normally incremented (by 1 for one byte) automatically in accordance with the number of bytes in the fetched instruction each time an instruction is executed. However, when an instruction associated with a branch is executed, branch address information is set in the PC and a branch performed by means of the addressing modes shown below.

The following kinds of instruction address addressing are provided:

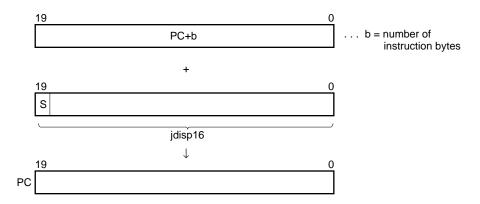
- (8-bit/16-bit) relative addressing
- (11-bit/16-bit/20-bit) immediate addressing
- · Table indirect addressing
- 16-bit register addressing
- · 20-bit register addressing
- · 16-bit register indirect addressing
- 20-bit register indirect addressing

Details of each kind of addressing are given in the following sections.

# 5.1.1 Relative addressing


### [Function]

The value obtained by adding the 8-bit or 16-bit immediate data in the operation code (displacement value: jdisp8, jdisp16) to the start address of the next instruction is transferred to the program counter (PC), and a branch is made. The displacement value is treated as signed two's complement data (-128 to +127, -32,768 to +32,767), with the MSB as the sign bit.


This is performed when a CALL \$!addr20, BR \$!addr20, or conditional branch instruction is executed (only 8-bit immediate data can be used in a conditional branch instruction).

# [Explanatory Diagrams]

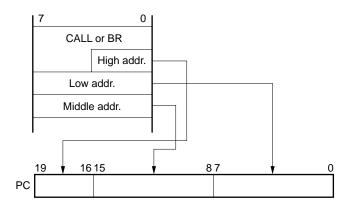
### 8-bit relative addressing



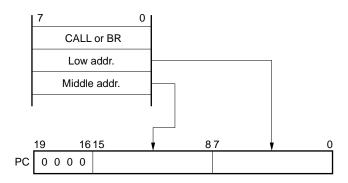
## 16-bit relative addressing



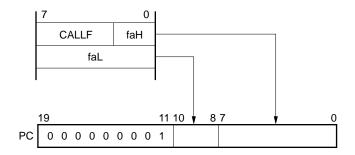
### 5.1.2 Immediate addressing


# [Function]

The immediate data in the instruction word is transferred to the program counter (PC), and a branch is made. This is performed when a CALL !!addr20, BR !!addr20, CALL !addr16, BR !addr16, or CALLF !addr11 instruction is executed.


In the case of a CALL !addr16 or BR !addr16 instruction (16-bit immediate addressing), the high-order 4-bit address is fixed at 0, and a branch is made to the base area. In the case of the CALLF !addr11 instruction, the high-order 9-bit address is fixed at 000000001.

# [Explanatory Diagrams]


# 20-bit immediate addressing



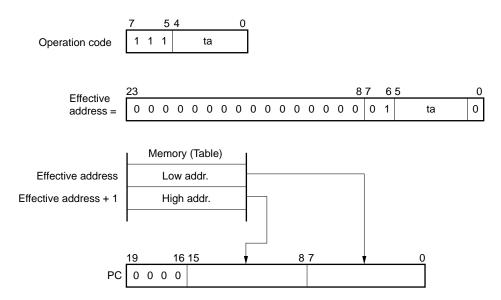
### 16-bit immediate addressing



# 11-bit immediate addressing



# [Caution]


As the branch destination of the BR !addr16 instruction is restricted, it should only be used when using a 78K/0, 78K/II, or 78K/III Series program.

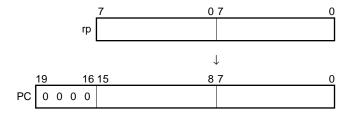
### 5.1.3 Table indirect addressing

# [Function]

The specific location table contents (branch destination address) addressed by the immediate data in the low-order 5 bits of the operation code are transferred to the low-order 16 bits of the program counter (PC), 0000 is transferred to the high-order 4 bits, and a branch is made (the branch destination address is restricted to the base area). This is performed when a CALLT [addr5] instruction is executed.

# [Explanatory Diagram]




#### 5.1.4 16-bit register addressing

#### [Function]

The contents of register rp (RP0 to RP7) specified by the instruction word are transferred to the low-order 16 bits of the program counter (PC), 0000 is transferred to the high-order 4 bits, and a branch is made (the branch destination address is restricted to the base area).

This is performed when a BR rp or CALL rp instruction is executed.

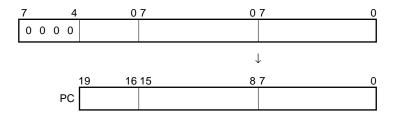
# [Explanatory Diagrams]



## [Caution]

As the branch destination of the BR rp instruction is restricted, it should only be used when using a 78K/0, 78K/II, or 78K/III Series program.

If AX or BC is written for rp, with the NEC RA78K4 assembler the object code generated depends on the RSS pseudo-instruction written immediately before. "1" should be specified by the RSS pseudo-instruction only when a 78K/III Series program is used (see **3.1.3 Use of RSS bit**).

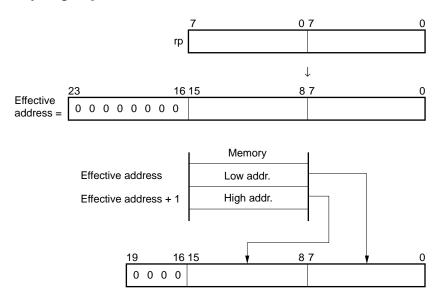

# 5.1.5 20-bit register addressing

# [Function]

The contents of register rg (RG4 to RG7) specified by the instruction word are transferred to the program counter (PC), and a branch is made. The high-order 4 bits of rg should be set to 0000.

This is performed when a BR rg or CALL rg instruction is executed.

### [Explanatory Diagram]




### 5.1.6 16-bit register indirect addressing

### [Function]

The 2 consecutive bytes of data in the memory addressed by the contents of register rp (RP0 to RP7) specified by the instruction word are transferred to the low-order 16 bits of the program counter (PC), 0000 is transferred to the high-order 4 bits, and a branch is made (the branch destination address is restricted to the base area). This is performed when a BR [rp] or CALL [rp] instruction is executed.

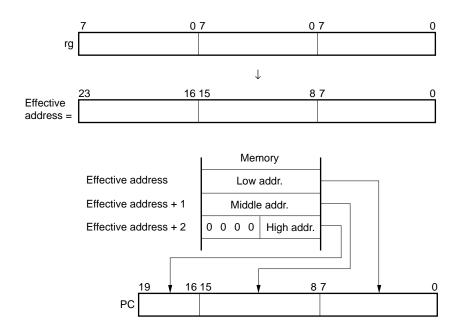
# [Explanatory Diagram]



### [Caution]

As the address that holds the branch destination address and the branch destination of the BR [rp] instruction are restricted, it should only be used when using a 78K/III Series program.

If AX or BC is written for rp, with the NEC RA78K4 assembler the object code generated depends on the RSS pseudo-instruction written immediately before. "1" should be specified by the RSS pseudo-instruction only when a 78K/III Series program is used (see **3.1.3 Use of RSS bit**).


# 5.1.7 20-bit register indirect addressing

# [Function]

The 3 consecutive bytes of data in the memory addressed by the contents of register rg (RP0 to RP7) specified by the instruction word are transferred to the program counter (PC), and a branch is made. The high-order 4 bits of the 3-byte data stored in the memory should be set to 0000.

This is performed when a BR [rg] or CALL [rg] instruction is executed.

# [Explanatory Diagram]



# 5.2 Operand Address Addressing

The following methods are available for specifying the register, memory, etc., to be manipulated when an instruction is executed.

- · Implied addressing
- · Register addressing
- · Immediate addressing
- · 8-bit direct addressing
- · 16-bit direct addressing
- · 24-bit direct addressing
- · Short direct addressing
- Special function register (SFR) addressing
- · Short direct 16-bit memory indirect addressing
- · Short direct 24-bit memory indirect addressing
- · Stack addressing
- 24-bit register indirect addressing (including 24-bit register indirect addressing with auto-increment/autodecrement)
- 16-bit register indirect addressing
- Based addressing
- · Indexed addressing
- Based indexed addressing

Details of each kind of addressing are given in the following sections.

### 5.2.1 Implied addressing

### [Function]

This type of addressing automatically addresses registers in the register bank specified by the register bank selection flags (RBS2, RBS1, and RBS0).

Instructions that use implied addressing in the 78K/IV Series instruction word are shown below.

The A, AX, C, and B registers used by these instructions are affected by the RSS bit in the PSW. When RSS = 0, R1, RP0, R2, and R2, respectively are accessed for the A, AX, C, and B registers, and when RSS = 1, R5, RP2, R6, and R7 are accessed. RSS should only be set to 1 when a 78K/III Series program is used (see **3.1.3 Use of RSS bit**).

| Instruction              | Registers Specified by Implied Addressing                                                                                                  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| MULU                     | A register as multiplicand, AX register as that holds product                                                                              |
| MULUW, MULW              | AX register as multiplicand and register that holds high-order 16 bits of product                                                          |
| DIVUW                    | AX register as register that holds dividend and quotient                                                                                   |
| DIVUX                    | AXDE register as register that holds dividend and quotient                                                                                 |
| MACW, MACSW              | AXDE register as register that holds result of sum of products operation, B and C registers as pointer registers that specify data         |
| ADJBA, ADJBS             | A register as register that holds numeric value subject to decimal adjustment                                                              |
| CVTBW                    | A register as register that holds data before sign extension is performed, and AX register as register that holds result of sign extension |
| CHKLA                    | A register as register that holds result of comparison between pin level and port output latch                                             |
| ROR4, ROL4               | A register as register that holds digit data subject to digit rotation (only low-order 4 bits are used)                                    |
| SACW, string instruction | C register as data counter string instruction                                                                                              |

### [Operand Format]

As this is used automatically according to the instruction, there is no specific operand format.

## [Description Example]

MULU r; In an 8-bit x 8-bit multiplication instruction, the product of the A register and r register are stored in the AX register. Here, the A and AX registers are specified by implied addressing.

#### 5.2.2 Register addressing

#### [Function]

This type of addressing accesses as an operand the general register specified by the register specification code in the instruction word in the register bank specified by the register bank selection flag (RBS2, RBS1, RBS0). Register addressing is performed when an instruction with one of the operand formats shown below is executed.

#### [Operand Format]

Performed when an instruction with one of the operand formats shown below is executed.

| Identifier | Description Format                                                                           |
|------------|----------------------------------------------------------------------------------------------|
| Α          | A                                                                                            |
| С          | С                                                                                            |
| Х          | X                                                                                            |
| В          | В                                                                                            |
| r          | X(R0), A(R1), C(R2), B(R3), R4, R5, R6, R7, R8, R9, R10, R11, E(R12), D(R13), L(R14), H(R15) |
| r1         | X(R0), A(R1), C(R2), B(R3), R4, R5, R6, R7                                                   |
| r2         | R8, R9, R10, R11, E(R12), D(R13), L(R14), H(R15)                                             |
| r3         | V, U, T, W                                                                                   |
| AX         | AX                                                                                           |
| rp         | AX(RP0), BC(RP1), RP2, RP3, VP(RP4), UP(RP5), DE(RP6), HL(RP7)                               |
| rp1        | AX(RP0), BC(RP1), RP2, RP3                                                                   |
| rp2        | VP(RP4), UP(RP5), DE(RP6), HL(RP7)                                                           |
| WHL        | WHL                                                                                          |
| rg         | VVP(RG4), UUP(RG5), TDE(RG6), WHL(RP7)                                                       |

#### Remarks 1. Absolute names are shown in parentheses.

- 2. With an instruction (such as ADDW AX, #word) in which A, X, AX, B, or C is specified directly as the register addressing operand, the register used as A, X, AX, B, or C is determined by the RSS bit in the PSW when the instruction is executed. The RSS bit in the PSW should be set to "1" only when a 78K/III Series program is used (see 3.1.3 Use of RSS bit).
- 3. If A, X, B, C, AX, or BC is written as an operand in an instruction in which r, r1, rp, or rp1 is specified as the register addressing operand, with the NEC RA78K4 assembler the object code generated depends on the RSS pseudo-instruction written immediately before. "1" should be specified in the RSS pseudo-instruction operand only when a 78K/III Series program is used (see 3.1.3 Use of RSS bit).

# [Description Example 1]

· General example

MOV A, r

· Specific example

MOV A, C; When the C register is selected as r

### [Description Example 2]

General example

INCW rp

Specific example

INCW DE; When the DE register pair is selected as rp

# 5.2.3 Immediate addressing

# [Function]

This type of addressing has 8-bit data, 16-bit data and 24-bit data subject to manipulation in the operation code.

# [Operand Format]

Performed when an instruction with one of the operand formats shown below is executed.

| Identifier | Description Format             |
|------------|--------------------------------|
| byte       | Label or 8-bit immediate data  |
| word       | Label or 16-bit immediate data |
| imm24      | Label or 24-bit immediate data |

# [Description Example]

 General example ADD A, #byte

• Specific example

ADD A, #77H; When 77H is used as byte

#### 5.2.4 8-bit direct addressing

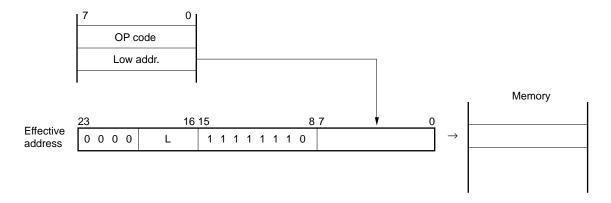
#### [Function]

With this kind of addressing, the immediate data in the instruction word is the operand address and the memory to be manipulated is addressed. It is used with the MOVTBLW instruction. Memory from 0FE00H to 0FEFFH is addressed when a LOCATION 0 instruction is executed, and memory from 0FFE00H to 0FFEFFH when a LOCATION 0FH instruction is executed.

# [Operand Format]

Performed when an instruction with the operands shown below is executed.

| Identifier | Description Format                             |
|------------|------------------------------------------------|
| !addr8     | Label, or immediate data 0FE00H to 0FEFFH Note |


**Note** When the LOCATION 0 instruction is executed. When the LOCATION 0FH instruction is executed, the range is 0FFE00H to 0FFEFFH.

The  $\mu$ PD784915 Subseries is fixed to the LOCATION 0 instruction.

#### [Description Examples]

- General example MOVTBLW !addr8, n
- Specific example
   MOVTBLW !0FE24H, n; When FE24H is used as addr8

#### [Explanatory Diagram]



Remark L depends on the LOCATION instruction.

When LOCATION 0 instruction is executed : 0000
 When LOCATION 0FH instruction is executed : 1111

#### 5.2.5 16-bit direct addressing

#### [Function]

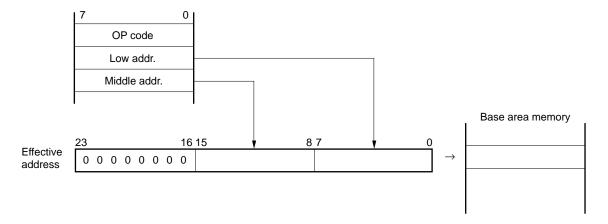
This type of addressing addresses memory subject to manipulation with the immediate data in the instruction word as the operand address. The base area can be addressed.

# [Operand Format]

Performed when an instruction with the operand format shown below is executed.

| Identifier | Description Format             |
|------------|--------------------------------|
| addr16     | Label or 16-bit immediate data |

# [Description Example]


· General example

MOV A, !addr16

· Specific example

MOV A, !0FE00H; When FE00H is used as addr16

# [Explanatory Diagram]



# [Remarks]

This kind of addressing should only be used when it is absolutely essential to reduce the execution time or object size, or when 78K/0, 78K/I, 78K/II, or 78K/III Series software is used and program amendment is difficult. Amendments may be necessary in order to make further use of a program that uses this kind of addressing.

# 5.2.6 24-bit direct addressing

# [Function]

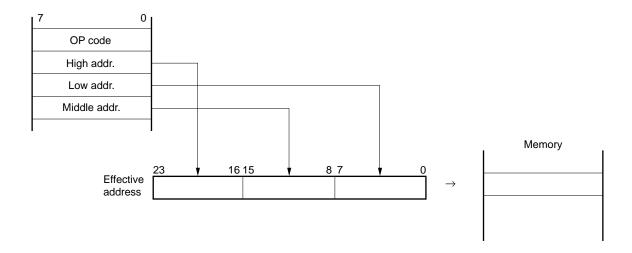
This type of addressing addresses memory subject to manipulation with the immediate data in the instruction word as the operand address. The entire memory space can be addressed.

# [Operand Format]

Performed when an instruction with the operand format shown below is executed.

| Identifier | Description Format             |
|------------|--------------------------------|
| addr24     | Label or 24-bit immediate data |

# [Description Example]


· General example

MOV A, !!addr24

· Specific example

MOV A, !!54FE00H; When 54FE00H is used as addr24

# [Explanatory Diagram]



#### 5.2.7 Short direct addressing

#### [Function]

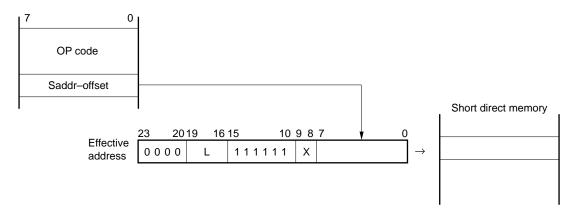
This type of addressing directly addresses memory subject to manipulation in a fixed space with the 8-bit immediate data in the instruction word. This kind of addressing can be used with most instructions, and allows various kinds of data to be manipulated using a small number of bytes and small number of clocks.

With short direct addressing, the applicable address range varies according to the LOCATION instruction in the same way as the internal data area location addresses. When a LOCATION 0 instruction is executed, internal RAM from 0FD20H to 0FEFFH and special function registers (SFRs) from 0FF00H to 0FF1FH can be accessed. When a LOCATION 0FH instruction is executed, internal RAM from 0FFD20H to 0FFEFFH and SFRs from 0FFF00H to 0FFF1FH can be accessed.

Ports frequently accessed in the program, timer/counter unit compare registers and capture registers are mapped onto the SFR area on which short direct addressing is used. These special function registers can be manipulated using a small number of bytes and small number of clocks.

#### [Operand Format]

Performed when an instruction with one of the operand formats shown below is executed.


| Identifier                   | Description Format                                                                                                                                                                   |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| saddr                        | Label or immediate data 0FD20H to 0FF1FH                                                                                                                                             |
| saddr1                       | Label or immediate data 0FE00H to 0FEFFH                                                                                                                                             |
| saddr2                       | Label or immediate data 0FD20H to 0FDFFH and 0FF00H to 0FF1FH                                                                                                                        |
| saddrp                       | Label or immediate data 0FD20H to 0FF1EH                                                                                                                                             |
| saddrp1                      | Label or immediate data 0FE00H to 0FEFEH                                                                                                                                             |
| saddrp2                      | Label or immediate data 0FD20H to 0FDFFH and 0FF00H to 0FF1EH (If 0FDFFH is specified, the high-order byte is 0FE00H)                                                                |
| saddrg<br>saddrg1<br>saddrg2 | Label or immediate data 0FD20H to 0FEFDH Label or immediate data 0FE00H to 0FEFDH (during 24-bit manipulation) Label or immediate data 0FD20H to 0FDFFH (during 24-bit manipulation) |

**Remark** The addresses in this table are those that apply when the LOCATION 0 instruction is executed. When the LOCATION 0FH instruction is executed, F0000H should be added to the values shown. The  $\mu$ PD784915 Subseries is fixed to the LOCATION 0 instruction.

# [Description Example]

- General example MOV saddr, saddr
- Specific example MOV 0FE30H, 0FE50H

# [Explanatory Diagram]



# Remark L depends on the LOCATION instruction.

When LOCATION 0 instruction is executed : 0000
 When LOCATION 0FH instruction is executed : 1111

X is determined by the op code information and the value of Saddr-offset.

- When saddr1 is specified by op code: 10
- When saddr2 is specified by op code and Saddr-offset is 20H to FFH: 01
- When saddr2 is specified by op code and Saddr-offset is 00H to 1FH: 11

#### 5.2.8 Special function register (SFR) addressing function

#### [Function]

This type of addressing addresses memory-mapped special function registers (SFRs) with the 8-bit immediate data in the instruction word.

The space used by this kind of addressing varies according to the LOCATION instruction in the same way as the internal data area location addresses. When a LOCATION 0 instruction is executed, it is the 256-byte space from 0FF00H to 0FFFFH, and when a LOCATION 0FH instruction is executed, it is the 256-byte space from 0FFF00H to 0FFFFH. However, SFRs mapped onto 0FF00H to 0FF1FH (when the LOCATION 0 instruction is executed; 0FFF00H to 0FFF1FH accessed by short direct addressing.

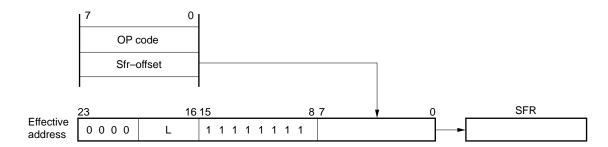
**Remarks 1.** With the NEC assembler package (RA78K4), short direct addressing is automatically (forcibly) used for instructions on SFRs in addresses that can be accessed by short direct addressing.

**2.** The  $\mu$ PD784915 Subseries is fixed to the LOCATION 0 instruction.

#### [Operand Format]

Performed when an instruction with one of the operand formats shown below is executed.

|   | Identifier | Description Format                                                       |
|---|------------|--------------------------------------------------------------------------|
| ĺ | sfr        | Special function register name                                           |
| ĺ | sfrp       | Name of special function register for which 16-bit operation is possible |


#### [Description Example]

 General example MOV sfr, A

Specific example

MOV PM0, A; When PM0 is specified as sfr

#### [Explanatory Diagram]



Remark L depends on the LOCATION instruction.

When LOCATION 0 instruction is executed : 0000
 When LOCATION 0FH instruction is executed: 1111

#### 5.2.9 Short direct 16-bit memory indirect addressing

#### [Function]

This type of addressing addresses base area memory subject to manipulation with the contents of the two consecutive bytes of short direct memory addressed by the 8-bit bits of the operand address and the high-order 8 bits of the operand address set to 00000000.

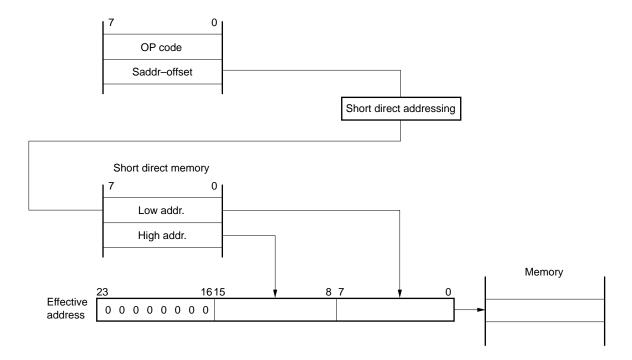
This addressing is used when an instruction with [saddrp] in an operand is executed.

#### [Operand Format]

Performed when an instruction with the operand format shown below is executed.

| Identifier | Description Format                          |
|------------|---------------------------------------------|
| [saddrp]   | [Label, immediate data FD20H to FEFEH Note] |

**Note** When the LOCATION 0 instruction is executed. When the LOCATION 0FH instruction is executed, the range is FFD20H to FFEFEH.


The  $\mu$ PD784915 Subseries is fixed to the LOCATION 0 instruction.

#### [Description Example]

- General example XCH A, [saddrp]
- · Specific example

XCH A, [0FEA0H]; When memory indicated by 2-byte data in addresses 0FEA0H and 0FEA1H is specified

#### [Explanatory Diagram]



### [Remarks]

This kind of addressing should only be used when it is absolutely essential to reduce the execution time or object size, or when 78K/0, 78K/II, 78K/II, or 78K/III Series software is used and program amendment is difficult. Amendments may be necessary in order to make further use of a program that uses this kind of addressing.

#### 5.2.10 Short direct 24-bit memory indirect addressing

#### [Function]

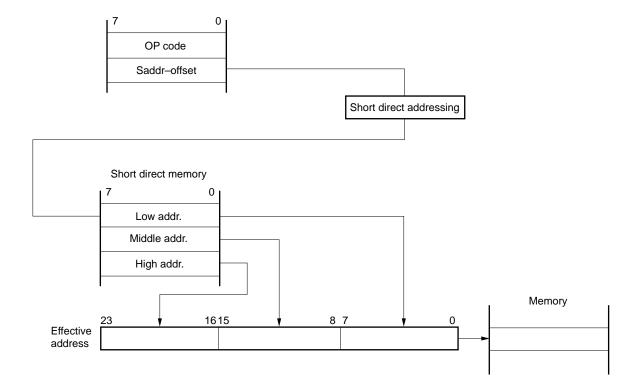
This type of addressing addresses memory subject to manipulation with the contents of the 3 consecutive bytes of short direct memory addressed by the 8-bit immediate data in the instruction word as the operand address. This addressing is used when an instruction with [%saddrg] in an operand is executed.

#### [Operand Format]

Performed when an instruction with the operand format shown below is executed.

| Identifier | Description Format                           |
|------------|----------------------------------------------|
| [%saddrg]  | [%label, immediate data FD20H to FEFDH Note] |

**Note** When the LOCATION 0 instruction is executed. When the LOCATION 0FH instruction is executed, the range is 0FFD20H to 0FFEFDH.


The  $\mu$ PD784915 Subseries is fixed to the LOCATION 0 instruction.

# [Description Example]

- General example
   XCH A, [%saddrg]
- · Specific example

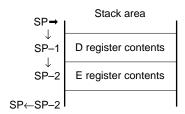
XCH A, [%0FEA0H]; When memory indicated by 3-byte data in addresses 0FEA0H, 0FEA1H and 0FEA2H is specified

# [Explanatory Diagram]



#### 5.2.11 Stack addressing

#### [Function]


This type of addressing indirectly addresses the stack area in accordance with the contents of the stack pointer (SP) and user stack pointer (UUP).

The SP is used automatically when a PUSH or POP instruction is executed, when register saving/restoration is performed as the result of interrupt request generation, and when a subroutine call or return instruction is executed. The UUP is used automatically when a PUSHU or POPU instruction is executed.

### [Description Example]

PUSH DE; When the contents of the DE register are saved to the stack using a PUSH instruction When this instruction is executed, the SP is automatically decremented (by 2) and the contents of the DE register are saved to the stack.

# [Explanatory Diagram]



Caution With stack addressing, the entire 16-Mbyte space can be accessed but a stack area cannot be reserved in the SFR area or internal ROM area.

#### 5.2.12 24-bit register indirect addressing

#### [Function]

This type of addressing addresses the memory to be manipulated with the contents of register rg (RG4 to RG7) specified by the register pair specification code in the instruction word in the register bank specified by the register bank selection flag (RBS2, RBS1, RBS0) as the operand address. The entire memory space can be addressed. In addition, register indirect addressing with auto-increment that increments (+1/+2/+3) the register for which an address specification was made after instruction execution and register indirect addressing with auto-decrement that decrements (-1/-2/-3) the register after instruction execution are provided. The increment and decrement values are determined by the size of data manipulated.

This type of addressing is ideal for consecutive processing of multiple items of data.

# [Operand Format]

Performed when an instruction with one of the operand formats shown below is executed.

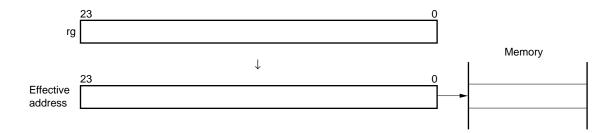
| Identifier | Description Format                                         |
|------------|------------------------------------------------------------|
| mem        | [TDE], [WHL], [TDE+], [WHL+], [TDE-], [WHL-], [VVP], [UUP] |
| mem1       | [TDE], [WHL], [TDE+], [TDE-]                               |
| mem2       | [TDE], [WHL]                                               |
| mem3       | [TDE], [WHL], [VVP], [UUP]                                 |

Remark "+" after register name: With auto-increment

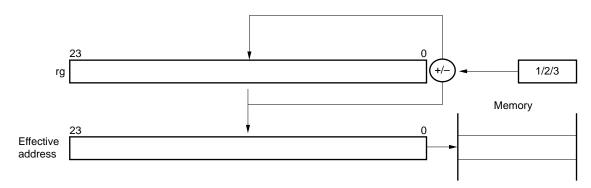
"-" after register name: With auto-decrement

#### [Description Example]

General example


MOV A, mem

· Specific example


ADD A, [TDE]; When [TDE] is specified as mem

# [Explanatory Diagram]

# 24-bit register indirect addressing



# Register indirect addressing with auto-increment/decrement



#### Remark +/-

+ : With auto-increment

- : With auto-decrement

1/2/3

1 : When data size is 1 byte

2 : When data size is 2 bytes (1 word)

3 : When data size is 3 bytes

#### 5.2.13 16-bit register indirect addressing

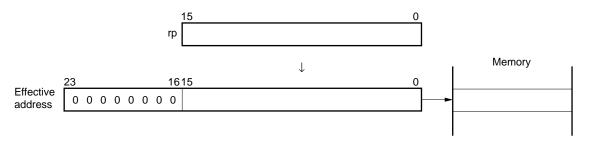
#### [Function]

This type of addressing addresses the memory to be manipulated with the contents of register rp (RP0 to RP3) specified by the register specification code in the instruction word in the register bank specified by the register bank selection flag (RBS2, RBS1, RBS0) as the operand address. The base area memory space can be addressed. This type of addressing is only used with the ROR4 and ROL4 instructions, and is used when processing multiple consecutive bytes of BCD data.

This addressing is provided to maintain compatibility with the 78K/III Series, and should only be used when using a 78K/III Series program.

#### [Operand Format]

Performed when an instruction with the operand format shown below is executed.


| Identifier | Description Format       |
|------------|--------------------------|
| mem3       | [AX], [BC], [RP2], [RP3] |

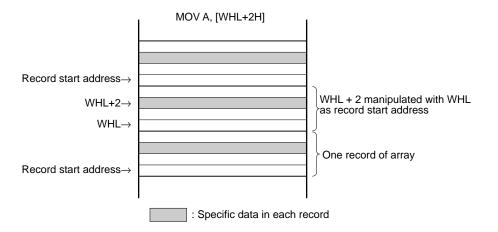
# [Description Example]

- General example ROR4 mem3
- Specific example

ROR4 [BC]; When [BC] is written as mem3

# [Explanatory Diagram]




#### 5.2.14 Based addressing

#### [Function]

With this type of addressing, register rg (RG4 to RG7) specified by the register specification code in the instruction word or the stack pointer (SP) in the register bank specified by the register bank selection flag (RBS2, RBS1, RBS0) addressed with the result of adding 8-bit immediate data to addition is performed with the offset data extended to 24 bits as a positive number. A carry from the 24th bit is ignored.

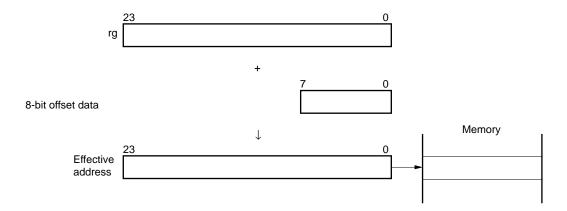
The entire memory space can be addressed.

This type of addressing is used when specific data is specified in an array in which one record consists of a number of bytes of data.



#### [Operand Format]

Performed when an instruction with one of the operand formats shown below is executed.


| Identifier | Description Format                                                  |
|------------|---------------------------------------------------------------------|
| mem        | [TDE + byte], [WHL + byte], [SP + byte], [VVP + byte], [UUP + byte] |
| mem1       | [TDE + byte], [WHL + byte], [SP + byte], [VVP + byte], [UUP + byte] |

# [Description Example]

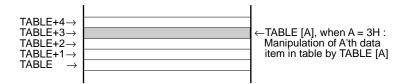
- General example AND A, mem
- · Specific example

AND A, [TDE+10H]; When based addressing using the sum of register TDE as mem and 10H is selected

#### [Explanatory Diagram]



#### 5.2.15 Indexed addressing


#### [Function]

With this type of addressing, the 24-bit address data written as the operand in the instruction word is used as the index, and memory is addressed with the result of adding the contents of the register specified in the instruction word in the register bank specified by the register bank selection flag (RBS2, RBS1, RBS0) to this value. The addition is performed with the register carry from the 24th bit is ignored.

The entire memory space can be addressed.

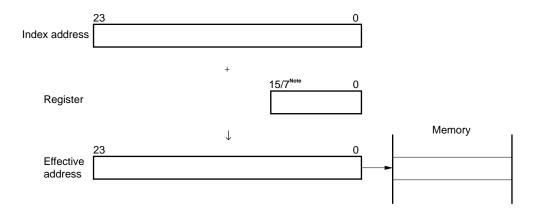
This type of addressing is used for table data reads, etc.

The A and B registers used in this addressing vary according to the value of the RSS bit in the PSW. When RSS = 0, these registers are R1 and R3 respectively, and when RSS = 1 they are R5 and R7. RSS should only be set to 1 when using a 78K/III Series program.



#### [Operand Format]

Performed when an instruction with one of the operand formats shown below is executed.


| Identifier | Description Format                       |  |  |  |  |  |  |
|------------|------------------------------------------|--|--|--|--|--|--|
| mem        | imm24[A], imm24[B], imm24[DE], imm24[HL] |  |  |  |  |  |  |
| mem1       | imm24[A], imm24[B], imm24[DE], imm24[HL] |  |  |  |  |  |  |

#### [Description Example]

- General example ADDC A, mem
- · Specific example

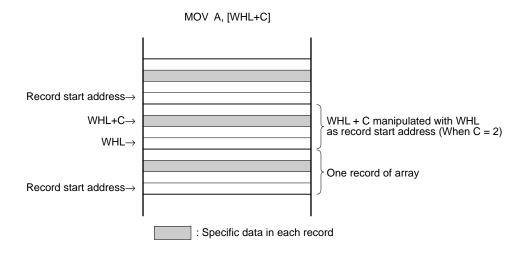
ADDC A, 4010H[DE]; When indexed addressing using the sum of register DE as mem and 04010H is selected

#### [Explanatory Diagram]



Note 15: When register is DE or HL 7: When register is A or B

#### 5.2.16 Based indexed addressing


#### [Function]

With this type of addressing, the register specified by the register specification code in the instruction word in the register bank specified by the register bank selection flag (RBS2, RBS1, RBS0) is used as the base register, and memory is addressed with the result of adding the value of a register specified in the same way to the contents of this base register as offset data. The addition is performed with the offset data extended to 24 bits as a positive number. A carry from the 24th bit is ignored.

The entire memory space can be addressed.

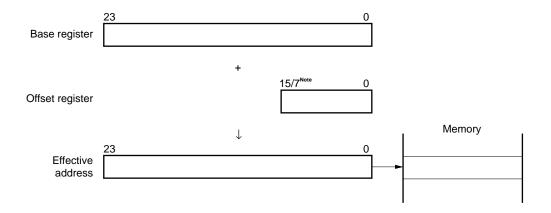
This type of addressing is used to specify in order data in an array in which one record consists of a number of bytes of data.

The A, B, and C registers used in this addressing vary according to the value of the RSS bit in the PSW. When RSS = 0, these registers are R1, R3, and R2 respectively, and when RSS = 1 they are R5, R7, and R6. RSS should only be set to 1 when using a 78K/III Series program.



### [Operand Format]

Performed when an instruction with one of the operand formats shown below is executed.


| Identifier | Description Format                                                                       |
|------------|------------------------------------------------------------------------------------------|
| mem        | [TDE + A], [TDE + B], [TDE + C], [WHL + A], [WHL + B], [WHL + C], [VVP + DE], [VVP + HL] |
| mem1       | [TDE + A], [TDE + B], [TDE + C], [WHL + A], [WHL + B], [WHL + C], [VVP + DE], [VVP + HL] |

#### [Description Example]

- General example AND A, mem
- · Specific example

AND A, [TDE+B]; When based addressing using the sum of register TDE as mem and register B is selected

# [Explanatory Diagram]



Note 15: When register is DE or HL 7: When register is A, B or C

This chapter shows the 78K/IV Series instruction set.

# 6.1 Legend

# (1) Operand identifiers and descriptions (1/2)

| Identifier                                                             | Description Format                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| r, r' Note 1 r1 Note 1 r2 r3 rp, rp' Note 2 rp1 Note 2 rp2 rg, rg' sfr | X(R0), A(R1), C(R2), B(R3), R4, R5, R6, R7, R8, R9, R10, R11, E(R12), D(R13), L(R14), H(R15) X(R0), A(R1), C(R2), B(R3), R4, R5, R6, R7 R8, R9, R10, R11, E(R12), D(R13), L(R14), H(R15) V, U, T, W AX(RP0), BC(RP1), RP2, RP3, VP(RP4), UP(RP5), DE(RP6), HL(RP7) AX(RP0), BC(RP1), RP2, RP3 VP(RP4), UP(RP5), DE(RP6), HL(RP7) VVP(RG4), UUP(RG5), TDE(RG6), WHL(RG7) Special function register symbol (see Special Function Register Application Table) Special function register symbol (register for which 16-bit operation is possible: see Special Function |
| Sp                                                                     | Register Application Table)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| post Note 2                                                            | Multiple descriptions of AX(RP0), BC(RP1), RP2, RP3, VP(RP4), UP(RP5)/PSW, DE(RP6) and HL(RP7) are permissible. However, UP is only used with PUSH/POP instructions, and PSW with PUSHU/POPU instructions.                                                                                                                                                                                                                                                                                                                                                         |
| mem                                                                    | [TDE], [WHL], [TDE +], [WHL +], [TDE -], [WHL -], [VVP], [UUP]: Register indirect addressing [TDE + byte], [WHL + byte], [SP + byte], [UUP + byte], [VVP + byte]: Based addressing imm24[A], imm24[B], imm24[DE], imm24[HL]: Indexed addressing [TDE + A], [TDE + B], [TDE + C], [WHL + A], [WHL + B], [WHL + C], [VVP + DE], [VVP + HL]: Based indexed addressing                                                                                                                                                                                                 |
| mem1                                                                   | All with [WHL +], [WHL –] excluded from mem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| mem2                                                                   | [TDE], [WHL]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| mem3                                                                   | [AX], [BC], [RP2], [RP3], [VVP], [UUP], [TDE], [WHL]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

- **Notes 1.** Setting the RSS bit to 1 enables R4 to R7 to be used as X, A, C, and B, but this function should only be used when using a 78K/III Series program.
  - 2. Setting the RSS bit to 1 enables RP2 and RP3 to be used as AX and BC, but this function should only be used when using a 78K/III Series program.

# (1) Operand identifiers and descriptions (2/2)

| Identifier      | Description Format                                                        |
|-----------------|---------------------------------------------------------------------------|
| Note            |                                                                           |
| saddr, saddr'   | FD20H to FF1FH immediate data or label                                    |
| saddr1, saddr1' | FE00H to FEFFH immediate data or label                                    |
| saddr2, saddr2' | FD20H to FDFFH, FF00H to FF1FH immediate data or label                    |
| saddrp          | FD20H to FF1EH immediate data or label (16-bit operation)                 |
| saddrp1         | FE00H to FEFEH immediate data or label (16-bit operation)                 |
| saddrp2         | FD20H to FDFFH, FF00H to FF1EH immediate data or label (16-bit operation) |
| saddrg          | FD20H to FEFDH immediate data or label (24-bit operation)                 |
| saddrg1         | FE00H to FEFDH immediate data or label (24-bit operation)                 |
| saddrg2         | FD20H to FDFFH immediate data or label (24-bit operation)                 |
| addr24          | 0H to FFFFFH immediate data or label                                      |
| addr20          | 0H to FFFFFH immediate data or label                                      |
| addr16          | 0H to FFFFH immediate data or label                                       |
| addr11          | 800H to FFFH immediate data or label                                      |
| addr8           | 0FE00H to 0FEFFH Note immediate data or label                             |
| addr5           | 40H to 7EH immediate data or label                                        |
| imm24           | 24-bit immediate data or label                                            |
| word            | 16-bit immediate data or label                                            |
| byte            | 8-bit immediate data or label                                             |
| bit             | 3-bit immediate data or label                                             |
| n               | 3-bit immediate data                                                      |
| locaddr         | 00H or 0FH                                                                |

Note The addresses shown here apply when 00H is specified by the LOCATION instruction. When 0FH is specified by the LOCATION instruction, F0000H should be added to the address values shown. The  $\mu$ PD784915 Subseries is fixed to the LOCATION instruction.

# (2) Operand column symbols

| Symbol | Description                    |
|--------|--------------------------------|
| +      | Auto-increment                 |
| -      | Auto-decrement                 |
| #      | Immediate data                 |
| !      | 16-bit absolute address        |
| !!     | 24-bit/20-bit absolute address |
| \$     | 8-bit relative address         |
| \$!    | 16-bit relative address        |
| /      | Bit inversion                  |
| [ ]    | Indirect addressing            |
| [% ]   | 24-bit indirect addressing     |

# (3) Flag column symbols

| Symbol  | Description                        |
|---------|------------------------------------|
| (Blank) | No change                          |
| 0       | Cleared to 0                       |
| 1       | Set to 1                           |
| х       | Set or cleared depending on result |
| Р       | P/V flag operates as parity flag   |
| V       | P/V flag operates as overflow flag |
| R       | Previously saved value is restored |

# (4) Operation field symbols

| Symbol  | Description                                                                                                                              |
|---------|------------------------------------------------------------------------------------------------------------------------------------------|
| jdisp8  | Signed two's complement data (8 bits) indicating relative address distance between start address of next instruction and branch address  |
| jdisp16 | Signed two's complement data (16 bits) indicating relative address distance between start address of next instruction and branch address |
| РСнw    | PC bits 16 to 19                                                                                                                         |
| PCLW    | PC bits 0 to 15                                                                                                                          |

#### (5) Number of bytes of instruction that includes mem in operands

| mem Mode        | Register Indire | ect Addressing | Based<br>Addressing | Indexed<br>Addressing | Based Indexed<br>Addressing |
|-----------------|-----------------|----------------|---------------------|-----------------------|-----------------------------|
| Number of bytes | 1               | 2 Note         | 3                   | 5                     | 2                           |

Note One-byte instruction only when [TDE], [WHL], [TDE +], [TDE -], [WHL +], or [WHL -] is written as mem in a MOV instruction .

# (6) Number of bytes of instruction that includes saddr, saddrp, r or rp in operands

In some instructions which include saddr, saddrp, r, rp as operands, the number of bytes is written divided into two with "/". Which number of bytes is to be used depends on the table below.

| Identifier | Number of Bytes: Left Side | Number of Bytes: Right Side |  |  |  |
|------------|----------------------------|-----------------------------|--|--|--|
| saddr      | saddr2                     | saddr1                      |  |  |  |
| saddrp     | saddrp2                    | saddrp1                     |  |  |  |
| r          | r1                         | r2                          |  |  |  |
| rp         | rp1                        | rp2                         |  |  |  |

# (7) Description of instructions that include mem in operands and string instructions

Operands TDE, WHL, VVP, and UUP (24-bit registers) can also be written as DE, HL, VP, and UP respectively. However, they are still treated as TDE, WHL, VVP, and UUP (24-bit registers) when written as DE, HL, VP, and UP.

# **6.2 List of Instruction Operations**

# (1) 8-bit data transfer instruction: MOV

| Mnemonic | Operands        | Operands Bytes | Operation                 | Flags |   |    |     |    |  |
|----------|-----------------|----------------|---------------------------|-------|---|----|-----|----|--|
|          |                 |                |                           | S     | Z | AC | P/V | CY |  |
| MOV      | r, #byte        | 2/3            | $r \leftarrow byte$       |       |   |    |     |    |  |
|          | saddr, #byte    | 3/4            | (saddr) ← byte            |       |   |    |     |    |  |
|          | sfr, #byte      | 3              | sfr ← byte                |       |   |    |     |    |  |
|          | !addr16, #byte  | 5              | (addr16) ← byte           |       |   |    |     |    |  |
|          | !!addr24, #byte | 6              | (addr24) ← byte           |       |   |    |     |    |  |
|          | r, r'           | 2/3            | r ← r'                    |       |   |    |     |    |  |
|          | A, r            | 1/2            | A ← r                     |       |   |    |     |    |  |
|          | A, saddr2       | 2              | A ← (saddr2)              |       |   |    |     |    |  |
|          | r, saddr        | 3              | $r \leftarrow (saddr)$    |       |   |    |     |    |  |
|          | saddr2, A       | 2              | (saddr2) ← A              |       |   |    |     |    |  |
|          | saddr, r        | 3              | (saddr) ← r               |       |   |    |     |    |  |
|          | A, sfr          | 2              | A ← sfr                   |       |   |    |     |    |  |
|          | r, sfr          | 3              | r ← sfr                   |       |   |    |     |    |  |
|          | sfr, A          | 2              | sfr ← A                   |       |   |    |     |    |  |
|          | sfr, r          | 3              | sfr ← r                   |       |   |    |     |    |  |
|          | saddr, saddr'   | 4              | (saddr) ← (saddr')        |       |   |    |     |    |  |
|          | r, !addr16      | 4              | $r \leftarrow (addr16)$   |       |   |    |     |    |  |
|          | !addr16, r      | 4              | (addr16) ← r              |       |   |    |     |    |  |
|          | r, !!addr24     | 5              | $r \leftarrow (addr24)$   |       |   |    |     |    |  |
|          | !!addr24, r     | 5              | (addr24) ← r              |       |   |    |     |    |  |
|          | A, [saddrp]     | 2/3            | $A \leftarrow ((saddrp))$ |       |   |    |     |    |  |
|          | A, [%saddrg]    | 3/4            | A ← ((saddrg))            |       |   |    |     |    |  |
|          | A, mem          | 1-5            | A ← (mem)                 |       |   |    |     |    |  |
|          | [saddrp], A     | 2/3            | ((saddrp)) ← A            |       |   |    |     |    |  |
|          | [%saddrg], A    | 3/4            | ((saddrg)) ← A            |       |   |    |     |    |  |
|          | mem, A          | 1-5            | (mem) ← A                 |       |   |    |     |    |  |
|          | PSWL, #byte     | 3              | PSW <sub>L</sub> ← byte   | ×     | × | ×  | ×   | ×  |  |
|          | PSWH, #byte     | 3              | PSW <sub>H</sub> ← byte   |       |   |    |     |    |  |
|          | PSWL, A         | 2              | PSWL ← A                  | ×     | × | ×  | ×   | ×  |  |
|          | PSWH, A         | 2              | PSW <sub>H</sub> ← A      |       |   |    |     |    |  |
|          | A, PSWL         | 2              | $A \leftarrow PSW_L$      |       |   |    |     |    |  |
|          | A, PSWH         | 2              | A ← PSW <sub>H</sub>      |       |   |    |     |    |  |
|          | r3, #byte       | 3              | r3 ← byte                 |       |   |    |     |    |  |
|          | A, r3           | 2              | A ← r3                    |       |   |    |     |    |  |
|          | r3, A           | 2              | r3 ← A                    |       |   |    |     |    |  |
|          | <u> </u>        |                |                           |       |   |    |     |    |  |

# (2) 16-bit data transfer instruction: MOVW

| Mnemonic | Operands        | Bytes | Operation                  |   |   | Flags    |
|----------|-----------------|-------|----------------------------|---|---|----------|
|          |                 |       |                            | S | Z | AC P/V C |
| MOVW     | rp, #word       | 3     | $rp \leftarrow word$       |   |   |          |
|          | saddrp, #word   | 4/5   | (saddrp) ← word            |   |   |          |
|          | sfrp, #word     | 4     | sfrp ← word                |   |   |          |
|          | !addr16, #word  | 6     | (addr16) ← word            |   |   |          |
|          | !!addr24, #word | 7     | (addr24) ← word            |   |   |          |
|          | rp, rp'         | 2     | rp ← rp'                   |   |   |          |
|          | AX, saddrp2     | 2     | AX ← (saddrp2)             |   |   |          |
|          | rp, saddrp      | 3     | $rp \leftarrow (saddrp)$   |   |   |          |
|          | saddrp2, AX     | 2     | (saddrp2) ← AX             |   |   |          |
|          | saddrp, rp      | 3     | (saddrp) ← rp              |   |   |          |
|          | AX, sfrp        | 2     | $AX \leftarrow sfrp$       |   |   |          |
|          | rp, sfrp        | 3     | rp ← sfrp                  |   |   |          |
|          | sfrp, AX        | 2     | sfrp ← AX                  |   |   |          |
|          | sfrp, rp        | 3     | sfrp ← rp                  |   |   |          |
|          | saddrp, saddrp' | 4     | (saddrp) ← (saddrp')       |   |   |          |
|          | rp, !addr16     | 4     | rp ← (addr16)              |   |   |          |
|          | !addr16, rp     | 4     | (addr16) ← rp              |   |   |          |
|          | rp, !!addr24    | 5     | rp ← (addr24)              |   |   |          |
|          | !!addr24, rp    | 5     | (addr24) ← rp              |   |   |          |
|          | AX, [saddrp]    | 3/4   | AX ← ((saddrp))            |   |   |          |
|          | AX, [%saddrg]   | 3/4   | $AX \leftarrow ((saddrg))$ |   |   |          |
|          | AX, mem         | 2-5   | $AX \leftarrow (mem)$      |   |   |          |
|          | [saddrp], AX    | 3/4   | ((saddrp)) ← AX            |   |   |          |
|          | [%saddrg], AX   | 3/4   | ((saddrg)) ← AX            |   |   |          |
|          | mem, AX         | 2-5   | $(mem) \leftarrow AX$      |   |   |          |

# (3) 24-bit data transfer instruction: MOVG

| Mnemonic | Operands       | Bytes | Operation                | Flags |   | Flags     |  | Flags |
|----------|----------------|-------|--------------------------|-------|---|-----------|--|-------|
|          |                |       |                          | S     | Z | AC P/V CY |  |       |
| MOVG     | rg, #imm24     | 5     | rg ← imm24               |       |   |           |  |       |
|          | rg, rg'        | 2     | rg ← rg'                 |       |   |           |  |       |
|          | rg, !!addr24   | 5     | rg ← (addr24)            |       |   |           |  |       |
|          | !!addr24, rg   | 5     | (addr24) ← rg            |       |   |           |  |       |
|          | rg, saddrg     | 3     | $rg \leftarrow (saddrg)$ |       |   |           |  |       |
|          | saddrg, rg     | 3     | (saddrg) ← rg            |       |   |           |  |       |
|          | WHL, [%saddrg] | 3/4   | WHL ← ((saddrg))         |       |   |           |  |       |
|          | [%saddrg], WHL | 3/4   | ((saddrg)) ← WHL         |       |   |           |  |       |
|          | WHL, mem1      | 2-5   | WHL ← (mem1)             |       |   |           |  |       |
|          | mem1, WHL      | 2-5   | (mem1) ← WHL             |       |   |           |  |       |

# (4) 8-bit data exchange instruction: XCH

| Mnemonic | Operands      | Bytes | Operation                          |   | Flags |           |  |  |
|----------|---------------|-------|------------------------------------|---|-------|-----------|--|--|
|          |               |       |                                    | S | Z     | AC P/V CY |  |  |
| хсн      | r, r'         | 2/3   | $r \leftrightarrow r'$             |   |       |           |  |  |
|          | A, r          | 1/2   | $A \leftrightarrow r$              |   |       |           |  |  |
|          | A, saddr2     | 2     | $A \leftrightarrow (saddr2)$       |   |       |           |  |  |
|          | r, saddr      | 3     | $r \leftrightarrow (saddr)$        |   |       |           |  |  |
|          | r, sfr        | 3     | $r \leftrightarrow sfr$            |   |       |           |  |  |
|          | saddr, saddr' | 4     | $(saddr) \leftrightarrow (saddr')$ |   |       |           |  |  |
|          | r, !addr16    | 4     | $r \leftrightarrow (addr16)$       |   |       |           |  |  |
|          | r, !!addr24   | 5     | $r \leftrightarrow (addr24)$       |   |       |           |  |  |
|          | A, [saddrp]   | 2/3   | $A \leftrightarrow ((saddrp))$     |   |       |           |  |  |
|          | A, [%saddrg]  | 3/4   | $A \leftrightarrow ((saddrg))$     |   |       |           |  |  |
|          | A, mem        | 2-5   | $A \leftrightarrow (mem)$          |   |       |           |  |  |

# (5) 16-bit data exchange instruction: XCHW

| Mnemonic | Operands        | Bytes | Operation                            |   | Flags |           |  |  |
|----------|-----------------|-------|--------------------------------------|---|-------|-----------|--|--|
|          |                 |       |                                      | S | Z     | AC P/V CY |  |  |
| XCHW     | rp, rp'         | 2     | $rp \leftrightarrow rp'$             |   |       |           |  |  |
|          | AX, saddrp2     | 2     | $AX \leftrightarrow (saddrp2)$       |   |       |           |  |  |
|          | rp, saddrp      | 3     | $rp \leftrightarrow (saddrp)$        |   |       |           |  |  |
|          | rp, sfrp        | 3     | $rp \leftrightarrow sfrp$            |   |       |           |  |  |
|          | AX, [saddrp]    | 3/4   | $AX \leftrightarrow ((saddrp))$      |   |       |           |  |  |
|          | AX, [%saddrg]   | 3/4   | $AX \leftrightarrow ((saddrg))$      |   |       |           |  |  |
|          | AX, !addr16     | 4     | AX ↔ (addr16)                        |   |       |           |  |  |
|          | AX, !!addr24    | 5     | AX ↔ (addr24)                        |   |       |           |  |  |
|          | saddrp, saddrp' | 4     | $(saddrp) \leftrightarrow (saddrp')$ |   |       |           |  |  |
|          | AX, mem         | 2-5   | $AX \leftrightarrow (mem)$           |   |       | _         |  |  |

# (6) 8-bit operation instructions: ADD, ADDC, SUB, SUBC, CMP, AND, OR, XOR

| Mnemonic | Operands      | Bytes | Operation                         |   |   | Flag | s   |      |
|----------|---------------|-------|-----------------------------------|---|---|------|-----|------|
|          |               |       |                                   | S | Z | AC   | P/V | / CY |
| ADD      | A, #byte      | 2     | A, CY ← A + byte                  | × | × | ×    | ٧   | ×    |
|          | r, #byte      | 3     | $r, CY \leftarrow r + byte$       | × | × | ×    | ٧   | ×    |
|          | saddr, #byte  | 3/4   | (saddr), CY ← (saddr) + byte      | × | × | ×    | ٧   | ×    |
|          | sfr, #byte    | 4     | sfr, CY ← sfr + byte              | × | × | ×    | V   | ×    |
|          | r, r'         | 2/3   | $r, CY \leftarrow r + r'$         | × | × | ×    | V   | ×    |
|          | A, saddr2     | 2     | A, CY ← A + (saddr2)              | × | × | ×    | V   | ×    |
|          | r, saddr      | 3     | $r, CY \leftarrow r + (saddr)$    | × | × | ×    | V   | ×    |
|          | saddr, r      | 3     | (saddr), CY ← (saddr) + r         | × | × | ×    | V   | ×    |
|          | r, sfr        | 3     | $r, CY \leftarrow r + sfr$        | × | × | ×    | ٧   | ×    |
|          | sfr, r        | 3     | $sfr, CY \leftarrow sfr + r$      | × | × | ×    | V   | ×    |
|          | saddr, saddr' | 4     | (saddr), CY ← (saddr) + (saddr')  | × | × | ×    | V   | ×    |
|          | A, [saddrp]   | 3/4   | $A, CY \leftarrow A + ((saddrp))$ | × | × | ×    | V   | ×    |
|          | A, [%saddrg]  | 3/4   | $A, CY \leftarrow A + ((saddrg))$ | × | × | ×    | V   | ×    |
|          | [saddrp], A   | 3/4   | ((saddrp)), CY ← ((saddrp)) + A   | × | × | ×    | ٧   | ×    |
|          | [%saddrg], A  | 3/4   | ((saddrg)), CY ← ((saddrg)) + A   | × | × | ×    | V   | ×    |
|          | A, !addr16    | 4     | A, CY ← A + (addr16)              | × | × | ×    | ٧   | ×    |
|          | A, !!addr24   | 5     | A, CY ← A + (addr24)              | × | × | ×    | V   | ×    |
|          | !addr16, A    | 4     | (addr16), CY ← (addr16) + A       | × | × | ×    | V   | ×    |
|          | !!addr24, A   | 5     | (addr24), CY ← (addr24) + A       | × | × | ×    | V   | ×    |
|          | A, mem        | 2-5   | A, CY ← A + (mem)                 | × | × | ×    | V   | ×    |
|          | mem, A        | 2-5   | (mem), CY ← (mem) + A             | × | × | ×    | ٧   | ×    |

| Mnemonic | Operands      | Bytes | Operation                              |   |   | Flag | s   |    |
|----------|---------------|-------|----------------------------------------|---|---|------|-----|----|
|          |               |       |                                        | S | Z | AC   | P/V | CY |
| ADDC     | A, #byte      | 2     | A, CY ← A + byte + CY                  | × | × | ×    | ٧   | ×  |
|          | r, #byte      | 3     | $r, CY \leftarrow r + byte + CY$       | × | × | ×    | ٧   | ×  |
|          | saddr, #byte  | 3/4   | (saddr), CY ← (saddr) + byte + CY      | × | × | ×    | ٧   | ×  |
|          | sfr, #byte    | 4     | sfr, CY ← sfr + byte + CY              | × | × | ×    | ٧   | ×  |
|          | r, r'         | 2/3   | $r, CY \leftarrow r + r' + CY$         | × | × | ×    | ٧   | ×  |
|          | A, saddr2     | 2     | A, CY ← A + (saddr2) + CY              | × | × | ×    | ٧   | ×  |
|          | r, saddr      | 3     | $r, CY \leftarrow r + (saddr) + CY$    | × | × | ×    | ٧   | ×  |
|          | saddr, r      | 3     | (saddr), CY ← (saddr) + r + CY         | × | × | ×    | ٧   | ×  |
|          | r, sfr        | 3     | $r, CY \leftarrow r + sfr + CY$        | × | × | ×    | ٧   | ×  |
|          | sfr, r        | 3     | $sfr, CY \leftarrow sfr + r + CY$      | × | × | ×    | ٧   | ×  |
|          | saddr, saddr' | 4     | (saddr), CY ← (saddr) + (saddr') + CY  | × | × | ×    | ٧   | ×  |
|          | A, [saddrp]   | 3/4   | $A, CY \leftarrow A + ((saddrp)) + CY$ | × | × | ×    | ٧   | ×  |
|          | A, [%saddrg]  | 3/4   | $A, CY \leftarrow A + ((saddrg)) + CY$ | × | × | ×    | ٧   | ×  |
|          | [saddrp], A   | 3/4   | ((saddrp)), CY ← ((saddrp)) + A + CY   | × | × | ×    | V   | ×  |
|          | [%saddrg], A  | 3/4   | ((saddrg)), CY ← ((saddrg)) + A + CY   | × | × | ×    | ٧   | ×  |
|          | A, !addr16    | 4     | $A, CY \leftarrow A + (addr16) + CY$   | × | × | ×    | ٧   | ×  |
|          | A, !!addr24   | 5     | $A, CY \leftarrow A + (addr24) + CY$   | × | × | ×    | ٧   | ×  |
|          | !addr16, A    | 4     | (addr16), CY ← (addr16) + A + CY       | × | × | ×    | ٧   | ×  |
|          | !!addr24, A   | 5     | (addr24), CY ← (addr24) + A + CY       | × | × | ×    | ٧   | ×  |
|          | A, mem        | 2-5   | $A, CY \leftarrow A + (mem) + CY$      | × | × | ×    | ٧   | ×  |
|          | mem, A        | 2-5   | (mem), CY ← (mem) + A + CY             | × | × | ×    | V   | ×  |

| Mnemonic | Operands      | Bytes | Operation                                  |   |   | Flag | s   |      |
|----------|---------------|-------|--------------------------------------------|---|---|------|-----|------|
|          |               |       |                                            | S | Z | AC   | P/V | / CY |
| SUB      | A, #byte      | 2     | A, $CY \leftarrow A - byte$                | × | × | ×    | ٧   | ×    |
|          | r, #byte      | 3     | $r, CY \leftarrow r - byte$                | × | × | ×    | ٧   | ×    |
|          | saddr, #byte  | 3/4   | (saddr), CY $\leftarrow$ (saddr) – byte    | × | × | ×    | V   | ×    |
|          | sfr, #byte    | 4     | sfr, CY ← sfr – byte                       | × | × | ×    | V   | ×    |
|          | r, r'         | 2/3   | $r, CY \leftarrow r - r'$                  | × | × | ×    | V   | ×    |
|          | A, saddr2     | 2     | A, CY ← A − (saddr2)                       | × | × | ×    | V   | ×    |
|          | r, saddr      | 3     | $r, CY \leftarrow r - (saddr)$             | × | × | ×    | ٧   | ×    |
|          | saddr, r      | 3     | (saddr), CY ← (saddr) - r                  | × | × | ×    | ٧   | ×    |
|          | r, sfr        | 3     | $r, CY \leftarrow r - sfr$                 | × | × | ×    | ٧   | ×    |
|          | sfr, r        | 3     | $sfr, CY \leftarrow sfr - r$               | × | × | ×    | ٧   | ×    |
|          | saddr, saddr' | 4     | (saddr), CY ← (saddr) − (saddr')           | × | × | ×    | ٧   | ×    |
|          | A, [saddrp]   | 3/4   | $A, CY \leftarrow A - ((saddrp))$          | × | × | ×    | ٧   | ×    |
|          | A, [%saddrg]  | 3/4   | $A, CY \leftarrow A - ((saddrg))$          | × | × | ×    | ٧   | ×    |
|          | [saddrp], A   | 3/4   | $((saddrp)), CY \leftarrow ((saddrp)) - A$ | × | × | ×    | ٧   | ×    |
|          | [%saddrg], A  | 3/4   | $((saddrg)), CY \leftarrow ((saddrg)) - A$ | × | × | ×    | V   | ×    |
|          | A, !addr16    | 4     | A, CY ← A − (addr16)                       | × | × | ×    | V   | ×    |
|          | A, !!addr24   | 5     | A, CY ← A − (addr24)                       | × | × | ×    | ٧   | ×    |
|          | !addr16, A    | 4     | (addr16), CY ← (addr16) – A                | × | × | ×    | V   | ×    |
|          | !!addr24, A   | 5     | (addr24), CY ← (addr24) − A                | × | × | ×    | V   | ×    |
|          | A, mem        | 2-5   | $A, CY \leftarrow A - (mem)$               | × | × | ×    | V   | ×    |
|          | mem, A        | 2-5   | (mem), $CY \leftarrow (mem) - A$           | × | × | ×    | ٧   | ×    |

| Mnemonic | Operands      | Bytes | Operation                                                               |   |   | Flag | s   |    |
|----------|---------------|-------|-------------------------------------------------------------------------|---|---|------|-----|----|
|          |               |       |                                                                         | s | Z | AC   | P/V | CY |
| SUBC     | A, #byte      | 2     | A, CY ← A − byte − CY                                                   | × | × | ×    | ٧   | ×  |
|          | r, #byte      | 3     | $r, CY \leftarrow r - byte - CY$                                        | × | × | ×    | ٧   | ×  |
|          | saddr, #byte  | 3/4   | (saddr), CY ← (saddr) – byte – CY                                       | × | × | ×    | ٧   | ×  |
|          | sfr, #byte    | 4     | sfr, CY ← sfr – byte – CY                                               | × | × | ×    | ٧   | ×  |
|          | r, r'         | 2/3   | $r, CY \leftarrow r - r' - CY$                                          | × | × | ×    | ٧   | ×  |
|          | A, saddr2     | 2     | $A, CY \leftarrow A - (saddr2) - CY$                                    | × | × | ×    | ٧   | ×  |
|          | r, saddr      | 3     | $r, CY \leftarrow r - (saddr) - CY$                                     | × | × | ×    | ٧   | ×  |
|          | saddr, r      | 3     | (saddr), CY ← (saddr) - r - CY                                          | × | × | ×    | ٧   | ×  |
|          | r, sfr        | 3     | $r, CY \leftarrow r - sfr - CY$                                         | × | × | ×    | ٧   | ×  |
|          | sfr, r        | 3     | $sfr, CY \leftarrow sfr - r - CY$                                       | × | × | ×    | ٧   | ×  |
|          | saddr, saddr' | 4     | $(saddr), CY \leftarrow (saddr) - (saddr') - CY$                        | × | × | ×    | ٧   | ×  |
|          | A, [saddrp]   | 3/4   | $A, CY \leftarrow A - ((saddrp)) - CY$                                  | × | × | ×    | ٧   | ×  |
|          | A, [%saddrg]  | 3/4   | $A, CY \leftarrow A - ((saddrg)) - CY$                                  | × | × | ×    | ٧   | ×  |
|          | [saddrp], A   | 3/4   | $((saddrp)), CY \leftarrow ((saddrp)) - A - CY$                         | × | × | ×    | ٧   | ×  |
|          | [%saddrg], A  | 3/4   | ((saddrg)), CY ← ((saddrg)) − A − CY                                    | × | × | ×    | ٧   | ×  |
|          | A, !addr16    | 4     | A, CY ← A − (addr16) − CY                                               | × | × | ×    | ٧   | ×  |
|          | A, !!addr24   | 5     | A, CY ← A − (addr24) − CY                                               | × | × | ×    | V   | ×  |
|          | !addr16, A    | 4     | (addr16), CY ← (addr16) – A – CY                                        | × | × | ×    | V   | ×  |
|          | !!addr24, A   | 5     | (addr24), CY ← (addr24) − A − CY                                        | × | × | ×    | V   | ×  |
|          | A, mem        | 2-5   | $A, CY \leftarrow A - (mem) - CY$                                       | × | × | ×    | V   | ×  |
|          | mem, A        | 2-5   | $(\text{mem}),\text{CY} \leftarrow (\text{mem}) - \text{A} - \text{CY}$ | × | × | ×    | ٧   | ×  |

| Mnemonic | Operands      | Bytes | Operation          |   |   | Flags |     |    |  |
|----------|---------------|-------|--------------------|---|---|-------|-----|----|--|
|          |               |       |                    | S | Z | AC    | P/V | CY |  |
| CMP      | A, #byte      | 2     | A – byte           | × | × | ×     | ٧   | ×  |  |
|          | r, #byte      | 3     | r – byte           | × | × | ×     | ٧   | ×  |  |
|          | saddr, #byte  | 3/4   | (saddr) - byte     | × | × | ×     | V   | ×  |  |
|          | sfr, #byte    | 4     | sfr – byte         | × | × | ×     | V   | ×  |  |
|          | r, r'         | 2/3   | r – r'             | × | × | ×     | ٧   | ×  |  |
|          | A, saddr2     | 2     | A – (saddr2)       | × | × | ×     | ٧   | ×  |  |
|          | r, saddr      | 3     | r - (saddr)        | × | × | ×     | ٧   | ×  |  |
|          | saddr, r      | 3     | (saddr) - r        | × | × | ×     | ٧   | ×  |  |
|          | r, sfr        | 3     | r – sfr            | × | × | ×     | ٧   | ×  |  |
|          | sfr, r        | 3     | sfr – r            | × | × | ×     | ٧   | ×  |  |
|          | saddr, saddr' | 4     | (saddr) - (saddr') | × | × | ×     | ٧   | ×  |  |
|          | A, [saddrp]   | 3/4   | A – ((saddrp))     | × | × | ×     | ٧   | ×  |  |
|          | A, [%saddrg]  | 3/4   | A – ((saddrg))     | × | × | ×     | ٧   | ×  |  |
|          | [saddrp], A   | 3/4   | ((saddrp)) - A     | × | × | ×     | ٧   | ×  |  |
|          | [%saddrg], A  | 3/4   | ((saddrg)) - A     | × | × | ×     | ٧   | ×  |  |
|          | A, !addr16    | 4     | A – (addr16)       | × | × | ×     | ٧   | ×  |  |
|          | A, !!addr24   | 5     | A - (addr24)       | × | × | ×     | ٧   | ×  |  |
|          | !addr16, A    | 4     | (addr16) - A       | × | × | ×     | ٧   | ×  |  |
|          | !!addr24, A   | 5     | (addr24) – A       | × | × | ×     | V   | ×  |  |
|          | A, mem        | 2-5   | A – (mem)          | × | × | ×     | ٧   | ×  |  |
|          | mem, A        | 2-5   | (mem) – A          | × | × | ×     | ٧   | ×  |  |

| Mnemonic | Operands      | Bytes | Operation                                   |   |   | Flags     |
|----------|---------------|-------|---------------------------------------------|---|---|-----------|
|          |               |       |                                             | s | Z | AC P/V CY |
| AND      | A, #byte      | 2     | $A \leftarrow A \land byte$                 | × | × | Р         |
|          | r, #byte      | 3     | $r \leftarrow r \land byte$                 | × | × | Р         |
|          | saddr, #byte  | 3/4   | $(saddr) \leftarrow (saddr) \land byte$     | × | × | Р         |
|          | sfr, #byte    | 4     | $sfr \leftarrow sfr \land byte$             | × | × | Р         |
|          | r, r'         | 2/3   | $r \leftarrow r \wedge r'$                  | × | × | Р         |
|          | A, saddr2     | 2     | $A \leftarrow A \land (saddr2)$             | × | × | Р         |
|          | r, saddr      | 3     | $r \leftarrow r \land (saddr)$              | × | × | Р         |
|          | saddr, r      | 3     | $(saddr) \leftarrow (saddr) \wedge r$       | × | × | Р         |
|          | r, sfr        | 3     | $r \leftarrow r \land sfr$                  | × | × | Р         |
|          | sfr, r        | 3     | $sfr \leftarrow sfr  \land  r$              | × | × | Р         |
|          | saddr, saddr' | 4     | $(saddr) \leftarrow (saddr) \land (saddr')$ | × | × | Р         |
|          | A, [saddrp]   | 3/4   | $A \leftarrow A \ \land \ ((saddrp))$       | × | × | Р         |
|          | A, [%saddrg]  | 3/4   | $A \leftarrow A \ \land \ ((saddrg))$       | × | × | Р         |
|          | [saddrp], A   | 3/4   | $((saddrp)) \leftarrow ((saddrp)) \land A$  | × | × | Р         |
|          | [%saddrg], A  | 3/4   | $((saddrg)) \leftarrow ((saddrg)) \land A$  | × | × | Р         |
|          | A, !addr16    | 4     | $A \leftarrow A \land (addr16)$             | × | × | Р         |
|          | A, !!addr24   | 5     | $A \leftarrow A \land (addr24)$             | × | × | Р         |
|          | !addr16, A    | 4     | $(addr16) \leftarrow (addr16) \land A$      | × | × | Р         |
|          | !!addr24, A   | 5     | $(addr24) \leftarrow (addr24) \land A$      | × | × | Р         |
|          | A, mem        | 2-5   | $A \leftarrow A \land (mem)$                | × | × | Р         |
|          | mem, A        | 2-5   | $(mem) \leftarrow (mem)  \land  A$          | × | × | Р         |

| Mnemonic | Operands      | Bytes | Operation                                  |   |   | Flags     |
|----------|---------------|-------|--------------------------------------------|---|---|-----------|
|          |               |       |                                            | S | Z | AC P/V CY |
| OR       | A, #byte      | 2     | $A \leftarrow A \lor byte$                 | × | × | Р         |
|          | r, #byte      | 3     | $r \leftarrow r \lor byte$                 | × | × | Р         |
|          | saddr, #byte  | 3/4   | $(saddr) \leftarrow (saddr) \lor byte$     | × | × | Р         |
|          | sfr, #byte    | 4     | $sfr \leftarrow sfr \ \lor \ byte$         | × | × | Р         |
|          | r, r'         | 2/3   | $r \leftarrow r \lor r'$                   | × | × | Р         |
|          | A, saddr2     | 2     | $A \leftarrow A \lor (saddr2)$             | × | × | Р         |
|          | r, saddr      | 3     | $r \leftarrow r \lor (saddr)$              | × | × | Р         |
|          | saddr, r      | 3     | $(saddr) \leftarrow (saddr) \ \lor \ r$    | × | × | Р         |
|          | r, sfr        | 3     | $r \leftarrow r \vee sfr$                  | × | × | Р         |
|          | sfr, r        | 3     | $sfr \leftarrow sfr \ \lor \ r$            | × | × | Р         |
|          | saddr, saddr' | 4     | $(saddr) \leftarrow (saddr) \lor (saddr')$ | × | × | Р         |
|          | A, [saddrp]   | 3/4   | $A \leftarrow A \lor ((saddrp))$           | × | × | Р         |
|          | A, [%saddrg]  | 3/4   | $A \leftarrow A \lor ((saddrg))$           | × | × | Р         |
|          | [saddrp], A   | 3/4   | $((saddrp)) \leftarrow ((saddrp)) \lor A$  | × | × | Р         |
|          | [%saddrg], A  | 3/4   | $((saddrg)) \leftarrow ((saddrg)) \lor A$  | × | × | Р         |
|          | A, !addr16    | 4     | $A \leftarrow A \lor (saddr16)$            | × | × | Р         |
|          | A, !!addr24   | 5     | $A \leftarrow A \lor (saddr24)$            | × | × | Р         |
|          | !addr16, A    | 4     | (addr16) ← (addr16) ∨ A                    | × | × | Р         |
|          | !!addr24, A   | 5     | (addr24) ← (addr24) ∨ A                    | × | × | Р         |
|          | A, mem        | 2-5   | $A \leftarrow A \ \lor \ (\text{mem})$     | × | × | Р         |
|          | mem, A        | 2-5   | $(mem) \leftarrow (mem) \ \lor \ A$        | × | × | Р         |

| Mnemonic | Operands      | Bytes | Operation                                         |   |   | Flags     |
|----------|---------------|-------|---------------------------------------------------|---|---|-----------|
|          |               |       |                                                   | S | Z | AC P/V CY |
| XOR      | A, #byte      | 2     | $A \leftarrow A \ \forall $ byte                  | × | × | Р         |
|          | r, #byte      | 3     | $r \leftarrow r \ \forall \ \text{byte}$          | × | × | Р         |
|          | saddr, #byte  | 3/4   | $(saddr) \leftarrow (saddr) \ \forall \ byte$     | × | × | Р         |
|          | sfr, #byte    | 4     | $sfr \leftarrow sfr \ \forall \ byte$             | × | × | Р         |
|          | r, r'         | 2/3   | $r \leftarrow r \ \forall \ r'$                   | × | × | Р         |
|          | A, saddr2     | 2     | $A \leftarrow A \ \forall \ (saddr2)$             | × | × | Р         |
|          | r, saddr      | 3     | $r \leftarrow r \ \forall \ (saddr)$              | × | × | Р         |
|          | saddr, r      | 3     | $(saddr) \leftarrow (saddr) \ \forall \ r$        | × | × | Р         |
|          | r, sfr        | 3     | $r \leftarrow r \ \forall \ sfr$                  | × | × | Р         |
|          | sfr, r        | 3     | $sfr \leftarrow sfr \ \forall \ r$                | × | × | Р         |
|          | saddr, saddr' | 4     | $(saddr) \leftarrow (saddr) \ \forall \ (saddr')$ | × | × | Р         |
|          | A, [saddrp]   | 3/4   | $A \leftarrow A \ \forall \ ((saddrp))$           | × | × | Р         |
|          | A, [%saddrg]  | 3/4   | $A \leftarrow A \ \forall \ ((saddrg))$           | × | × | Р         |
|          | [saddrp], A   | 3/4   | $((saddrp)) \leftarrow ((saddrp)) \ \forall \ A$  | × | × | Р         |
|          | [%saddrg], A  | 3/4   | $((saddrg)) \leftarrow ((saddrg)) \ \forall \ A$  | × | × | Р         |
|          | A, !addr16    | 4     | $A \leftarrow A \ \forall \ (addr16)$             | × | × | Р         |
|          | A, !!addr24   | 5     | $A \leftarrow A \ \forall \ (addr24)$             | × | × | Р         |
|          | !addr16, A    | 4     | $(addr16) \leftarrow (addr16) \ \forall \ A$      | × | × | Р         |
|          | !!addr24, A   | 5     | $(addr24) \leftarrow (addr24) \ \forall \ A$      | × | × | Р         |
|          | A, mem        | 2-5   | $A \leftarrow A \ \forall \ (mem)$                | × | × | Р         |
|          | mem, A        | 2-5   | $(mem) \leftarrow (mem) \ \forall \ A$            | × | × | Р         |

# (7) 16-bit operation instructions: ADDW, SUBW, CMPW

| Mnemonic | Operands        | Bytes | Operation                           |   |   | Flag | s   |      |
|----------|-----------------|-------|-------------------------------------|---|---|------|-----|------|
|          |                 |       |                                     | S | Z | AC   | P/\ | / CY |
| ADDW     | AX, #word       | 3     | $AX, CY \leftarrow AX + word$       | × | × | ×    | V   | ×    |
|          | rp, #word       | 4     | $rp, CY \leftarrow rp + word$       | × | × | ×    | V   | ×    |
|          | rp, rp'         | 2     | $rp, CY \leftarrow rp + rp'$        | × | × | ×    | V   | ×    |
|          | AX, saddrp2     | 2     | AX, CY ← AX + (saddrp2)             | × | × | ×    | V   | ×    |
|          | rp, saddrp      | 3     | $rp, CY \leftarrow rp + (saddrp)$   | × | × | ×    | V   | ×    |
|          | saddrp, rp      | 3     | (saddrp), CY ← (saddrp) + rp        | × | × | ×    | ٧   | ×    |
|          | rp, sfrp        | 3     | rp, CY ← rp + sfrp                  | × | × | ×    | V   | ×    |
|          | sfrp, rp        | 3     | $sfrp, CY \leftarrow sfrp + rp$     | × | × | ×    | ٧   | ×    |
|          | saddrp, #word   | 4/5   | (saddrp), CY ← (saddrp) + word      | × | × | ×    | ٧   | ×    |
|          | sfrp, #word     | 5     | $sfrp, CY \leftarrow sfrp + word$   | × | × | ×    | V   | ×    |
|          | saddrp, saddrp' | 4     | (saddrp), CY ← (saddrp) + (saddrp') | × | × | ×    | ٧   | ×    |
| SUBW     | AX, #word       | 3     | $AX, CY \leftarrow AX - word$       | × | × | ×    | V   | ×    |
|          | rp, #word       | 4     | $rp, CY \leftarrow rp - word$       | × | × | ×    | V   | ×    |
|          | rp, rp'         | 2     | $rp, CY \leftarrow rp - rp'$        | × | × | ×    | V   | ×    |
|          | AX, saddrp2     | 2     | AX, CY ← AX − (saddrp2)             | × | × | ×    | V   | ×    |
|          | rp, saddrp      | 3     | rp, CY ← rp − (saddrp)              | × | × | ×    | V   | ×    |
|          | saddrp, rp      | 3     | (saddrp), CY ← (saddrp) – rp        | × | × | ×    | V   | ×    |
|          | rp, sfrp        | 3     | rp, CY ← rp − sfrp                  | × | × | ×    | V   | ×    |
|          | sfrp, rp        | 3     | $sfrp, CY \leftarrow sfrp - rp$     | × | × | ×    | V   | ×    |
|          | saddrp, #word   | 4/5   | (saddrp), CY ← (saddrp) – word      | × | × | ×    | V   | ×    |
|          | sfrp, #word     | 5     | $sfrp, CY \leftarrow sfrp - word$   | × | × | ×    | V   | ×    |
|          | saddrp, saddrp' | 4     | (saddrp), CY ← (saddrp) − (saddrp') | × | × | ×    | V   | ×    |
| CMPW     | AX, #word       | 3     | AX – word                           | × | × | ×    | V   | ×    |
|          | rp, #word       | 4     | rp – word                           | × | × | ×    | V   | ×    |
|          | rp, rp'         | 2     | rp – rp'                            | × | × | ×    | V   | ×    |
|          | AX, saddrp2     | 2     | AX – (saddrp2)                      | × | × | ×    | V   | ×    |
|          | rp, saddrp      | 3     | rp - (saddrp)                       | × | × | ×    | V   | ×    |
|          | saddrp, rp      | 3     | (saddrp) - rp                       | × | × | ×    | ٧   | ×    |
|          | rp, sfrp        | 3     | rp – sfrp                           | × | × | ×    | V   | ×    |
|          | sfrp, rp        | 3     | sfrp – rp                           | × | × | ×    | V   | ×    |
|          | saddrp, #word   | 4/5   | (saddrp) - word                     | × | × | ×    | V   | ×    |
|          | sfrp, #word     | 5     | sfrp – word                         | × | × | ×    | V   | ×    |
|          | saddrp, saddrp' | 4     | (saddrp) – (saddrp')                | × | × | ×    | V   | ×    |

# (8) 24-bit operation instructions: ADDG, SUBG

| Mnemonic | Operands    | Bytes | Operation                    |   | ı | Flag | S   |    |
|----------|-------------|-------|------------------------------|---|---|------|-----|----|
|          |             |       |                              | S | Z | AC   | P/V | CY |
| ADDG     | rg, rg'     | 2     | $rg, CY \leftarrow rg + rg'$ | × | × | ×    | ٧   | ×  |
|          | rg, #imm24  | 5     | rg, CY ← rg + imm24          | × | × | ×    | ٧   | ×  |
|          | WHL, saddrg | 3     | WHL, CY ← WHL + (saddrg)     | × | × | ×    | ٧   | ×  |
| SUBG     | rg, rg'     | 2     | $rg, CY \leftarrow rg - rg'$ | × | × | ×    | ٧   | ×  |
|          | rg, #imm24  | 5     | rg, CY ← rg − imm24          | × | × | ×    | ٧   | ×  |
|          | WHL, saddrg | 3     | WHL, CY ← WHL − (saddrg)     | × | × | ×    | ٧   | ×  |

# (9) Multiplication instructions: MULU, MULUW, MULW, DIVUW, DIVUX

| Mnemonic | Operands | Bytes | Operation                                                          | Flags |            |  |  |
|----------|----------|-------|--------------------------------------------------------------------|-------|------------|--|--|
|          |          |       |                                                                    | S     | Z AC P/V C |  |  |
| MULU     | r        | 2/3   | $AX \leftarrow A \times r$                                         |       |            |  |  |
| MULUW    | rp       | 2     | AX (higher half), rp (lower half) $\leftarrow$ AX $\times$ rp      |       |            |  |  |
| MULW     | rp       | 2     | AX (higher half), rp (lower half) $\leftarrow$ AX $\times$ rp      |       |            |  |  |
| DIVUW    | r        | 2/3   | AX (quotient), r (remainder) $\leftarrow$ AX $\div$ r Note 1       |       |            |  |  |
| DIVUX    | rp       | 2     | AXDE (quotient), rp (remainder) $\leftarrow$ AXDE $\div$ rp Note 2 |       |            |  |  |

**Notes 1.** When r = 0,  $r \leftarrow X$ ,  $AX \leftarrow FFFFH$ 

**2.** When rp = 0,  $rp \leftarrow DE$ ,  $AXDE \leftarrow FFFFFFFH$ 

# (10) Special operation instructions: MACW, MACSW, SACW

| Mnemonic | Operands         | Bytes | Operation                                                                                                                                                                                                                                                                                      | Flags |   |    |     |    |
|----------|------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---|----|-----|----|
|          |                  |       |                                                                                                                                                                                                                                                                                                | S     | Z | AC | P/V | CY |
| MACW     | byte             | 3     | $\begin{aligned} AXDE &\leftarrow (B) \times (C) + AXDE,  B \leftarrow B + 2, \\ C &\leftarrow C + 2,  byte \leftarrow byte - 1 \\ End \ if \ (byte = 0 \ or \ P/V = 1) \end{aligned}$                                                                                                         | ×     | × | ×  | ٧   | ×  |
| MACSW    | byte             | 3     | $\begin{array}{l} AXDE \leftarrow (B) \times (C) + AXDE,  B \leftarrow B + 2, \\ C \leftarrow C + 2,  byte \leftarrow byte - 1 \\ if  byte = 0  then  End \\ if  P/V = 1  then  if  overflow  AXDE \leftarrow 7FFFFFFFH,  End \\ if   underflow  AXDE \leftarrow 800000000H,  End \end{array}$ | ×     | × | ×  | V   | ×  |
| SACW     | [TDE +], [WHL +] | 4     | $\begin{aligned} AX &\leftarrow   \; (TDE) - (WHL) \;   \; + \; AX, \\ TDE &\leftarrow TDE \; + \; 2, \; WHL \; \leftarrow \; WHL \; + \; 2 \\ C &\leftarrow C \; - \; 1 \; End \; if \; (C \; = \; 0 \; or \; CY \; = \; 1) \end{aligned}$                                                    | ×     | × | ×  | V   | ×  |

# (11) Increment/decrement instructions: INC, DEC, INCW, DECW, INCG, DECG

| Mnemonic | Operands | Bytes | Operation               |   | s |    |        |
|----------|----------|-------|-------------------------|---|---|----|--------|
|          |          |       |                         | S | Z | AC | P/V CY |
| INC      | r        | 1/2   | r ← r + 1               | × | × | ×  | V      |
|          | saddr    | 2/3   | (saddr) ← (saddr) + 1   | × | × | ×  | V      |
| DEC      | r        | 1/2   | r ← r − 1               | × | × | ×  | V      |
|          | saddr    | 2/3   | (saddr) ← (saddr) − 1   | × | × | ×  | V      |
| INCW     | rp       | 2/1   | rp ← rp + 1             |   |   |    |        |
|          | saddrp   | 3/4   | (saddrp) ← (saddrp) + 1 |   |   |    |        |
| DECW     | rp       | 2/1   | rp ← rp – 1             |   |   |    |        |
|          | saddrp   | 3/4   | (saddrp) ← (saddrp) − 1 |   |   |    |        |
| INCG     | rg       | 2     | rg ← rg + 1             |   |   |    |        |
| DECG     | rg       | 2     | rg ← rg − 1             |   |   |    |        |

# (12) Adjustment instructions: ADJBA, ADJBS, CVTBW

| Mnemonic | Operands | Bytes | Operation                                              | Flags |   |    |     |    |
|----------|----------|-------|--------------------------------------------------------|-------|---|----|-----|----|
|          |          |       |                                                        | S     | Z | AC | P/V | CY |
| ADJBA    |          | 2     | Decimal Adjust Accumulator after Addition              | ×     | × | ×  | Р   | ×  |
| ADJBS    |          | 2     | Decimal Adjust Accumulator after Subtract              | ×     | × | ×  | Р   | ×  |
| CVTBW    |          | 1     | $X \leftarrow A, A \leftarrow 00H \text{ if } A_7 = 0$ |       |   |    |     |    |
|          |          |       | $X \leftarrow A, A \leftarrow FFH \text{ if } A_7 = 1$ |       |   |    |     |    |

# (13) Shift/rotate instructions: ROR, ROL, RORC, ROLC, SHR, SHL, SHRW, SHLW, ROR4, ROL4

| Mnemonic | Operands | Bytes | Operation                                                                                                     |   |   | Flag | S   |    |
|----------|----------|-------|---------------------------------------------------------------------------------------------------------------|---|---|------|-----|----|
|          |          |       |                                                                                                               | S | Z | AC   | P/V | CY |
| ROR      | r, n     | 2/3   | (CY, $r_7 \leftarrow r_0$ , $r_{m-1} \leftarrow r_m$ ) x n $n = 0 - 7$                                        |   |   |      | Р   | ×  |
| ROL      | r, n     | 2/3   | $(CY, r_0 \leftarrow r_7, r_{m+1} \leftarrow r_m) \times n \qquad n = 0 - 7$                                  |   |   |      | Р   | ×  |
| RORC     | r, n     | 2/3   | $(CY \leftarrow r_0, r_7 \leftarrow CY, r_{m-1} \leftarrow r_m) \times n \qquad n = 0 - 7$                    |   |   |      | Р   | ×  |
| ROLC     | r, n     | 2/3   | $(CY \leftarrow r_7, r_0 \leftarrow CY, r_{m+1} \leftarrow r_m) \times n \qquad n = 0 - 7$                    |   |   |      | Р   | ×  |
| SHR      | r, n     | 2/3   | $(CY \leftarrow r_0, r_7 \leftarrow 0, r_{m-1} \leftarrow r_m) \times n \qquad n = 0-7$                       | × | × | 0    | Р   | ×  |
| SHL      | r, n     | 2/3   | $(CY \leftarrow r_7, r_0 \leftarrow 0, r_{m+1} \leftarrow r_m) \times n \qquad n = 0-7$                       | × | × | 0    | Р   | ×  |
| SHRW     | rp, n    | 2     | $(CY \leftarrow rp_0, rp_{15} \leftarrow 0, rp_{m-1} \leftarrow rp_m) \times n$<br>n = 0 - 7                  | × | × | 0    | Р   | ×  |
| SHLW     | rp, n    | 2     | $(CY \leftarrow rp_{15}, rp_0 \leftarrow 0, rp_{m+1} \leftarrow rp_m) \times n$<br>n = 0 - 7                  | × | × | 0    | Р   | ×  |
| ROR4     | mem3     | 2     | $A_{3-0} \leftarrow (mem3)_{3-0}, (mem3)_{7-4} \leftarrow A_{3-0},$<br>$(mem3)_{3-0} \leftarrow (mem3)_{7-4}$ |   |   |      |     |    |
| ROL4     | mem3     | 2     | $A_{3-0} \leftarrow (mem3)_{7-4}, (mem3)_{3-0} \leftarrow A_{3-0}, \\ (mem3)_{7-4} \leftarrow (mem3)_{3-0}$   |   |   |      |     |    |

## (14) Bit manipulation instructions: MOV1, AND1, OR1, XOR1, NOT1, SET1, CLR1

| Mnemonic | Operands          | Bytes | Operation                                       |   |   | Flag | s   |    |
|----------|-------------------|-------|-------------------------------------------------|---|---|------|-----|----|
|          |                   |       |                                                 | S | Z | AC   | P/V | CY |
| MOV1     | CY, saddr.bit     | 3/4   | CY ← (saddr.bit)                                |   |   |      |     | ×  |
|          | CY, sfr.bit       | 3     | CY ← sfr.bit                                    |   |   |      |     | ×  |
|          | CY, X.bit         | 2     | CY ← X.bit                                      |   |   |      |     | ×  |
|          | CY, A.bit         | 2     | CY ← A.bit                                      |   |   |      |     | ×  |
|          | CY, PSWL.bit      | 2     | CY ← PSWL.bit                                   |   |   |      |     | ×  |
|          | CY, PSWH.bit      | 2     | CY ← PSW <sub>H</sub> .bit                      |   |   |      |     | ×  |
|          | CY, !addr16.bit   | 5     | CY ← !addr16.bit                                |   |   |      |     | ×  |
|          | CY, !!addr24.bit  | 6     | CY ← !!addr24.bit                               |   |   |      |     | ×  |
|          | CY, mem2.bit      | 2     | CY ← mem2.bit                                   |   |   |      |     | ×  |
|          | saddr.bit, CY     | 3/4   | (saddr.bit) ← CY                                |   |   |      |     |    |
|          | sfr.bit, CY       | 3     | sfr.bit ← CY                                    |   |   |      |     |    |
|          | X.bit, CY         | 2     | X.bit ← CY                                      |   |   |      |     |    |
|          | A.bit, CY         | 2     | A.bit, ← CY                                     |   |   |      |     |    |
|          | PSWL.bit, CY      | 2     | PSW∟.bit ← CY                                   | × | × | ×    | ×   | ×  |
|          | PSWH.bit, CY      | 2     | PSW <sub>H</sub> .bit ← CY                      |   |   |      |     |    |
|          | !addr16.bit, CY   | 5     | !addr16.bit ← CY                                |   |   |      |     |    |
|          | !!addr24.bit, CY  | 6     | !!addr24.bit ← CY                               |   |   |      |     |    |
|          | mem2.bit, CY      | 2     | mem2.bit ← CY                                   |   |   |      |     |    |
| AND1     | CY, saddr.bit     | 3/4   | $CY \leftarrow CY \land (saddr.bit)$            |   |   |      |     | ×  |
|          | CY, /saddr.bit    | 3/4   | $CY \leftarrow CY \land \overline{(saddr.bit)}$ |   |   |      |     | ×  |
|          | CY, sfr.bit       | 3     | $CY \leftarrow CY \land sfr.bit$                |   |   |      |     | ×  |
|          | CY, /sfr.bit      | 3     | $CY \leftarrow CY \land \overline{sfr.bit}$     |   |   |      |     | ×  |
|          | CY, X.bit         | 2     | $CY \leftarrow CY \land X.bit$                  |   |   |      |     | ×  |
|          | CY, /X.bit        | 2     | $CY \leftarrow CY \wedge \overline{X.bit}$      |   |   |      |     | ×  |
|          | CY, A.bit         | 2     | $CY \leftarrow CY \land A.bit$                  |   |   |      |     | ×  |
|          | CY, /A.bit        | 2     | $CY \leftarrow CY \wedge \overline{A.bit}$      |   |   |      |     | ×  |
|          | CY, PSWL.bit      | 2     | $CY \leftarrow CY \land PSW_L.bit$              |   |   |      |     | ×  |
|          | CY, /PSWL.bit     | 2     | $CY \leftarrow CY \land \overline{PSW_L.bit}$   |   |   |      |     | ×  |
|          | CY, PSWH.bit      | 2     | $CY \leftarrow CY \land PSW_H.bit$              |   |   |      |     | ×  |
|          | CY, /PSWH.bit     | 2     | $CY \leftarrow CY \land \overline{PSW_H.bit}$   |   |   |      |     | ×  |
|          | CY, !addr16.bit   | 5     | CY ← CY ∧ !addr16.bit                           |   |   |      |     | ×  |
|          | CY, /!addr16.bit  | 5     | CY ← CY ∧ !addr16.bit                           |   |   |      |     | ×  |
|          | CY, !!addr24.bit  | 6     | CY ← CY ∧ !!addr24.bit                          |   |   |      |     | ×  |
|          | CY, /!!addr24.bit | 6     | CY ← CY ∧ !!addr24.bit                          |   |   |      |     | ×  |
|          | CY, mem2.bit      | 2     | $CY \leftarrow CY \land mem2.bit$               |   |   |      |     | ×  |
|          | CY, /mem2.bit     | 2     | CY ← CY ∧ mem2.bit                              |   |   |      |     | ×  |

| Mnemonic | Operands          | Bytes | Operation                                       |   |   | FI       | ags   |      |
|----------|-------------------|-------|-------------------------------------------------|---|---|----------|-------|------|
|          |                   |       |                                                 | S | Z | <u> </u> | AC P/ | /V C |
| OR1      | CY, saddr.bit     | 3/4   | $CY \leftarrow CY \lor (saddr.bit)$             |   |   |          |       | ×    |
|          | CY, /saddr.bit    | 3/4   | $CY \leftarrow CY \lor \overline{(saddr.bit)}$  |   |   |          |       | ×    |
|          | CY, sfr.bit       | 3     | $CY \leftarrow CY \lor sfr.bit$                 |   |   |          |       | ×    |
|          | CY, /sfr.bit      | 3     | $CY \leftarrow CY \lor \overline{sfr.bit}$      |   |   |          |       | ×    |
|          | CY, X.bit         | 2     | $CY \leftarrow CY \lor X.bit$                   |   |   |          |       | ×    |
|          | CY, /X.bit        | 2     | $CY \leftarrow CY \vee \overline{X.bit}$        |   |   |          |       | ×    |
|          | CY, A.bit         | 2     | $CY \leftarrow CY \lor A.bit$                   |   |   |          |       | ×    |
|          | CY, /A.bit        | 2     | $CY \leftarrow CY \lor \overline{A.bit}$        |   |   |          |       | ×    |
|          | CY, PSWL.bit      | 2     | $CY \leftarrow CY \lor PSW$ L.bit               |   |   |          |       | ×    |
|          | CY, /PSWL.bit     | 2     | $CY \leftarrow CY \lor \overline{PSW_L.bit}$    |   |   |          |       | ×    |
|          | CY, PSWH.bit      | 2     | $CY \leftarrow CY \lor PSW_H.bit$               |   |   |          |       | ×    |
|          | CY, /PSWH.bit     | 2     | $CY \leftarrow CY \lor \overline{PSW_{H.bit}}$  |   |   |          |       | ×    |
|          | CY, !addr16.bit   | 5     | CY ← CY ∨ !addr16.bit                           |   |   |          |       | ×    |
|          | CY, /!addr16.bit  | 5     | $CY \leftarrow CY \lor \overline{ addr16.bit }$ |   |   |          |       | ×    |
|          | CY, !!addr24.bit  | 6     | CY ← CY ∨ !!addr24.bit                          |   |   |          |       | ×    |
|          | CY, /!!addr24.bit | 6     | CY ← CY ∨ !!addr24.bit                          |   |   |          |       | ×    |
|          | CY, mem2.bit      | 2     | $CY \leftarrow CY \lor mem2.bit$                |   |   |          |       | ×    |
|          | CY, /mem2.bit     | 2     | CY ← CY ∨ mem2.bit                              |   |   |          |       | ×    |
| XOR1     | CY, saddr.bit     | 3/4   | $CY \leftarrow CY \ \forall \ (saddr.bit)$      |   |   |          |       | ×    |
|          | CY, sfr.bit       | 3     | $CY \leftarrow CY \ \forall \ \text{sfr.bit}$   |   |   |          |       | ×    |
|          | CY, X.bit         | 2     | $CY \leftarrow CY \ \forall \ X.bit$            |   |   |          |       | ×    |
|          | CY, A.bit         | 2     | $CY \leftarrow CY \ \forall \ A.bit$            |   |   |          |       | ×    |
|          | CY, PSWL.bit      | 2     | $CY \leftarrow CY \ \forall \ PSW_L.bit$        |   |   |          |       | ×    |
|          | CY, PSWH.bit      | 2     | $CY \leftarrow CY \ \forall \ PSW_H.bit$        |   |   |          |       | ×    |
|          | CY, !addr16.bit   | 5     | CY ← CY ∀ !addr16.bit                           |   |   |          |       | ×    |
|          | CY, !!addr24.bit  | 6     | CY ← CY ∀ !!addr24.bit                          |   |   |          |       | ×    |
|          | CY, mem2.bit      | 2     | $CY \leftarrow CY \ \forall \ mem2.bit$         |   |   |          |       | ×    |
| NOT1     | saddr.bit         | 3/4   | (saddr.bit) ← (saddr.bit)                       |   |   |          |       |      |
|          | sfr.bit           | 3     | $sfr.bit \leftarrow \overline{sfr.bit}$         |   |   |          |       |      |
|          | X.bit             | 2     | $X.bit \leftarrow \overline{X.bit}$             |   |   |          |       |      |
|          | A.bit             | 2     | $A.bit \leftarrow \overline{A.bit}$             |   |   |          |       |      |
|          | PSWL.bit          | 2     | $PSWL.bit \leftarrow \overline{PSWL.bit}$       | × | × | (        | × ×   | < ×  |
|          | PSWH.bit          | 2     | $PSWH.bit \leftarrow \overline{PSWh.bit}$       |   |   |          |       |      |
|          | !addr16.bit       | 5     | !addr16.bit ← !addr16.bit                       |   |   |          |       |      |
|          | !!addr24.bit      | 6     | !!addr24.bit ← !!addr24.bit                     |   |   |          |       |      |
|          | mem2.bit          | 2     | mem2.bit ← mem2.bit                             |   |   |          |       |      |
|          | CY                | 1     | $CY \leftarrow \overline{CY}$                   |   |   |          |       | ×    |

| Mnemonic | Operands     | Bytes | Operation                 |   |   | Flag | s   |    |
|----------|--------------|-------|---------------------------|---|---|------|-----|----|
|          |              |       |                           | S | Z | AC   | P/V | CY |
| SET1     | saddr.bit    | 2/3   | (saddr.bit) ← 1           |   |   |      |     |    |
|          | sfr.bit      | 3     | sfr.bit ← 1               |   |   |      |     |    |
|          | X.bit        | 2     | X.bit ← 1                 |   |   |      |     |    |
|          | A.bit        | 2     | A.bit ← 1                 |   |   |      |     |    |
|          | PSWL.bit     | 2     | PSW∟.bit ← 1              | × | × | ×    | ×   | ×  |
|          | PSWH.bit     | 2     | PSW <sub>H</sub> .bit ← 1 |   |   |      |     |    |
|          | !addr16.bit  | 5     | !addr16.bit ← 1           |   |   |      |     |    |
|          | !!addr24.bit | 6     | !!addr24.bit ← 1          |   |   |      |     |    |
|          | mem2.bit     | 2     | mem2.bit ← 1              |   |   |      |     |    |
|          | CY           | 1     | CY ← 1                    |   |   |      |     | 1  |
| CLR1     | saddr.bit    | 2/3   | (saddr.bit) ← 0           |   |   |      |     |    |
|          | sfr.bit      | 3     | sfr.bit ← 0               |   |   |      |     |    |
|          | X.bit        | 2     | X.bit ← 0                 |   |   |      |     |    |
|          | A.bit        | 2     | A.bit ← 0                 |   |   |      |     |    |
|          | PSWL.bit     | 2     | PSW∟.bit ← 0              | × | × | ×    | ×   | ×  |
|          | PSWH.bit     | 2     | PSW <sub>H</sub> .bit ← 0 |   |   |      |     |    |
|          | !addr16.bit  | 5     | !addr16.bit ← 0           |   |   |      |     |    |
|          | !!addr24.bit | 6     | !!addr24.bit ← 0          |   |   |      |     |    |
|          | mem2.bit     | 2     | mem2.bit ← 0              |   |   |      |     |    |
|          | CY           | 1     | CY ← 0                    |   |   |      |     | 0  |

## (15) Stack manipulation instructions: PUSH, PUSHU, POP, POPU, MOVG, ADDWG, SUBWG, INCG, DECG

| Mnemonic     | Operands   | Bytes | Operation                                                                |   | F | lags | 3   |    |
|--------------|------------|-------|--------------------------------------------------------------------------|---|---|------|-----|----|
|              |            |       |                                                                          | S | Z | AC   | P/V | CY |
| PUSH Note 1  | PSW        | 1     | $(SP - 2) \leftarrow PSW, SP \leftarrow SP - 2$                          |   |   |      |     |    |
|              | sfrp       | 3     | $(SP - 2) \leftarrow sfrp, SP \leftarrow SP - 2$                         |   |   |      |     |    |
|              | sfr        | 3     | $(SP - 1) \leftarrow sfr, SP \leftarrow SP - 1$                          |   |   |      |     |    |
|              | post       | 2     | $\{(SP-2) \leftarrow post, SP \leftarrow SP-2\} \times m$ Note 2         |   |   |      |     |    |
|              | rg         | 2     | $(SP - 3) \leftarrow rg, SP \leftarrow SP - 3$                           |   |   |      |     |    |
| PUSHU Note 1 | post       | 2     | $\{(UUP-2)\leftarrow post,\ UUP\leftarrow UUP-2\}\times m$ Note 2        |   |   |      |     |    |
| POP Note 1   | PSW        | 1     | $PSW \leftarrow (SP),SP \leftarrow SP + 2$                               | R | R | R    | R   | R  |
|              | sfrp       | 3     | $sfrp \leftarrow (SP), SP \leftarrow SP + 2$                             |   |   |      |     |    |
|              | sfr        | 3     | $sfr \leftarrow (SP), SP \leftarrow SP + 1$                              |   |   |      |     |    |
|              | post       | 2     | $\{ post \leftarrow (SP), SP \leftarrow SP + 2 \} \times m$ Note 2       |   |   |      |     |    |
|              | rg         | 2     | $rg \leftarrow (SP), SP \leftarrow SP + 3$                               |   |   |      |     |    |
| POPU Note 1  | post       | 2     | $\{ post \leftarrow (UUP), \ UUP \leftarrow UUP + 2 \} \times m $ Note 2 |   |   |      |     |    |
| MOVG         | SP, #imm24 | 5     | SP ← imm24                                                               |   |   |      |     |    |
|              | SP, WHL    | 2     | SP ← WHL                                                                 |   |   |      |     |    |
|              | WHL, SP    | 2     | WHL ← SP                                                                 |   |   |      |     |    |
| ADDWG        | SP, #word  | 4     | $SP \leftarrow SP + word$                                                |   |   |      |     |    |
| SUBWG        | SP, #word  | 4     | $SP \leftarrow SP - word$                                                |   |   |      |     |    |
| INCG         | SP         | 2     | SP ← SP + 1                                                              |   |   |      |     |    |
| DECG         | SP         | 2     | SP ← SP − 1                                                              |   |   |      |     |    |

Notes 1. For details about operation, refer to CHAPTER 3, Figure 3-4 Data Saved to Stack Area, and Figure 3-5 Data Restored from Stack Area.

2. m = number of registers specified by post

## (16) Call/return instructions: CALL, CALLF, CALLT, BRK, BRKCS, RET, RETI, RETB, RETCS, RETCSB

| Mnemonic   | Operands  | Bytes | Operation                                                                                                                                                                                         |   | ı | Flags | 5   |    |
|------------|-----------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|-------|-----|----|
|            |           |       |                                                                                                                                                                                                   | S | Z | AC    | P/V | CY |
| CALL Note  | !addr16   | 3     | $(SP - 3) \leftarrow (PC + 3), SP \leftarrow SP - 3,$<br>$PC_{HW} \leftarrow 0, PC_{LW} \leftarrow addr16$                                                                                        |   |   |       |     |    |
|            | !!addr20  | 4     | $(SP - 3) \leftarrow (PC + 4), SP \leftarrow SP - 3,$<br>PC $\leftarrow$ addr20                                                                                                                   |   |   |       |     |    |
|            | гр        | 2     | $(SP-3) \leftarrow (PC+2), SP \leftarrow SP-3,$<br>$PC_{HW} \leftarrow 0, PC_{LW} \leftarrow rp$                                                                                                  |   |   |       |     |    |
|            | rg        | 2     | $(SP - 3) \leftarrow (PC + 2), SP \leftarrow SP - 3,$<br>$PC \leftarrow rg$                                                                                                                       |   |   |       |     |    |
|            | [rp]      | 2     | $(SP-3) \leftarrow (PC+2), SP \leftarrow SP-3,$<br>$PC_{HW} \leftarrow 0, PC_{LW} \leftarrow (rp)$                                                                                                |   |   |       |     |    |
|            | [rg]      | 2     | $(SP - 3) \leftarrow (PC + 2), SP \leftarrow SP - 3,$<br>$PC \leftarrow (rg)$                                                                                                                     |   |   |       |     |    |
|            | \$!addr20 | 3     | $(SP - 3) \leftarrow (PC + 3), SP \leftarrow SP - 3,$<br>$PC \leftarrow PC + 3 + jdisp16$                                                                                                         |   |   |       |     |    |
| CALLF Note | !addr11   | 2     | $(SP - 3) \leftarrow (PC + 2), SP \leftarrow SP - 3$<br>$PC_{19-12} \leftarrow 0, PC_{11} \leftarrow 1, PC_{10-0} \leftarrow addr11$                                                              |   |   |       |     |    |
| CALLT Note | [addr5]   | 1     | $(SP-3) \leftarrow (PC+1), SP \leftarrow SP-3,$<br>$PC_{HW} \leftarrow 0, PC_{LW} \leftarrow (addr5)$                                                                                             |   |   |       |     |    |
| BRK        |           | 1     | $(SP-2) \leftarrow PSW, (SP-1)_{0-3} \leftarrow (PC+1)_{HW},$<br>$(SP-4) \leftarrow PC+1,$<br>$SP \leftarrow SP-4$<br>$PC_{HW} \leftarrow 0, PC_{LW} \leftarrow (003EH)$                          |   |   |       |     |    |
| BRKCS      | RBn       | 2     | $\begin{aligned} & PCLw \leftrightarrow RP2,  RP3 \leftarrow PSW,  RBS2 - 0 \leftarrow n, \\ & RSS \leftarrow 0,  IE \leftarrow 0,  RP38_{-11} \leftarrow PCHw,  PCHw \leftarrow 0 \end{aligned}$ |   |   |       |     |    |
| RET Note   |           | 1     | $PC \leftarrow (SP), SP \leftarrow SP + 3$                                                                                                                                                        |   |   |       |     |    |
| RETI Note  |           | 1     | $PC \leftarrow (SP), PSW \leftarrow (SP + 2), SP \leftarrow SP + 4$                                                                                                                               | R | R | R     | R   | R  |
| RETB Note  |           | 1     | $PC \leftarrow (SP), PSW \leftarrow (SP + 2), SP \leftarrow SP + 4$                                                                                                                               | R | R | R     | R   | R  |
| RETCS      | !addr16   | 3     | $\label{eq:psw} \begin{array}{l} PSW \leftarrow RP3, PC_LW \leftarrow RP2, RP2 \leftarrow addr16, \\ PC_HW \leftarrow RP3_{8-11} \end{array}$                                                     | R | R | R     | R   | R  |
| RETCSB     | !addr16   | 4     | $\label{eq:psw} \begin{array}{l} PSW \leftarrow RP3, PC_LW \leftarrow RP2, RP2 \leftarrow addr16, \\ PC_HW \leftarrow RP3_{8-11} \end{array}$                                                     | R | R | R     | R   | R  |

Note For details about operation, refer to CHAPTER 3, Figure 3-4 Data Saved to Stack Area, and Figure 3-5 Data Restored from Stack Area.

# (17) Unconditional branch instruction: BR

| Mnemonic | Operands  | Bytes | Operation                                 |   | ı | Flags     |
|----------|-----------|-------|-------------------------------------------|---|---|-----------|
|          |           |       |                                           | S | Z | AC P/V CY |
| BR       | !addr16   | 3     | PCнw ← 0, PCιw ← addr16                   |   |   |           |
|          | !!addr20  | 4     | PC ← addr20                               |   |   |           |
|          | rp        | 2     | $PCHW \leftarrow 0, PCLW \leftarrow rp$   |   |   |           |
|          | rg        | 2     | PC ← rg                                   |   |   |           |
|          | [rp]      | 2     | $PCHW \leftarrow 0, PCLW \leftarrow (rp)$ |   |   |           |
|          | [rg]      | 2     | PC ← (rg)                                 |   |   |           |
|          | \$addr20  | 2     | PC ← PC + 2 + jdisp8                      |   |   |           |
|          | \$!addr20 | 3     | PC ← PC + 3 + jdisp16                     |   |   |           |

# (18) Conditional branch instructions: BNZ, BNE, BZ, BE, BNC, BNL, BC, BL, BNV, BPO, BV, BPE, BP, BN, BLT, BGE, BLE, BGT, BNH, BH, BF, BT, BTCLR, BFSET, DBNZ

| Mnemonic | Operands               | Bytes | Operation                                                                      |   |   | Fla | ıgs     |    |
|----------|------------------------|-------|--------------------------------------------------------------------------------|---|---|-----|---------|----|
|          |                        |       |                                                                                | S | Z | Α   | C P/V ( | CY |
| BNZ      | \$addr20               | 2     | $PC \leftarrow PC + 2 + jdisp8 \text{ if } Z = 0$                              |   |   |     |         |    |
| BNE      |                        |       |                                                                                |   |   |     |         |    |
| BZ       | \$addr20               | 2     | $PC \leftarrow PC + 2 + jdisp8 \text{ if } Z = 1$                              |   |   |     |         |    |
| BE       |                        |       |                                                                                |   |   |     |         |    |
| BNC      | \$addr20               | 2     | $PC \leftarrow PC + 2 + jdisp8 \text{ if } CY = 0$                             |   |   |     |         |    |
| BNL      |                        |       |                                                                                |   |   |     |         |    |
| ВС       | \$addr20               | 2     | $PC \leftarrow PC + 2 + jdisp8 \text{ if } CY = 1$                             |   |   |     |         |    |
| BL       |                        |       |                                                                                |   |   |     |         |    |
| BNV      | \$addr20               | 2     | $PC \leftarrow PC + 2 + jdisp8 \text{ if } P/V = 0$                            |   |   |     |         |    |
| ВРО      |                        |       |                                                                                |   |   |     |         |    |
| BV       | \$addr20               | 2     | PC ← PC + 2 + jdisp8 if P/V = 1                                                |   |   |     |         |    |
| BPE      |                        |       |                                                                                |   |   |     |         |    |
| ВР       | \$addr20               | 2     | $PC \leftarrow PC + 2 + jdisp8 \text{ if } S = 0$                              |   |   |     |         |    |
| BN       | \$addr20               | 2     | PC ← PC + 2 + jdisp8 if S = 1                                                  |   |   |     |         |    |
| BLT      | \$addr20               | 3     | $PC \leftarrow PC + 3 + jdisp8 \text{ if } P/V \ \forall \ S = 1$              |   |   |     |         |    |
| BGE      | \$addr20               | 3     | $PC \leftarrow PC + 3 + jdisp8 \text{ if } P/V \ \forall \ S = 0$              |   |   |     |         |    |
| BLE      | \$addr20               | 3     | $PC \leftarrow PC + 3 + jdisp8 \text{ if } (P/V \ \forall \ S) \ \lor \ Z = 1$ |   |   |     |         |    |
| BGT      | \$addr20               | 3     | $PC \leftarrow PC + 3 + jdisp8 \text{ if } (P/V \ \forall \ S) \ \lor \ Z = 0$ |   |   |     |         |    |
| BNH      | \$addr20               | 3     | $PC \leftarrow PC + 3 + jdisp8 \text{ if } Z \lor CY = 1$                      |   |   |     |         |    |
| ВН       | \$addr20               | 3     | $PC \leftarrow PC + 3 + jdisp8 \text{ if } Z \lor CY = 0$                      |   |   |     |         |    |
| BF       | saddr.bit, \$addr20    | 4/5   | PC ← PC + 4 Note + jdisp8 if(saddr.bit) = 0                                    |   |   |     |         |    |
|          | sfr.bit, \$addr20      | 4     | $PC \leftarrow PC + 4 + jdisp8 \text{ if sfr.bit} = 0$                         |   |   |     |         |    |
|          | X.bit, \$addr20        | 3     | $PC \leftarrow PC + 3 + jdisp8 \text{ if } X.bit = 0$                          |   |   |     |         |    |
|          | A.bit, \$addr20        | 3     | PC ← PC + 3 + jdisp8 if A.bit = 0                                              |   |   |     |         |    |
|          | PSWL.bit, \$addr20     | 3     | PC ← PC + 3 + jdisp8 if PSWL.bit = 0                                           |   |   |     |         |    |
|          | PSWH.bit, \$addr20     | 3     | PC ← PC + 3 + jdisp8 if PSW <sub>H</sub> .bit = 0                              |   |   |     |         |    |
|          | !addr16.bit, \$addr20  | 6     | PC ← PC + 3 + jdisp8 if !addr16.bit = 0                                        |   |   |     |         |    |
|          | !!addr24.bit, \$addr20 | 7     | PC ← PC + 3 + jdisp8 if !!addr24.bit = 0                                       |   |   |     |         |    |
|          | mem2.bit, \$addr20     | 3     | PC ← PC + 3 + jdisp8 if mem2.bit = 0                                           |   | _ |     |         | _  |

**Note** When the number of bytes is 4; when 5, the operation is:  $PC \leftarrow PC + 5 + jdisp8$ .

| Mnemonic | Operands               | Bytes | Operation                                                                                                |   |   | Flags |       |
|----------|------------------------|-------|----------------------------------------------------------------------------------------------------------|---|---|-------|-------|
|          |                        |       |                                                                                                          | S | Z | AC P  | /V CY |
| ВТ       | saddr.bit, \$addr20    | 3/4   | PC ← PC + 3 Note 1 + jdisp8 if(saddr.bit) = 1                                                            |   |   |       |       |
|          | sfr.bit, \$addr20      | 4     | PC ← PC + 4 + jdisp8 if sfr.bit = 1                                                                      |   |   |       |       |
|          | X.bit, \$addr20        | 3     | PC ← PC + 3 + jdisp8 if X.bit = 1                                                                        |   |   |       |       |
|          | A.bit, \$addr20        | 3     | PC ← PC + 3 + jdisp8 if A.bit = 1                                                                        |   |   |       |       |
|          | PSWL.bit, \$addr20     | 3     | PC ← PC + 3 + jdisp8 if PSWL.bit = 1                                                                     |   |   |       |       |
|          | PSWH.bit, \$addr20     | 3     | PC ← PC + 3 + jdisp8 if PSW <sub>H</sub> .bit = 1                                                        |   |   |       |       |
|          | !addr16.bit, \$addr20  | 6     | PC ← PC + 3 + jdisp8 if !addr16.bit = 1                                                                  |   |   |       |       |
|          | !!addr24.bit, \$addr20 | 7     | PC ← PC + 3 + jdisp8 if !!addr24.bit = 1                                                                 |   |   |       |       |
|          | mem2.bit, \$addr20     | 3     | PC ← PC + 3 + jdisp8 if mem2.bit = 1                                                                     |   |   |       |       |
| BTCLR    | saddr.bit, \$addr20    | 4/5   | $\{PC \leftarrow PC + 4 \text{ Note 2} + \text{jdisp8, (saddr.bit)} \leftarrow 0\}$<br>if(saddr.bit) = 1 |   |   |       |       |
|          | sfr.bit, \$addr20      | 4     | $\{PC \leftarrow PC + 4 + jdisp8, sfr.bit \leftarrow 0\}$<br>if sfr.bit = 1                              |   |   |       |       |
|          | X.bit, \$addr20        | 3     | $\{PC \leftarrow PC + 3 + jdisp8, X.bit \leftarrow 0\}$ if X.bit = 1                                     |   |   |       |       |
|          | A.bit, \$addr20        | 3     | $\{PC \leftarrow PC + 3 + jdisp8, A.bit \leftarrow 0\}$ if $A.bit = 1$                                   |   |   |       |       |
|          | PSWL.bit, \$addr20     | 3     | $\{PC \leftarrow PC + 3 + jdisp8, PSW_L.bit \leftarrow 0\}$<br>if $PSW_L.bit = 1$                        | × | × | ×     | ××    |
|          | PSWH.bit, \$addr20     | 3     | {PC ← PC + 3 + jdisp8, PSW <sub>H</sub> .bit ← 0} if PSW <sub>H</sub> .bit = 1                           |   |   |       |       |
|          | !addr16.bit, \$addr20  | 6     | $\{PC \leftarrow PC + 3 + jdisp8, !addr16.bit \leftarrow 0\}$<br>if !addr16 = 1                          |   |   |       |       |
|          | !!addr24.bit, \$addr20 | 7     | $\{PC \leftarrow PC + 3 + jdisp8, !!addr24.bit \leftarrow 0\}$<br>if $!!addr24 = 1$                      |   |   |       |       |
|          | mem2.bit, \$addr20     | 3     | $\{PC \leftarrow PC + 3 + jdisp8, mem2.bit \leftarrow 0\}$<br>if mem2. bit = 1                           |   |   |       |       |

**Notes 1.** When the number of bytes is 3; when 4, the operation is:  $PC \leftarrow PC + 4 + jdisp8$ .

**2.** When the number of bytes is 4; when 5, the operation is:  $PC \leftarrow PC + 5 + jdisp8$ .

| Mnemonic | Operands               | Bytes | Operation                                                                                                  |   |   | Flag | s   |    |
|----------|------------------------|-------|------------------------------------------------------------------------------------------------------------|---|---|------|-----|----|
|          |                        |       |                                                                                                            | S | Z | AC   | P/V | CY |
| BFSET    | saddr.bit, \$addr20    | 4/5   | $\{PC \leftarrow PC + 4 \text{ Note } 1 + \text{ jdisp8, (saddr.bit)} \leftarrow 1\}$<br>if(saddr.bit) = 0 |   |   |      |     |    |
|          | sfr.bit, \$addr20      | 4     | $\{PC \leftarrow PC + 4 + jdisp8, sfr.bit \leftarrow 1\}$<br>if sfr.bit = 0                                |   |   |      |     |    |
|          | X.bit, \$addr20        | 3     | $\{PC \leftarrow PC + 3 + jdisp8, X.bit \leftarrow 1\}$ if X.bit = 0                                       |   |   |      |     |    |
|          | A.bit, \$addr20        | 3     | $\{PC \leftarrow PC + 3 + jdisp8, A.bit \leftarrow 1\}$ if $A.bit = 0$                                     |   |   |      |     |    |
|          | PSWL.bit, \$addr20     | 3     | $\{PC \leftarrow PC + 3 + jdisp8, PSWL.bit \leftarrow 1\}$<br>if $PSWL.bit = 0$                            | × | × | ×    | ×   | ×  |
|          | PSWH.bit, \$addr20     | 3     | {PC ← PC + 3 + jdisp8, PSW <sub>H</sub> .bit ← 1} if PSW <sub>H</sub> .bit = 0                             |   |   |      |     |    |
|          | !addr16.bit, \$addr20  | 6     | $\{PC \leftarrow PC + 3 + jdisp8, !addr16.bit \leftarrow 1\}$<br>if !addr16 = 0                            |   |   |      |     |    |
|          | !!addr24.bit, \$addr20 | 7     | $\{PC \leftarrow PC + 3 + jdisp8, !!addr24.bit \leftarrow 1\}$<br>if $!!addr24 = 0$                        |   |   |      |     |    |
|          | mem2.bit, \$addr20     | 3     | $\{PC \leftarrow PC + 3 + jdisp8, mem2.bit \leftarrow 1\}$<br>if mem2.bit = 0                              |   |   |      |     |    |
| DBNZ     | B, \$addr20            | 2     | $B \leftarrow B - 1$ , $PC \leftarrow PC + 2 + jdisp8$ if $B \neq 0$                                       |   |   |      |     |    |
|          | C, \$addr20            | 2     | $C \leftarrow C - 1$ , $PC \leftarrow PC + 2 + jdisp8$ if $C \neq 0$                                       |   |   |      |     |    |
|          | saddr, \$addr20        | 3/4   | (saddr) ← (saddr) – 1,<br>$PC \leftarrow PC + 3$ Note 2 + jdisp8 if (saddr) ≠ 0                            |   |   |      |     |    |

**Notes 1.** When the number of bytes is 4; when 5, the operation is:  $PC \leftarrow PC + 5 + jdisp8$ .

2. When the number of bytes is 3; when 4, the operation is:  $PC \leftarrow PC + 4 + jdisp8$ .

#### (19) CPU control instructions: MOV, LOCATION, SEL, SWRS, NOP, EI, DI

| Mnemonic | Operands    | Bytes | Operation                                                              |   |   | Flags    |    |
|----------|-------------|-------|------------------------------------------------------------------------|---|---|----------|----|
|          |             |       |                                                                        | S | Z | AC P/V C | Ϋ́ |
| MOV      | STBC, #byte | 4     | STBC ← byte                                                            |   |   |          |    |
|          | WDM, #byte  | 4     | WDM ← byte                                                             |   |   |          |    |
| LOCATION | locaddr     | 4     | SFR, internal data area location address high-order word specification |   |   |          |    |
| SEL      | RBn         | 2     | $RSS \leftarrow 0, RBS2 - 0 \leftarrow n$                              |   |   |          |    |
|          | RBn, ALT    | 2     | $RSS \leftarrow 1, RBS2 - 0 \leftarrow n$                              |   |   |          |    |
| SWRS     |             | 2     | $RSS \leftarrow \overline{RSS}$                                        |   |   |          |    |
| NOP      |             | 1     | No Operation                                                           |   |   |          |    |
| EI       |             | 1     | IE ← 1(Enable interrupt)                                               |   |   |          |    |
| DI       |             | 1     | IE ← 0(Disable interrupt)                                              |   |   |          |    |

#### (20) Special instructions: CHKL, CHKLA

| Mnemonic | Operands | Bytes | Operation                                             |   | F | Flags     |
|----------|----------|-------|-------------------------------------------------------|---|---|-----------|
|          |          |       |                                                       | S | Z | AC P/V CY |
| CHKL     | sfr      | 3     | (pin level) ∀ (output latch)                          | × | × | Р         |
| CHKLA    | sfr      | 3     | $A \leftarrow (pin level) \ \forall \ (output latch)$ | × | × | Р         |

- Caution The CHKL and CHKLA instructions are not available in the μPD784216, 784216Y, 784218, 784218Y, 784225, 784225Y, 784937 Subseries. Do not execute these instructions. If these instructions are executed, the following operations will result.
  - CHKL instruction ...... After the pin levels of the output pins are read two times, they are
    exclusive-ORed. As a result, if the pins checked with this instruction are
    used in the port output mode, the exclusive-OR result is always 0 for all
    bits, and the Z flag is set to (1).
  - CHKLA instruction .... After the pin levels of output pins are read two times, they are exclusive-ORed. As a result, if the pins checked with this instruction are used in the port output mode, the exclusive-OR result is always 0 for all bits, and the Z flag is set to (1) along with that the result is stored in the A register.

# (21) String instructions: MOVTBLW, MOVM, XCHM, MOVBK, XCHBK, CMPME, CMPMNE, CMPMNC, CMPBKE, CMPBKNE, CMPBKNC

| Mnemonic | Operands         | Bytes | Operation                                                                                                                        |   | F | -lag | S   |    |
|----------|------------------|-------|----------------------------------------------------------------------------------------------------------------------------------|---|---|------|-----|----|
|          |                  |       |                                                                                                                                  | S | Z | AC   | P/V | CY |
| MOVTBLW  | !addr8, byte     | 4     | $(addr8 + 2) \leftarrow (addr8)$ , byte $\leftarrow$ byte $-1$ , addr8 $\leftarrow$ addr8 $-2$ End if byte = 0                   |   |   |      |     |    |
| MOVM     | [TDE +], A       | 2     | $(TDE) \leftarrow A$ , $TDE \leftarrow TDE + 1$ , $C \leftarrow C - 1$ End if $C = 0$                                            |   |   |      |     |    |
|          | [TDE –], A       | 2     | $(TDE) \leftarrow A, TDE \leftarrow TDE - 1, C \leftarrow C - 1 End if C = 0$                                                    |   |   |      |     |    |
| XCHM     | [TDE +], A       | 2     | $(TDE) \leftrightarrow A$ , $TDE \leftarrow TDE + 1$ , $C \leftarrow C - 1$ End if $C = 0$                                       |   |   |      |     |    |
|          | [TDE –], A       | 2     | $(TDE) \leftrightarrow A$ , $TDE \leftarrow TDE - 1$ , $C \leftarrow C - 1$ End if $C = 0$                                       |   |   |      |     |    |
| MOVBK    | [TDE +], [WHL +] | 2     | $(TDE) \leftarrow (WHL), TDE \leftarrow TDE + 1,$ $WHL \leftarrow WHL + 1, C \leftarrow C - 1 End if C = 0$                      |   |   |      |     |    |
|          | [TDE –], [WHL –] | 2     | $(TDE) \leftarrow (WHL), TDE \leftarrow TDE - 1,$<br>$WHL \leftarrow WHL - 1, C \leftarrow C - 1 End if C = 0$                   |   |   |      |     |    |
| хснвк    | [TDE +], [WHL +] | 2     | (TDE) $\leftrightarrow$ (WHL), TDE $\leftarrow$ TDE + 1,<br>WHL $\leftarrow$ WHL + 1, C $\leftarrow$ C − 1 End if C = 0          |   |   |      |     |    |
|          | [TDE –], [WHL –] | 2     | (TDE) $\leftrightarrow$ (WHL), TDE $\leftarrow$ TDE − 1,<br>WHL $\leftarrow$ WHL − 1, C $\leftarrow$ C − 1 End if C = 0          |   |   |      |     |    |
| СМРМЕ    | [TDE +], A       | 2     | (TDE) – A, TDE $\leftarrow$ TDE + 1, C $\leftarrow$ C – 1 End if C = 0 or Z = 0                                                  | × | × | ×    | ٧   | ×  |
|          | [TDE –], A       | 2     | $(TDE)$ – A, $TDE \leftarrow TDE$ – 1, $C \leftarrow C$ – 1 End if $C = 0$ or $Z = 0$                                            | × | × | ×    | ٧   | ×  |
| СМРМИЕ   | [TDE +], A       | 2     | (TDE) – A, TDE $\leftarrow$ TDE + 1, C $\leftarrow$ C – 1 End if C = 0 or Z = 1                                                  | × | × | ×    | ٧   | ×  |
|          | [TDE –], A       | 2     | (TDE) – A, TDE $\leftarrow$ TDE – 1, C $\leftarrow$ C – 1 End if C = 0 or Z = 1                                                  | × | × | ×    | ٧   | ×  |
| СМРМС    | [TDE +], A       | 2     | (TDE) – A, TDE $\leftarrow$ TDE + 1, C $\leftarrow$ C – 1 End if C = 0 or CY = 0                                                 | × | × | ×    | ٧   | ×  |
|          | [TDE –], A       | 2     | (TDE) – A, TDE $\leftarrow$ TDE – 1, C $\leftarrow$ C – 1 End if C = 0 or CY = 0                                                 | × | × | ×    | ٧   | ×  |
| СМРМИС   | [TDE +], A       | 2     | (TDE) – A, TDE $\leftarrow$ TDE + 1, C $\leftarrow$ C – 1 End if C = 0 or CY = 1                                                 | × | × | ×    | ٧   | ×  |
|          | [TDE –], A       | 2     | (TDE) – A, TDE $\leftarrow$ TDE – 1, C $\leftarrow$ C – 1 End if C = 0 or CY = 1                                                 | × | × | ×    | ٧   | ×  |
| CMPBKE   | [TDE +], [WHL +] | 2     | (TDE) – (WHL), TDE $\leftarrow$ TDE + 1,<br>WHL $\leftarrow$ WHL + 1, C $\leftarrow$ C – 1 End if C = 0 or Z = 0                 | × | × | ×    | V   | ×  |
|          | [TDE –], [WHL –] | 2     | (TDE) – (WHL), TDE $\leftarrow$ TDE – 1,<br>WHL $\leftarrow$ WHL – 1, C $\leftarrow$ C – 1 End if C = 0 or Z = 0                 | × | × | ×    | V   | ×  |
| CMPBKNE  | [TDE +], [WHL +] | 2     | $(TDE) - (WHL), TDE \leftarrow TDE + 1,$<br>$WHL \leftarrow WHL + 1, C \leftarrow C - 1 End if C = 0 or Z = 1$                   | × | × | ×    | V   | ×  |
|          | [TDE –], [WHL –] | 2     | $(TDE) - (WHL), TDE \leftarrow TDE - 1,$<br>$WHL \leftarrow WHL - 1, C \leftarrow C - 1 \text{ End if } C = 0 \text{ or } Z = 1$ | × | × | ×    | V   | ×  |
| СМРВКС   | [TDE +], [WHL +] | 2     | $(TDE) - (WHL), TDE \leftarrow TDE + 1,$<br>$WHL \leftarrow WHL + 1, C \leftarrow C - 1 End if C = 0 or CY = 0$                  | × | × | ×    | V   | ×  |
|          | [TDE –], [WHL –] | 2     | $(TDE) - (WHL), TDE \leftarrow TDE - 1,$<br>$WHL \leftarrow WHL - 1, C \leftarrow C - 1$ End if $C = 0$ or $CY = 0$              | × | × | ×    | V   | ×  |
| CMPBKNC  | [TDE +], [WHL +] | 2     | $(TDE) - (WHL), TDE \leftarrow TDE + 1,$<br>$WHL \leftarrow WHL + 1, C \leftarrow C - 1 End if C = 0 or CY = 1$                  | × | × | ×    | V   | ×  |
|          | [TDE -], [WHL -] | 2     | $(TDE) - (WHL), TDE \leftarrow TDE - 1,$<br>$WHL \leftarrow WHL - 1, C \leftarrow C - 1 End if C = 0 or CY = 1$                  | × | × | ×    | V   | ×  |

#### 6.3 Instructions Listed by Type of Addressing

(1) 8-bit instructions (combinations expressed by writing A for r are shown in parentheses)

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, SHR, SHL, ROR4, ROL4, DBNZ, PUSH, POP, MOVM, XCHM, CMPME, CMPMNE, CMPMNC, CMPMC, MOVBK, XCHBK, CMPBKE, CMPBKNE, CMPBKNC, CMPBKC, CHKL, CHKLA

Table 6-1. List of Instructions by 8-Bit Addressing

| 2nd Operand                  | #byte               | А                                    | r                          | saddr                                            | sfr                          | !addr16                      | mem                      | r3           | [WHL +]                        | n          | No Note 2                    |
|------------------------------|---------------------|--------------------------------------|----------------------------|--------------------------------------------------|------------------------------|------------------------------|--------------------------|--------------|--------------------------------|------------|------------------------------|
| 1st Operand                  |                     |                                      | r'                         | saddr'                                           |                              | !!addr24                     | [saddrp]<br>[%saddrg]    | PSWL<br>PSWH | [WHL –]                        |            |                              |
| А                            | (MOV)<br>ADD Note 1 | (MOV)<br>(XCH)<br>(ADD) Note 1       | MOV<br>XCH<br>(ADD) Note 1 | (MOV) Note 6<br>(XCH) Note 6<br>(ADD) Notes 1, 6 | MOV<br>(XCH)<br>(ADD) Note 1 | (MOV)<br>(XCH)<br>ADD Note 1 | MOV<br>XCH<br>ADD Note 1 | MOV          | (MOV)<br>(XCH)<br>(ADD) Note 1 |            |                              |
| r                            | MOV<br>ADD Note 1   | (MOV)<br>(XCH)<br>(ADD) Note 1       | MOV<br>XCH<br>ADD Note 1   | MOV<br>XCH<br>ADD Note 1                         | MOV<br>XCH<br>ADD Note 1     | MOV<br>XCH                   |                          |              |                                | ROR Note 3 | MULU<br>DIVUW<br>INC<br>DEC  |
| saddr                        | MOV<br>ADD Note 1   | (MOV) Note 6<br>(ADD) Note 1         | MOV<br>ADD Note 1          | MOV<br>XCH<br>ADD Note 1                         |                              |                              |                          |              |                                |            | INC<br>DEC<br>DBNZ           |
| sfr                          | MOV<br>ADD Note 1   | MOV<br>(ADD) Note 1                  | MOV<br>ADD Note 1          |                                                  |                              |                              |                          |              |                                |            | PUSH<br>POP<br>CHKL<br>CHKLA |
| !addr16<br>!!addr24          | MOV                 | (MOV)<br>ADD Note 1                  | MOV                        |                                                  |                              |                              |                          |              |                                |            |                              |
| mem<br>[saddrp]<br>[%saddrg] |                     | MOV<br>ADD Note 1                    |                            |                                                  |                              |                              |                          |              |                                |            |                              |
| mem3                         |                     |                                      |                            |                                                  |                              |                              |                          |              |                                |            | ROR4<br>ROL4                 |
| r3<br>PSWL<br>PSWH           | MOV                 | MOV                                  |                            |                                                  |                              |                              |                          |              |                                |            |                              |
| B, C                         |                     |                                      |                            |                                                  |                              |                              |                          |              |                                |            | DBNZ                         |
| STBC, WDM                    | MOV                 |                                      |                            |                                                  |                              |                              |                          |              |                                |            |                              |
| [TDE +]<br>[TDE –]           |                     | (MOV)<br>(ADD) Note 1<br>MOVM Note 4 |                            |                                                  |                              |                              |                          |              | MOVBK Note 5                   |            |                              |

Notes 1. ADDC, SUB, SUBC, AND, OR, XOR, and CMP are equivalent to ADD.

- 2. There is no 2nd operand, or the 2nd operand is not an operand address.
- 3. ROL, RORC, ROLC, SHR, and SHL are equivalent to ROR.
- 4. XCHM, CMPME, CMPMNE, CMPMNC, and CMPMC are equivalent to MOVM.
- 5. XCHBK, CMPBKE, CMPBKNE, CMPBKNC, and CMPBKC are equvalent to MOVBK.
- 6. When saddr is saddr2 in this combination, a short code length instruction can be used.

(2) 16-bit instructions (combinations expressed by writing AX for rp are shown in parentheses)
MOVW, XCHW, ADDW, SUBW, CMPW, MULUW, MULW, DIVUX, INCW, DECW, SHRW, SHLW, PUSH, POP, ADDWG, SUBWG, PUSHU, POPU, MOVTBLW, MACW, MACSW, SACW

Table 6-2. List of Instructions by 16-Bit Addressing

| 2nd Operand                  | #word                 | AX                                | rp                                | saddrp                                              | sfrp                                       | !addr16        | mem                   | [WHL +]          | byte    | n            | No Note 2                    |
|------------------------------|-----------------------|-----------------------------------|-----------------------------------|-----------------------------------------------------|--------------------------------------------|----------------|-----------------------|------------------|---------|--------------|------------------------------|
| 1st Operand                  |                       |                                   | rp'                               | saddrp'                                             |                                            | !!addr24       | [saddrp]<br>[%saddrg] |                  |         |              |                              |
| AX                           | (MOVW)<br>ADDW Note 1 | (MOVW)<br>(XCHW)<br>(ADD) Note 1  | (MOVW)<br>(XCHW)<br>(ADDW) Note 1 | (MOVW) Note 3<br>(XCHW) Note 3<br>(ADDW) Notes 1, 3 | MOVW<br>(XCHW)<br>(ADDW) <sup>Note 1</sup> | (MOVW)<br>XCHW | MOVW<br>XCHW          | (MOVW)<br>(XCHW) |         |              |                              |
| rp                           | MOVW<br>ADDW Note 1   | (MOVW)<br>(XCHW)<br>(ADDW) Note 1 | MOVW<br>XCHW<br>ADDW Note 1       | MOVW<br>XCHW<br>ADDW Note 1                         | MOVW<br>XCHW<br>ADDW Note 1                | MOVW           |                       |                  |         | SHRW<br>SHLW | MULW Note 4 INCW DECW        |
| saddrp                       | MOVW<br>ADDW Note 1   | (MOVW) Note 3<br>(ADDW) Note 1    | MOVW<br>ADDW Note 1               | MOVW<br>XCHW<br>ADDW Note 1                         |                                            |                |                       |                  |         |              | INCW<br>DECW                 |
| sfrp                         | MOVW<br>ADDW Note 1   | MOVW<br>(ADDW) Note 1             | MOVW<br>ADDW Note 1               |                                                     |                                            |                |                       |                  |         |              | PUSH<br>POP                  |
| !addr16<br>!!addr24          | MOVW                  | (MOVW)                            | MOVW                              |                                                     |                                            |                |                       |                  | MOVTBLW |              |                              |
| mem<br>[saddrp]<br>[%saddrg] |                       | MOVW                              |                                   |                                                     |                                            |                |                       |                  |         |              |                              |
| PSW                          |                       |                                   |                                   |                                                     |                                            |                |                       |                  |         |              | PUSH<br>POP                  |
| SP                           | ADDWG<br>SUBWG        |                                   |                                   |                                                     |                                            |                |                       |                  |         |              |                              |
| post                         |                       |                                   |                                   |                                                     |                                            |                |                       |                  |         |              | PUSH<br>POP<br>PUSHU<br>POPU |
| [TDE +]                      |                       | (MOVW)                            |                                   |                                                     |                                            |                |                       | SACW             |         |              |                              |
| byte                         |                       |                                   |                                   |                                                     |                                            |                |                       |                  |         |              | MACW<br>MACSW                |

Notes 1. SUBW and CMPW are equivalent to ADDW.

- ${\bf 2.}\;\;$  There is no 2nd operand, or the 2nd operand is not an operand address.
- 3. When saddrp is saddrp2 in this combination, a short code length instruction can be used.
- 4. MULUW and DIVUX are equivalent to MULW.

(3) 24-bit instructions (combinations expressed by writing WHL for rg are shown in parentheses) MOVG, ADDG, SUBG, INCG, DECG, PUSH, POP

Table 6-3. List of Instructions by 24-Bit Addressing

| 2nd<br>Operand | #imm24                     | WHL                        | rg<br>rg' | saddrg                 | !!addr24 | mem1 | [%saddrg] | SP   | No Note                     |
|----------------|----------------------------|----------------------------|-----------|------------------------|----------|------|-----------|------|-----------------------------|
| 1st<br>Operand |                            |                            |           |                        |          |      |           |      |                             |
| WHL            | (MOVG)<br>(ADDG)<br>(SUBG) | (MOVG)<br>(ADDG)<br>(SUBG) | (ADDG)    | (MOVG)<br>ADDG<br>SUBG | (MOVG)   | MOVG | MOVG      | MOVG |                             |
| rg             | MOVG<br>ADDG<br>SUBG       | (MOVG)<br>(ADDG)<br>(SUBG) | ADDG      | MOVG                   | MOVG     |      |           |      | INCG<br>DECG<br>PUSH<br>POP |
| saddrg         |                            | (MOVG)                     | MOVG      |                        |          |      |           |      |                             |
| !!addr24       |                            | (MOVG)                     | MOVG      |                        |          |      |           |      |                             |
| mem1           |                            | MOVG                       |           |                        |          |      |           |      |                             |
| [%saddrg]      |                            | MOVG                       |           |                        |          |      |           |      |                             |
| SP             | MOVG                       | MOVG                       |           |                        |          |      |           |      | INCG<br>DECG                |

Note There is no 2nd operand, or the 2nd operand is not an operand address.

#### (4) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR, BFSET

Table 6-4. List of Instructions by Bit Manipulation Instruction Addressing

| 2nd Operand   | CY   | saddr.bit sfr.bit A.bit X.bit PSWL.bit PSWH.bit mem2.bit !addr16.bit | /mem2.bit<br>/!addr16.bit | No Note |
|---------------|------|----------------------------------------------------------------------|---------------------------|---------|
| 1st Operand \ |      | !!addr24.bit                                                         | /!!addr24.bit             |         |
| CY            |      | MOV1                                                                 | AND1                      | NOT1    |
|               |      | AND1                                                                 | OR1                       | SET1    |
|               |      | OR1                                                                  |                           | CLR1    |
|               |      | XOR1                                                                 |                           |         |
| saddr.bit     | MOV1 |                                                                      |                           | NOT1    |
| sfr.bit       |      |                                                                      |                           | SET1    |
| A.bit         |      |                                                                      |                           | CLR1    |
| X.bit         |      |                                                                      |                           | BF      |
| PSWL.bit      |      |                                                                      |                           | ВТ      |
| PSWH. bit     |      |                                                                      |                           | BTCLR   |
| mem2.bit      |      |                                                                      |                           | BFSET   |
| !addr16.bit   |      |                                                                      |                           |         |
| !!addr24.bit  |      |                                                                      |                           |         |

**Note** There is no 2nd operand, or the 2nd operand is not an operand address.

#### (5) Call/return instructions/branch instructions

CALL, CALLF, CALLT, BRK, RET, RETI, RETB, RETCS, RETCSB, BRKCS, BR, BNZ, BNE, BZ, BE, BNC, BNL, BC, BL, BNV, BPO, BV, BPE, BP, BN, BLT, BGE, BLE, BGT, BNH, BH, BF, BT, BTCLR, BFSET, DBNZ

Table 6-5. List of Instructions by Call/Return Instruction/Branch Instruction Addressing

| Instruction<br>Address Operand | \$addr20                           | \$!addr20  | !addr16                       | !!addr20   | rp         | rg         | [rp]       | [rg]       | !addr11 | [addr5] | RBn   | No                         |
|--------------------------------|------------------------------------|------------|-------------------------------|------------|------------|------------|------------|------------|---------|---------|-------|----------------------------|
| Basic instructions             | BC Note<br>BR                      | CALL<br>BR | CALL<br>BR<br>RETCS<br>RETCSB | CALL<br>BR | CALL<br>BR | CALL<br>BR | CALL<br>BR | CALL<br>BR | CALLF   | CALLT   | BRKCS | BRK<br>RET<br>RETI<br>RETB |
| Compound instructions          | BF<br>BT<br>BTCLR<br>BFSET<br>DBNZ |            |                               |            |            |            |            |            |         |         |       |                            |

**Note** BNZ, BNE, BZ, BE, BNC, BNL, BL, BNV, BPO, BV, BPE, BP, BN, BLT, BGE, BLE, BGT, BNH, and BH are equivalent to BC.

#### (6) Other instructions

ADJBA, ADJBS, CVTBW, LOCATION, SEL, NOT, EI, DI, SWRS

# 6.4 Operation Codes

## 6.4.1 Operation code symbols

## (1) r1

| R <sub>2</sub> | Rı | Ro | r1 |
|----------------|----|----|----|
| 0              | 0  | 0  | R0 |
| 0              | 0  | 1  | R1 |
| 0              | 1  | 0  | R2 |
| 0              | 1  | 1  | R3 |
| 1              | 0  | 0  | R4 |
| 1              | 0  | 1  | R5 |
| 1              | 1  | 0  | R6 |
| 1              | 1  | 1  | R7 |

## (2) r2

| R <sub>2</sub> | Rı | Ro | r2  |
|----------------|----|----|-----|
| 0              | 0  | 0  | R8  |
| 0              | 0  | 1  | R9  |
| 0              | 1  | 0  | R10 |
| 0              | 1  | 1  | R11 |
| 1              | 0  | 0  | R12 |
| 1              | 0  | 1  | R13 |
| 1              | 1  | 0  | R14 |
| 1              | 1  | 1  | R15 |

## (3) r, r'

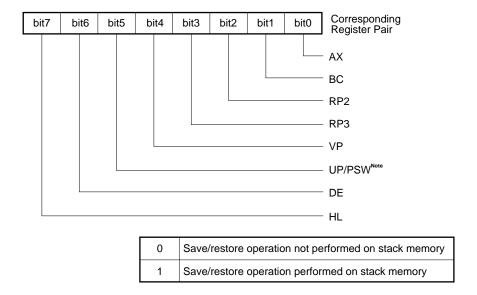
| Rз             | R <sub>2</sub> | R₁             | Ro | r   |
|----------------|----------------|----------------|----|-----|
| R <sub>7</sub> | R <sub>6</sub> | R <sub>5</sub> | R4 | r'  |
| 0              | 0              | 0              | 0  | R0  |
| 0              | 0              | 0              | 1  | R1  |
| 0              | 0              | 1              | 0  | R2  |
| 0              | 0              | 1              | 1  | R3  |
| 0              | 1              | 0              | 0  | R4  |
| 0              | 1              | 0              | 1  | R5  |
| 0              | 1              | 1              | 0  | R6  |
| 0              | 1              | 1              | 1  | R7  |
| 1              | 0              | 0              | 0  | R8  |
| 1              | 0              | 0              | 1  | R9  |
| 1              | 0              | 1              | 0  | R10 |
| 1              | 0              | 1              | 1  | R11 |
| 1              | 1              | 0              | 0  | R12 |
| 1              | 1              | 0              | 1  | R13 |
| 1              | 1              | 1              | 0  | R14 |
| 1              | 1              | 1              | 1  | R15 |

## (4) rp

| P <sub>7</sub> | P <sub>6</sub> | P <sub>5</sub> | rp  |
|----------------|----------------|----------------|-----|
|                |                |                |     |
| 0              | 0              | 0              | RP0 |
| 0              | 0              | 1              | RP1 |
| 0              | 1              | 0              | RP2 |
| 0              | 1              | 1              | RP3 |
| 1              | 0              | 0              | RP4 |
| 1              | 0              | 1              | RP5 |
| 1              | 1              | 0              | RP6 |
| 1              | 1              | 1              | RP7 |

# (5) rp, rp'

| P <sub>2</sub> | P <sub>1</sub> | P <sub>0</sub> | rp  |
|----------------|----------------|----------------|-----|
|                |                |                | rp' |
| 0              | 0              | 0              | RP0 |
| 0              | 0              | 1              | RP4 |
| 0              | 1              | 0              | RP1 |
| 0              | 1              | 1              | RP5 |
| 1              | 0              | 0              | RP2 |
| 1              | 0              | 1              | RP6 |
| 1              | 1              | 0              | RP3 |
| 1              | 1              | 1              | RP7 |


## (6) rg, rg'

| G <sub>6</sub> ( | <b>3</b> 5 | rg  |
|------------------|------------|-----|
| G <sub>2</sub> ( | G1         | rg' |
| 0                | 0          | RG4 |
| 0                | 1          | RG5 |
| 1                | 0          | RG6 |
| 1                | 1          | RG7 |

## (7) mem3

| P <sub>2</sub> | P1 | P <sub>0</sub> | mem3  |
|----------------|----|----------------|-------|
| 0              | 0  | 0              | [RP0] |
| 0              | 0  | 1              | [RG4] |
| 0              | 1  | 0              | [RP1] |
| 0              | 1  | 1              | [RG5] |
| 1              | 0  | 0              | [RP2] |
| 1              | 0  | 1              | [RG6] |
| 1              | 1  | 0              | [RP3] |
| 1              | 1  | 1              | [RG7] |

#### (8) post byte



**Note** UP in the case of a PUSH/POP instruction, PSW in the case of a PUSHU/POPU instruction.

#### (9) locaddr

| locaddr | locaddrl | locaddrh |
|---------|----------|----------|
| 0       | FEH      | 01H      |
| 0FH     | FFH      | 00H      |

## 6.4.2 List of operation codes

## (1) 8-bit data transfer instruction: MOV

| Mnemonic | Operands        |                                           | Operation Code                                                                                             |                                                                                                            |
|----------|-----------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
|          |                 | B1                                        | B2                                                                                                         | B3                                                                                                         |
|          |                 | B4                                        | B5                                                                                                         | B6                                                                                                         |
|          |                 | B7                                        |                                                                                                            |                                                                                                            |
| MOV      | r1, #byte       | 1 0 1 1 1 R <sub>2</sub> R <sub>1</sub> R | ← #byte →                                                                                                  |                                                                                                            |
|          | r2, #byte       | 0 0 1 1 1 1 0 0                           | 1 0 1 1 1 R <sub>2</sub> R <sub>1</sub> R <sub>0</sub>                                                     | $\leftarrow$ #byte $\rightarrow$                                                                           |
|          | saddr2, #byte   | 0 0 1 1 1 0 1 0                           | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   | $\leftarrow$ #byte $\rightarrow$                                                                           |
|          | saddr1, #byte   | 0 0 1 1 1 1 0 0                           | 0011 1010                                                                                                  | $\leftarrow$ Saddr1-offset $\rightarrow$                                                                   |
|          |                 | ← #byte -                                 | ,                                                                                                          |                                                                                                            |
|          | sfr, #byte      | 0 0 1 0 1 0 1 1                           | $\leftarrow$ Sfr-offset $\rightarrow$                                                                      | $\leftarrow$ #byte $\rightarrow$                                                                           |
|          | !addr16, #byte  | 0 0 0 0 1 0 0 1                           | 0100 0000                                                                                                  | $\leftarrow$ Low Address $\rightarrow$                                                                     |
|          |                 | ← High Address -                          | → #byte →                                                                                                  |                                                                                                            |
|          | !!addr24, #byte | 0000 1001                                 | 0101 0000                                                                                                  | ← High-w Address →                                                                                         |
|          |                 | ← Low Address -                           | ← High Address →                                                                                           | ← #byte →                                                                                                  |
|          | r, r1           | 0010 0100                                 | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 R <sub>2</sub> R <sub>1</sub> R <sub>0</sub> |                                                                                                            |
|          | r, r2           | 0 0 1 1 1 1 0 0                           | 0 0 1 0 0 1 0 0                                                                                            | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 R <sub>2</sub> R <sub>1</sub> R <sub>0</sub> |
|          | A, r1           | 1 1 0 1 0 R <sub>2</sub> R <sub>1</sub> R |                                                                                                            |                                                                                                            |
|          | A, r2           | 0 0 1 1 1 1 0 0                           | 1 1 0 1 0 R <sub>2</sub> R <sub>1</sub> R <sub>0</sub>                                                     |                                                                                                            |
|          | A, saddr2       | 0 0 1 0 0 0 0 0                           | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   |                                                                                                            |
|          | r, saddr2       | 0 0 1 1 1 0 0 0                           | R <sub>3</sub> R <sub>2</sub> R <sub>1</sub> R <sub>0</sub> 0 0 0 0                                        | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   |
|          | r, saddr1       | 0011 1000                                 | R <sub>3</sub> R <sub>2</sub> R <sub>1</sub> R <sub>0</sub> 0 0 0 1                                        | ← Saddr1-offset →                                                                                          |
|          | saddr2, A       | 0 0 1 0 0 0 1 0                           | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   |                                                                                                            |
|          | saddr2, r       | 0 0 1 1 1 0 0 0                           | R <sub>3</sub> R <sub>2</sub> R <sub>1</sub> R <sub>0</sub> 0 1 0 0                                        | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   |
|          | saddr1, r       | 0011 1000                                 | R <sub>3</sub> R <sub>2</sub> R <sub>1</sub> R <sub>0</sub> 0 1 0 1                                        | ← Saddr1-offset →                                                                                          |
|          | A, sfr          | 0 0 0 1 0 0 0 0                           | $\leftarrow$ Sfr-offset $\rightarrow$                                                                      |                                                                                                            |
|          | r, sfr          | 0011 1000                                 | R <sub>3</sub> R <sub>2</sub> R <sub>1</sub> R <sub>0</sub> 0 0 1 0                                        | $\leftarrow$ Sfr-offset $\rightarrow$                                                                      |
|          | sfr, A          | 0 0 0 1 0 0 1 0                           | $\leftarrow$ Sfr-offset $\rightarrow$                                                                      |                                                                                                            |
|          | sfr, r          | 0011 1000                                 | R <sub>3</sub> R <sub>2</sub> R <sub>1</sub> R <sub>0</sub> 0 1 1 0                                        | $\leftarrow$ Sfr-offset $\rightarrow$                                                                      |
|          | saddr2, saddr2' | 0010 1010                                 | 0000 0000                                                                                                  | $\leftarrow$ Saddr2'-offset $\rightarrow$                                                                  |
|          |                 | ← Saddr2-offset -                         | •                                                                                                          |                                                                                                            |
|          | saddr2, saddr1  | 0010 1010                                 | 0 0 0 1 0 0 0 0                                                                                            | $\leftarrow$ Saddr1-offset $\rightarrow$                                                                   |
|          |                 | ← Saddr2-offset -                         | •                                                                                                          |                                                                                                            |
|          | saddr1, saddr2  | 0010 1010                                 | 0010 0000                                                                                                  | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   |
|          |                 | ← Saddr1-offset -                         | ,                                                                                                          |                                                                                                            |

| Mnemonic | Operands                   |                                          |                                                                     |                                                                                   |
|----------|----------------------------|------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------|
|          |                            | B1                                       | B2                                                                  | В3                                                                                |
|          |                            | B4                                       | B5                                                                  | В6                                                                                |
|          |                            | В7                                       |                                                                     |                                                                                   |
| MOV      | saddr1, saddr1'            | 0 0 1 0 1 0 1 0                          | 0011 0000                                                           | $\leftarrow$ Saddr1'-offset $\rightarrow$                                         |
|          |                            | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                                     |                                                                                   |
|          | r, !addr16                 | 0 0 1 1 1 1 1 0<br>← High Address →      | R <sub>3</sub> R <sub>2</sub> R <sub>1</sub> R <sub>0</sub> 0 0 0 0 | $\leftarrow$ Low Address $ ightarrow$                                             |
|          | !addr16, r                 | 0 0 1 1 1 1 1 0<br>← High Address →      | R <sub>3</sub> R <sub>2</sub> R <sub>1</sub> R <sub>0</sub> 0 0 0 1 | $\leftarrow$ Low Address $\rightarrow$                                            |
|          | r, !!addr24                | 0 0 1 1 1 1 1 0<br>← Low Address →       | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                | ← High-w Address →                                                                |
|          | !!addr24, r                | 0 0 1 1 1 1 1 0                          | R <sub>3</sub> R <sub>2</sub> R <sub>1</sub> R <sub>0</sub> 0 0 1 1 | ← High-w Address →                                                                |
|          | A [aaddma0]                | ← Low Address →                          | ← High Address →                                                    |                                                                                   |
|          | A, [saddrp2]               | 0 0 0 1 1 0 0 0                          | ← Saddr2-offset →  0 0 0 1 1 0 0 0                                  | ← Saddr1-offset →                                                                 |
|          | A, [saddrp1] A, [%saddrg2] | 0 0 0 0 0 0 1 1 1                        | 0 0 1 1 0 0 0                                                       | $\leftarrow$ Saddr1-offset $\rightarrow$ $\leftarrow$ Saddr2-offset $\rightarrow$ |
|          | A, [%saddrg1]              | 0 0 1 1 1 1 0 0                          | 0 0 0 0 0 0 1 1 1                                                   | 0 0 1 1 0 0 0 0                                                                   |
|          |                            | ← Saddr1-offset →                        |                                                                     |                                                                                   |
|          | A, [TDE +]                 | 0 1 0 1 1 0 0 0                          |                                                                     |                                                                                   |
|          | A, [WHL +]                 | 0 1 0 1 1 0 0 1                          |                                                                     |                                                                                   |
|          | A, [TDE –]                 | 0 1 0 1 1 0 1 0                          |                                                                     |                                                                                   |
|          | A, [WHL –]                 | 0 1 0 1 1 0 1 1                          |                                                                     |                                                                                   |
|          | A, [TDE]                   | 0 1 0 1 1 1 0 0                          |                                                                     |                                                                                   |
|          | A, [WHL]                   | 0 1 0 1 1 1 0 1                          |                                                                     |                                                                                   |
|          | A, [VVP]                   | 0 0 0 1 0 1 1 0                          | 0 1 1 0 0 0 0 0                                                     |                                                                                   |
|          | A, [UUP]                   | 0 0 0 1 0 1 1 0                          | 0111 0000                                                           |                                                                                   |
|          | A, [TDE + byte]            | 0 0 0 0 0 1 1 0                          | 0000 0000                                                           | $\leftarrow$ Low Offset $\rightarrow$                                             |
|          | A, [SP + byte]             | 0 0 0 0 0 1 1 0                          | 0 0 0 1 0 0 0 0                                                     | ← Low Offset →                                                                    |
|          | A, [WHL + byte]            | 0 0 0 0 0 1 1 0                          | 0010 0000                                                           | $\leftarrow$ Low Offset $\rightarrow$                                             |
|          | A, [UUP + byte]            | 0 0 0 0 0 1 1 0                          | 0 0 1 1 0 0 0 0                                                     | ← Low Offset →                                                                    |
|          | A, [VVP + byte]            | 0 0 0 0 0 1 1 0                          | 0 1 0 0 0 0 0 0                                                     | ← Low Offset →                                                                    |
|          | A, imm24 [DE]              | 0 0 0 0 1 0 1 0<br>← High Offset →       | 0 0 0 0 0 0 0 0 0 0 0                                               | $\leftarrow$ Low Offset $ ightarrow$                                              |
|          | A, imm24 [A]               | 0 0 0 0 1 0 1 0<br>← High Offset →       | 0 0 0 1 0 0 0 0<br>← High-w Offset →                                | $\leftarrow$ Low Offset $\rightarrow$                                             |
|          | A, imm24 [HL]              | 0 0 0 0 1 0 1 0<br>← High Offset →       | 0 0 1 0 0 0 0 0<br>← High-w Offset →                                | $\leftarrow$ Low Offset $\rightarrow$                                             |

| Mnemonic | Operands        |                                          | Operation Code                           |                                          |
|----------|-----------------|------------------------------------------|------------------------------------------|------------------------------------------|
|          |                 | B1                                       | B2                                       | В3                                       |
|          |                 | B4                                       | B5                                       | В6                                       |
|          |                 | B7                                       |                                          |                                          |
| MOV      | A, imm24 [B]    | 0 0 0 0 1 0 1 0                          | 0 0 1 1 0 0 0 0                          | $\leftarrow$ Low Offset $\rightarrow$    |
|          |                 | $\leftarrow$ High Offset $\rightarrow$   | $\leftarrow$ High-w Offset $\rightarrow$ |                                          |
|          | A, [TDE + A]    | 0 0 0 1 0 1 1 1                          | 0 0 0 0 0 0 0 0                          |                                          |
|          | A, [WHL + A]    | 0 0 0 1 0 1 1 1                          | 0 0 0 1 0 0 0 0                          |                                          |
|          | A, [TDE + B]    | 0 0 0 1 0 1 1 1                          | 0 0 1 0 0 0 0 0                          |                                          |
|          | A, [WHL + B]    | 0 0 0 1 0 1 1 1                          | 0 0 1 1 0 0 0 0                          |                                          |
|          | A, [VVP + DE]   | 0 0 0 1 0 1 1 1                          | 0 1 0 0 0 0 0 0                          |                                          |
|          | A, [VVP + HL]   | 0 0 0 1 0 1 1 1                          | 0 1 0 1 0 0 0 0                          |                                          |
|          | A, [TDE + C]    | 0 0 0 1 0 1 1 1                          | 0 1 1 0 0 0 0 0                          |                                          |
|          | A, [WHL + C]    | 0 0 0 1 0 1 1 1                          | 0 1 1 1 0 0 0 0                          |                                          |
|          | [saddrp2], A    | 0 0 0 1 1 0 0 1                          | $\leftarrow$ Saddr2-offset $\rightarrow$ |                                          |
|          | [saddrp1], A    | 0 0 1 1 1 1 0 0                          | 0 0 0 1 1 0 0 1                          | $\leftarrow$ Saddr1-offset $\rightarrow$ |
|          | [%saddrg2], A   | 0 0 0 0 0 1 1 1                          | 1011 0000                                | $\leftarrow$ Saddr2-offset $\rightarrow$ |
|          | [%saddrg1], A   | 0011 1100                                | 0000 0111                                | 1011 0000                                |
|          |                 | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                          |                                          |
|          | [TDE +], A      | 0 1 0 1 0 0 0 0                          |                                          |                                          |
|          | [WHL +], A      | 0 1 0 1 0 0 0 1                          |                                          |                                          |
|          | [TDE –], A      | 0 1 0 1 0 0 1 0                          |                                          |                                          |
|          | [WHL –], A      | 0 1 0 1 0 0 1 1                          |                                          |                                          |
|          | [TDE], A        | 0 1 0 1 0 1 0 0                          |                                          |                                          |
|          | [WHL], A        | 0 1 0 1 0 1 0 1                          |                                          |                                          |
|          | [VVP], A        | 0 0 0 1 0 1 1 0                          | 1 1 1 0 0 0 0 0                          |                                          |
|          | [UUP], A        | 0 0 0 1 0 1 1 0                          | 1 1 1 1 0 0 0 0                          |                                          |
|          | [TDE + byte], A | 0 0 0 0 0 1 1 0                          | 1000 0000                                | $\leftarrow$ Low Offset $\rightarrow$    |
|          | [SP + byte], A  | 0 0 0 0 0 1 1 0                          | 1001 0000                                | $\leftarrow$ Low Offset $\rightarrow$    |
|          | [WHL + byte], A | 0 0 0 0 0 1 1 0                          | 1010 0000                                | $\leftarrow$ Low Offset $\rightarrow$    |
|          | [UUP + byte], A | 0 0 0 0 0 1 1 0                          | 1011 0000                                | $\leftarrow$ Low Offset $\rightarrow$    |
|          | [VVP + byte], A | 0 0 0 0 0 1 1 0                          | 1 1 0 0 0 0 0 0                          | $\leftarrow$ Low Offset $\rightarrow$    |
|          | imm24 [DE], A   | 0 0 0 0 1 0 1 0                          | 1000 0000                                | $\leftarrow$ Low Offset $\rightarrow$    |
|          |                 | $\leftarrow$ High Offset $\rightarrow$   | ← High-w Offset →                        |                                          |
|          | imm24 [A], A    | 0 0 0 0 1 0 1 0                          | 1 0 0 1 0 0 0 0                          | $\leftarrow$ Low Offset $\rightarrow$    |
|          |                 | ← High Offset →                          | ← High-w Offset →                        |                                          |
|          | imm24 [HL], A   | 0 0 0 0 1 0 1 0                          | 1010 0000                                | $\leftarrow$ Low Offset $\rightarrow$    |
|          |                 | ← High Offset →                          | ← High-w Offset →                        |                                          |

| Mnemonic | Operands      |         |                      | Operation | on Code              |          |            |               |
|----------|---------------|---------|----------------------|-----------|----------------------|----------|------------|---------------|
|          |               | E       | B1<br>B4             |           | 2                    | В3       |            |               |
|          |               | E       |                      |           | 5                    |          | В6         |               |
|          |               | Е       | 37                   |           |                      |          |            |               |
| MOV      | imm24 [B], A  | 0 0 0 0 | 1 0 1 0              | 1 0 1 1   | 0 0 0 0              | <b>←</b> | Low Offset | $\rightarrow$ |
|          |               | ← High  | Offset $\rightarrow$ | ← High-w  | Offset $\rightarrow$ |          |            |               |
|          | [TDE + A], A  | 0 0 0 1 | 0 1 1 1              | 1 0 0 0   | 0 0 0 0              |          |            |               |
|          | [WHL + A], A  | 0 0 0 1 | 0 1 1 1              | 1 0 0 1   | 0 0 0 0              |          |            |               |
|          | [TDE + B], A  | 0 0 0 1 | 0 1 1 1              | 1 0 1 0   | 0 0 0 0              |          |            |               |
|          | [WHL + B], A  | 0 0 0 1 | 0 1 1 1              | 1 0 1 1   | 0 0 0 0              |          |            |               |
|          | [VVP + DE], A | 0 0 0 1 | 0 1 1 1              | 1 1 0 0   | 0 0 0 0              |          |            |               |
|          | [VVP + HL], A | 0 0 0 1 | 0 1 1 1              | 1 1 0 1   | 0 0 0 0              |          |            |               |
|          | [TDE + C], A  | 0 0 0 1 | 0 1 1 1              | 1 1 1 0   | 0 0 0 0              |          |            |               |
|          | [WHL + C], A  | 0 0 0 1 | 0 1 1 1              | 1 1 1 1   | 0 0 0 0              |          |            |               |
|          | PSWL, #byte   | 0 0 1 0 | 1 0 1 1              | 1 1 1 1   | 1 1 1 0              | <b>←</b> | #byte      | $\rightarrow$ |
|          | PSWH, #byte   | 0 0 1 0 | 1 0 1 1              | 1 1 1 1   | 1 1 1 1              | <b>←</b> | #byte      | $\rightarrow$ |
|          | PSWL, A       | 0 0 0 1 | 0 0 1 0              | 1 1 1 1   | 1 1 1 0              |          |            |               |
|          | PSWH, A       | 0 0 0 1 | 0 0 1 0              | 1 1 1 1   | 1 1 1 1              |          |            |               |
|          | A, PSWL       | 0 0 0 1 | 0 0 0 0              | 1 1 1 1   | 1 1 1 0              |          |            |               |
|          | A, PSWH       | 0 0 0 1 | 0 0 0 0              | 1 1 1 1   | 1 1 1 1              |          |            |               |
|          | V, #byte      | 0 0 0 0 | 0 1 1 1              | 0 1 1 0   | 0 0 0 1              | ←        | #byte      | $\rightarrow$ |
|          | U, #byte      | 0 0 0 0 | 0 1 1 1              | 0 1 1 0   | 0 0 1 1              | <b>←</b> | #byte      | $\rightarrow$ |
|          | T, #byte      | 0 0 0 0 | 0 1 1 1              | 0 1 1 0   | 0 1 0 1              | <b>←</b> | #byte      | $\rightarrow$ |
|          | W, #byte      | 0 0 0 0 | 0 1 1 1              | 0 1 1 0   | 0 1 1 1              | <b>←</b> | #byte      | $\rightarrow$ |
|          | A, V          | 0 0 0 0 | 0 1 0 1              | 1 1 0 0   | 0 0 0 1              |          |            |               |
|          | A, U          | 0 0 0 0 | 0 1 0 1              | 1 1 0 0   | 0 0 1 1              |          |            |               |
|          | A, T          | 0 0 0 0 | 0 1 0 1              | 1 1 0 0   | 0 1 0 1              |          |            |               |
|          | A, W          | 0 0 0 0 | 0 1 0 1              | 1 1 0 0   | 0 1 1 1              |          |            |               |
|          | V, A          | 0 0 0 0 | 0 1 0 1              | 1 1 0 0   | 1 0 0 1              |          |            |               |
|          | U, A          | 0 0 0 0 | 0 1 0 1              | 1 1 0 0   | 1 0 1 1              |          |            |               |
|          | T, A          | 0 0 0 0 | 0 1 0 1              | 1 1 0 0   | 1 1 0 1              |          |            |               |
|          | W, A          | 0 0 0 0 | 0 1 0 1              | 1 1 0 0   | 1 1 1 1              |          |            |               |

## (2) 16-bit data transfer instruction: MOVW

| Mnemonic | Operands          |          |                                                | Operati                                                                                       | on Code                |          |                |               |
|----------|-------------------|----------|------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------|----------|----------------|---------------|
|          |                   | В        | 1                                              | Е                                                                                             | 32                     |          | В3             |               |
|          |                   | В        | 4                                              | Е                                                                                             | 35                     |          | B6             |               |
|          |                   | В        | 7                                              |                                                                                               |                        |          |                |               |
| MOVW     | rp, #word         | 0 1 1 0  | 0 P <sub>2</sub> P <sub>1</sub> P <sub>0</sub> | ← Low                                                                                         | Byte $\rightarrow$     | <b>←</b> | High Byte      | $\rightarrow$ |
|          | saddrp2, #word    | 0 0 0 0  | 1 1 0 0                                        | ← Saddr                                                                                       | 2-offset $\rightarrow$ | <b>←</b> | Low Byte       | $\rightarrow$ |
|          |                   | ← High   | Byte $\rightarrow$                             |                                                                                               |                        |          |                |               |
|          | saddrp1, #word    | 0 0 1 1  | 1 1 0 0                                        | 0 0 0 0                                                                                       | 1 1 0 0                | ←        | Saddr1-offset  | $\rightarrow$ |
|          |                   | ← Low    | Byte →                                         | ← High                                                                                        | Byte $\rightarrow$     |          |                |               |
|          | sfrp, #word       | 0 0 0 0  | 1 0 1 1                                        | ← Sfr-c                                                                                       | offset $\rightarrow$   | <b>←</b> | Low Byte       | $\rightarrow$ |
|          |                   | ← High   | Byte $\rightarrow$                             |                                                                                               |                        |          |                |               |
|          | !addr16, #word    | 0 0 0 0  | 1 0 0 1                                        | 0 1 0 0                                                                                       | 0 0 0 1                | <b>←</b> | Low Address    | $\rightarrow$ |
|          |                   | ← High A | ddress $ ightarrow$                            | ← Low                                                                                         | Byte →                 | <b>←</b> | High Byte      | $\rightarrow$ |
|          | !!addr24, #word   | 0 0 0 0  | 1 0 0 1                                        | 0 1 0 1                                                                                       | 0 0 0 1                | <b>←</b> | High-w Address | $\rightarrow$ |
|          |                   | ← Low A  | ddress →                                       | ← High Address →                                                                              |                        |          | Low Byte       | $\rightarrow$ |
|          |                   | ← High   | Byte $\rightarrow$                             |                                                                                               |                        |          |                |               |
|          | rp, rp'           | 0 0 1 0  | 0 1 0 0                                        | P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0 1 P <sub>2</sub> P <sub>1</sub> P <sub>0</sub> |                        |          |                |               |
|          | AX, saddrp2       | 0 0 0 1  | 1 1 0 0                                        | ← Saddr2-offset →                                                                             |                        |          |                |               |
|          | rp, saddrp2       | 0 0 1 1  | 1 0 0 0                                        | P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0                                                | 1 0 0 0                | <b>←</b> | Saddr2-offset  | $\rightarrow$ |
|          | rp, saddrp1       | 0 0 1 1  | 1 0 0 0                                        | P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0                                                | 1 0 0 1                | <b>←</b> | Saddr1-offset  | $\rightarrow$ |
|          | saddrp2, AX       | 0 0 0 1  | 1 0 1 0                                        | ← Saddr                                                                                       | 2-offset $\rightarrow$ |          |                |               |
|          | saddrp2, rp       | 0 0 1 1  | 1 0 0 0                                        | P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0                                                | 1 1 0 0                | <b>←</b> | Saddr2-offset  | $\rightarrow$ |
|          | saddrp1, rp       | 0 0 1 1  | 1 0 0 0                                        | P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0                                                | 1 1 0 1                | <b>←</b> | Saddr1-offset  | $\rightarrow$ |
|          | AX, sfrp          | 0 0 0 1  | 0 0 0 1                                        | ← Sfr-c                                                                                       | offset →               |          |                |               |
|          | rp, sfrp          | 0 0 1 1  | 1 0 0 0                                        | P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0                                                | 1 0 1 0                | <b>←</b> | Sfr-offset     | $\rightarrow$ |
|          | sfrp, AX          | 0 0 0 1  | 0 0 1 1                                        | ← Sfr-c                                                                                       | offset $\rightarrow$   |          |                |               |
|          | sfrp, rp          | 0 0 1 1  | 1 0 0 0                                        | P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0                                                | 1 1 1 0                | <b>←</b> | Sfr-offset     | $\rightarrow$ |
|          | saddrp2, saddrp2' | 0 0 1 0  | 1 0 1 0                                        | 1 0 0 0                                                                                       | 0 0 0 0                | <b>←</b> | Saddr2'-offset | $\rightarrow$ |
|          |                   | ← Saddr2 | 2-offset $\rightarrow$                         |                                                                                               |                        |          |                |               |
|          | saddrp2, saddrp1  | 0 0 1 0  | 1 0 1 0                                        | 1 0 0 1                                                                                       | 0 0 0 0                | <b>←</b> | Saddr1-offset  | $\rightarrow$ |
|          |                   | ← Saddr2 | 2-offset $\rightarrow$                         |                                                                                               |                        |          |                |               |
|          | saddrp1, saddrp2  | 0 0 1 0  | 1 0 1 0                                        | 1 0 1 0                                                                                       | 0 0 0 0                | <b>←</b> | Saddr2-offset  | $\rightarrow$ |
|          |                   | ← Saddr1 | -offset $\rightarrow$                          |                                                                                               | <b></b>                | [        |                |               |
|          | saddrp1, saddrp1' | 0 0 1 0  | 1 0 1 0                                        | 1 0 1 1                                                                                       | 0 0 0 0                | <b>←</b> | Saddr1'-offset | $\rightarrow$ |
|          |                   | ← Saddr1 | -offset $\rightarrow$                          |                                                                                               |                        |          |                |               |
|          | rp, !addr16       | 0 0 1 1  | 1 1 1 0                                        | P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0                                                | 1 0 0 0                | <b>←</b> | Low Address    | $\rightarrow$ |
|          |                   | ← High A | ddress $\rightarrow$                           |                                                                                               |                        |          |                |               |

| Mnemonic | Operands         |                                          | Operation Code                                         |                                                                 |  |  |
|----------|------------------|------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------|--|--|
|          |                  | B1                                       | B2                                                     | В3                                                              |  |  |
|          |                  | B4                                       | B5                                                     | B6                                                              |  |  |
|          |                  | В7                                       |                                                        |                                                                 |  |  |
| MOVW     | !addr16, rp      | 0 0 1 1 1 1 1 0                          | P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0 1 0 0 1 | $\leftarrow$ Low Address $\rightarrow$                          |  |  |
|          |                  | $\leftarrow$ High Address $\rightarrow$  |                                                        |                                                                 |  |  |
|          | rp, !!addr24     | 0 0 1 1 1 1 1 0                          | P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0 1 0 1 0 | ← High-w Address →                                              |  |  |
|          |                  | $\leftarrow$ Low Address $\rightarrow$   | $\leftarrow$ High Address $\rightarrow$                |                                                                 |  |  |
|          | !!addr24, rp     | 0 0 1 1 1 1 1 0                          | P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0 1 0 1 1 | ← High-w Address →                                              |  |  |
|          |                  | $\leftarrow$ Low Address $\rightarrow$   | $\leftarrow$ High Address $\rightarrow$                |                                                                 |  |  |
|          | AX, [saddrp2]    | 0 0 0 0 0 1 1 1                          | 0010 0001                                              | $\leftarrow  \text{Saddr2-offset}  \rightarrow $                |  |  |
|          | AX, [saddrp1]    | 0 0 1 1 1 1 0 0                          | 0000 0111                                              | 0010 0001                                                       |  |  |
|          |                  | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                        |                                                                 |  |  |
|          | AX, [%saddrg2]   | 0000 0111                                | 0011 0001                                              | $\leftarrow$ Saddr2-offset $\rightarrow$                        |  |  |
|          | AX, [%saddrg1]   | 0 0 1 1 1 1 0 0                          | 0000 0111                                              | 0011 0001                                                       |  |  |
|          |                  | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                        |                                                                 |  |  |
|          | AX, [TDE +]      | 0 0 0 1 0 1 1 0                          | 0000 0001                                              |                                                                 |  |  |
|          | AX, [WHL +]      | 0 0 0 1 0 1 1 0                          | 0001 0001                                              |                                                                 |  |  |
|          | AX, [TDE –]      | 0 0 0 1 0 1 1 0                          | 0010 0001                                              |                                                                 |  |  |
|          | AX, [WHL –]      | 0 0 0 1 0 1 1 0                          | 0011 0001                                              |                                                                 |  |  |
|          | AX, [TDE]        | 0 0 0 1 0 1 1 0                          | 0 1 0 0 0 0 0 1                                        |                                                                 |  |  |
|          | AX, [WHL]        | 0 0 0 1 0 1 1 0                          | 0 1 0 1 0 0 0 1                                        |                                                                 |  |  |
|          | AX, [VVP]        | 0 0 0 1 0 1 1 0                          | 0110 0001                                              |                                                                 |  |  |
|          | AX, [UUP]        | 0 0 0 1 0 1 1 0                          | 0 1 1 1 0 0 0 1                                        |                                                                 |  |  |
|          | AX, [TDE + byte] | 0000 0110                                | 0000 0001                                              | $\leftarrow$ Low Offset $\rightarrow$                           |  |  |
|          | AX, [SP + byte]  | 0000 0110                                | 0001 0001                                              | $\leftarrow \qquad \text{Low Offset} \qquad \rightarrow \qquad$ |  |  |
|          | AX, [WHL + byte] | 0 0 0 0 0 1 1 0                          | 0010 0001                                              | $\leftarrow \qquad \text{Low Offset} \qquad \rightarrow \qquad$ |  |  |
|          | AX, [UUP + byte] | 0 0 0 0 0 1 1 0                          | 0011 0001                                              | $\leftarrow \qquad \text{Low Offset} \qquad \rightarrow \qquad$ |  |  |
|          | AX, [VVP + byte] | 0 0 0 0 0 1 1 0                          | 0 1 0 0 0 0 0 1                                        | $\leftarrow \qquad \text{Low Offset} \qquad \rightarrow \qquad$ |  |  |
|          | AX, imm24 [DE]   | 0000 1010                                | 0000 0001                                              | $\leftarrow$ Low Offset $\rightarrow$                           |  |  |
|          |                  | $\leftarrow$ High Offset $\rightarrow$   | $\leftarrow$ High-w Offset $\rightarrow$               |                                                                 |  |  |
|          | AX, imm24 [A]    | 0000 1010                                | 0001 0001                                              | $\leftarrow$ Low Offset $\rightarrow$                           |  |  |
|          |                  | $\leftarrow$ High Offset $\rightarrow$   | $\leftarrow$ High-w Offset $\rightarrow$               |                                                                 |  |  |
|          | AX, imm24 [HL]   | 0000 1010                                | 0010 0001                                              | $\leftarrow$ Low Offset $\rightarrow$                           |  |  |
|          |                  | $\leftarrow$ High Offset $\rightarrow$   | $\leftarrow$ High-w Offset $\rightarrow$               |                                                                 |  |  |
|          | AX, imm24 [B]    | 0000 1010                                | 0011 0001                                              | $\leftarrow$ Low Offset $\rightarrow$                           |  |  |
|          |                  | $\leftarrow$ High Offset $\rightarrow$   | $\leftarrow$ High-w Offset $\rightarrow$               |                                                                 |  |  |
|          | AX, [TDE + A]    | 0 0 0 1 0 1 1 1                          | 0 0 0 0 0 0 0 1                                        |                                                                 |  |  |

| Mnemonic | Operands         |          |                        | Operation | on Code              |          |               |               |
|----------|------------------|----------|------------------------|-----------|----------------------|----------|---------------|---------------|
|          |                  | В        | 1                      | В         | 2                    | B3       |               |               |
|          |                  | В        | 4                      | В         | 5                    | B6       |               |               |
|          |                  | В        | 57                     |           |                      |          |               |               |
| MOVW     | AX, [WHL + A]    | 0 0 0 1  | 0 1 1 1                | 0 0 0 1   | 0 0 0 1              |          |               |               |
|          | AX, [TDE + B]    | 0 0 0 1  | 0 1 1 1                | 0 0 1 0   | 0 0 0 1              |          |               |               |
|          | AX, [WHL + B]    | 0 0 0 1  | 0 1 1 1                | 0 0 1 1   | 0 0 0 1              |          |               |               |
|          | AX, [VVP + DE]   | 0 0 0 1  | 0 1 1 1                | 0 1 0 0   | 0 0 0 1              |          |               |               |
|          | AX, [VVP + HL]   | 0 0 0 1  | 0 1 1 1                | 0 1 0 1   | 0 0 0 1              |          |               |               |
|          | AX, [TDE + C]    | 0 0 0 1  | 0 1 1 1                | 0 1 1 0   | 0 0 0 1              |          |               |               |
|          | AX, [WHL + C]    | 0 0 0 1  | 0 1 1 1                | 0 1 1 1   | 0 0 0 1              |          |               |               |
|          | [saddrp2], AX    | 0 0 0 0  | 0 1 1 1                | 1 0 1 0   | 0 0 0 1              | <b>←</b> | Saddr2-offset | $\rightarrow$ |
|          | [saddrp1], AX    | 0 0 1 1  | 1 1 0 0                | 0 0 0 0   | 0 1 1 1              | 1 0      | 10 00         | 0 1           |
|          |                  | ← Saddr1 | I-offset $\rightarrow$ |           |                      |          |               |               |
|          | [%saddrg2], AX   | 0 0 0 0  | 0 1 1 1                | 1 0 1 1   | 0 0 0 1              | <b>←</b> | Saddr2-offset | $\rightarrow$ |
|          | [%saddrg1], AX   | 0 0 1 1  | 1 1 0 0                | 0 0 0 0   | 0 1 1 1              | 1 0      | 11 00         | 0 1           |
|          |                  | ← Saddr1 | I-offset $\rightarrow$ |           |                      |          |               |               |
|          | [TDE +], AX      | 0 0 0 1  | 0 1 1 0                | 1 0 0 0   | 0 0 0 1              |          |               |               |
|          | [WHL +], AX      | 0 0 0 1  | 0 1 1 0                | 1 0 0 1   | 0 0 0 1              |          |               |               |
|          | [TDE –], AX      | 0 0 0 1  | 0 1 1 0                | 1 0 1 0   | 0 0 0 1              |          |               |               |
|          | [WHL-], AX       | 0 0 0 1  | 0 1 1 0                | 1 0 1 1   | 0 0 0 1              |          |               |               |
|          | [TDE], AX        | 0 0 0 1  | 0 1 1 0                | 1 1 0 0   | 0 0 0 1              |          |               |               |
|          | [WHL], AX        | 0 0 0 1  | 0 1 1 0                | 1 1 0 1   | 0 0 0 1              |          |               |               |
|          | [VVP], AX        | 0 0 0 1  | 0 1 1 0                | 1 1 1 0   | 0 0 0 1              |          |               |               |
|          | [UUP], AX        | 0 0 0 1  | 0 1 1 0                | 1 1 1 1   | 0 0 0 1              |          |               |               |
|          | [TDE + byte], AX | 0 0 0 0  | 0 1 1 0                | 1 0 0 0   | 0 0 0 1              | <b>←</b> | Low Offset    | $\rightarrow$ |
|          | [SP + byte], AX  | 0 0 0 0  | 0 1 1 0                | 1 0 0 1   | 0 0 0 1              | <b>←</b> | Low Offset    | $\rightarrow$ |
|          | [WHL + byte], AX | 0 0 0 0  | 0 1 1 0                | 1 0 1 0   | 0 0 0 1              | <b>←</b> | Low Offset    | $\rightarrow$ |
|          | [UUP + byte], AX | 0 0 0 0  | 0 1 1 0                | 1 0 1 1   | 0 0 0 1              | <b>←</b> | Low Offset    | $\rightarrow$ |
|          | [VVP + byte], AX | 0 0 0 0  | 0 1 1 0                | 1 1 0 0   | 0 0 0 1              | <b>←</b> | Low Offset    | $\rightarrow$ |
|          | imm24 [DE], AX   | 0 0 0 0  | 1 0 1 0                | 1 0 0 0   | 0 0 0 1              | <b>←</b> | Low Offset    | $\rightarrow$ |
|          |                  | ← High   | Offset $\rightarrow$   | ← High-w  | Offset $\rightarrow$ |          |               |               |
|          | imm24 [A], AX    | 0 0 0 0  | 1 0 1 0                | 1 0 0 1   | 0 0 0 1              | <b>←</b> | Low Offset    | $\rightarrow$ |
|          |                  | ← High   | Offset $\rightarrow$   | ← High-w  | Offset $\rightarrow$ |          |               |               |
|          | imm24 [HL], AX   | 0 0 0 0  | 1 0 1 0                | 1 0 1 0   | 0 0 0 1              | <b>←</b> | Low Offset    | $\rightarrow$ |
|          |                  | ← High   | Offset $\rightarrow$   | ← High-w  | Offset $\rightarrow$ |          |               |               |
|          | imm24 [B], AX    | 0 0 0 0  | 1 0 1 0                | 1 0 1 1   | 0 0 0 1              | <b>←</b> | Low Offset    | $\rightarrow$ |
|          |                  | ← High   | Offset $\rightarrow$   | ← High-w  | Offset $\rightarrow$ | [        |               |               |

| Mnemonic | Operands       |                 | Operation Code  |    |
|----------|----------------|-----------------|-----------------|----|
|          |                | B1              | B2              | В3 |
|          |                | B4              | B5              | B6 |
|          |                | В7              |                 |    |
| MOVW     | [TDE + A], AX  | 0 0 0 1 0 1 1 1 | 1000 0001       |    |
|          | [WHL + A], AX  | 0 0 0 1 0 1 1 1 | 1001 0001       |    |
|          | [TDE + B], AX  | 0 0 0 1 0 1 1 1 | 1010 0001       |    |
|          | [WHL + B], AX  | 0 0 0 1 0 1 1 1 | 1011 0001       |    |
|          | [VVP + DE], AX | 0 0 0 1 0 1 1 1 | 1 1 0 0 0 0 0 1 |    |
|          | [VVP + HL], AX | 0 0 0 1 0 1 1 1 | 1 1 0 1 0 0 0 1 |    |
|          | [TDE + C], AX  | 0 0 0 1 0 1 1 1 | 1 1 1 0 0 0 0 1 |    |
|          | [WHL + C], AX  | 0 0 0 1 0 1 1 1 | 1111 0001       |    |

## (3) 24-bit data transfer instruction: MOVG

| Mnemonic | Operands          |                                          | Operation Code                                                      |                                                                 |
|----------|-------------------|------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------|
|          |                   | B1                                       | B2                                                                  | B3                                                              |
|          |                   | B4                                       | B5                                                                  | В6                                                              |
|          |                   | B7                                       |                                                                     |                                                                 |
| MOVG     | rg, #imm24        | 0011 1000                                | 1 G <sub>6</sub> G <sub>5</sub> 1 1 0 1 1                           | $\leftarrow$ Low Byte $\rightarrow$                             |
|          |                   | $\leftarrow$ High Byte $\rightarrow$     | ← High-w Byte →                                                     |                                                                 |
|          | rg, rg'           | 0 0 1 0 0 1 0 0                          | 1 G <sub>6</sub> G <sub>5</sub> 1 1 G <sub>2</sub> G <sub>1</sub> 1 |                                                                 |
|          | rg, !!addr24      | 0011 1110                                | 1 G <sub>6</sub> G <sub>5</sub> 1 1 0 1 0                           | $\leftarrow$ High-w Address $\rightarrow$                       |
|          |                   | $\leftarrow$ Low Address $\rightarrow$   | ← High Address →                                                    |                                                                 |
|          | !!addr24, rg      | 0 0 1 1 1 1 1 0                          | 1 G <sub>6</sub> G <sub>5</sub> 1 1 0 1 1                           | ← High-w Address →                                              |
|          |                   | $\leftarrow$ Low Address $\rightarrow$   | ← High Address →                                                    |                                                                 |
|          | rg, saddrg2       | 0 0 1 1 1 0 0 0                          | 1 G <sub>6</sub> G <sub>5</sub> 1 1 0 0 0                           | $\leftarrow$ Saddr2-offset $\rightarrow$                        |
|          | rg, saddrg1       | 0 0 1 1 1 0 0 0                          | 1 G <sub>6</sub> G <sub>5</sub> 1 1 0 0 1                           | $\leftarrow$ Saddr1-offset $\rightarrow$                        |
|          | saddrg2, rg       | 0 0 1 1 1 0 0 0                          | 1 G <sub>6</sub> G <sub>5</sub> 1 1 1 0 0                           | $\leftarrow$ Saddr2-offset $\rightarrow$                        |
|          | saddrg1, rg       | 0 0 1 1 1 0 0 0                          | 1 G <sub>6</sub> G <sub>5</sub> 1 1 1 0 1                           | $\leftarrow  \text{Saddr1-offset}  \rightarrow $                |
|          | WHL, [%saddrg2]   | 0000 0111                                | 0 0 1 1 0 0 1 0                                                     | $\leftarrow  \text{Saddr2-offset}  \rightarrow $                |
|          | WHL, [%saddrg1]   | 0011 1100                                | 0000 0111                                                           | 0011 0010                                                       |
|          |                   | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                                     |                                                                 |
|          | [%saddrg2], WHL   | 0 0 0 0 0 1 1 1                          | 1011 0010                                                           | $\leftarrow$ Saddr2-offset $\rightarrow$                        |
|          | [%saddrg1], WHL   | 0011 1100                                | 0000 0111                                                           | 1011 0010                                                       |
|          |                   | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                                     |                                                                 |
|          | WHL, [TDE +]      | 0 0 0 1 0 1 1 0                          | 0 0 0 0 0 0 1 0                                                     |                                                                 |
|          | WHL, [TDE -]      | 0 0 0 1 0 1 1 0                          | 0 0 1 0 0 0 1 0                                                     |                                                                 |
|          | WHL, [TDE]        | 0 0 0 1 0 1 1 0                          | 0 1 0 0 0 0 1 0                                                     |                                                                 |
|          | WHL, [WHL]        | 0 0 0 1 0 1 1 0                          | 0 1 0 1 0 0 1 0                                                     |                                                                 |
|          | WHL, [VVP]        | 0001 0110                                | 0110 0010                                                           |                                                                 |
|          | WHL, [UUP]        | 0 0 0 1 0 1 1 0                          | 0 1 1 1 0 0 1 0                                                     |                                                                 |
|          | WHL, [TDE + byte] | 0 0 0 0 0 1 1 0                          | 0 0 0 0 0 0 1 0                                                     | $\leftarrow \qquad \text{Low Offset} \qquad \rightarrow \qquad$ |
|          | WHL, [SP + byte]  | 0 0 0 0 0 1 1 0                          | 0 0 0 1 0 0 1 0                                                     | $\leftarrow \qquad \text{Low Offset} \qquad \rightarrow \qquad$ |
|          | WHL, [WHL + byte] | 0 0 0 0 0 1 1 0                          | 0 0 1 0 0 0 1 0                                                     | $\leftarrow$ Low Offset $\rightarrow$                           |
|          | WHL, [UUP + byte] | 0 0 0 0 0 1 1 0                          | 0 0 1 1 0 0 1 0                                                     | $\leftarrow \qquad \text{Low Offset} \qquad \rightarrow \qquad$ |
|          | WHL, [VVP + byte] | 0 0 0 0 0 1 1 0                          | 0 1 0 0 0 0 1 0                                                     | $\leftarrow$ Low Offset $\rightarrow$                           |
|          | WHL, imm24 [DE]   | 0 0 0 0 1 0 1 0                          | 0000 0010                                                           | $\leftarrow$ Low Offset $\rightarrow$                           |
|          |                   | $\leftarrow$ High Offset $\rightarrow$   | $\leftarrow$ High-w Offset $\rightarrow$                            |                                                                 |
|          | WHL, imm24 [A]    | 0000 1010                                | 0001 0010                                                           | $\leftarrow$ Low Offset $\rightarrow$                           |
|          |                   | $\leftarrow$ High Offset $\rightarrow$   | $\leftarrow$ High-w Offset $\rightarrow$                            |                                                                 |

| Mnemonic | Operands          |           |                     |          | Operation | on Code              |          |            |               |
|----------|-------------------|-----------|---------------------|----------|-----------|----------------------|----------|------------|---------------|
|          |                   | B1        |                     |          | В         | 2                    |          | В3         |               |
|          |                   |           |                     |          | В         | 5                    |          | B6         |               |
|          |                   | В7        |                     |          |           |                      |          |            |               |
| MOVG     | WHL, imm24 [HL]   | 0 0 0 0   | 1 0 1 0             | 0 0      | 1 0       | 0 0 1 0              | <b>←</b> | Low Offset | $\rightarrow$ |
|          |                   | ← High Of | ffset $\rightarrow$ | <b>←</b> | High-w    | Offset $\rightarrow$ |          |            |               |
|          | WHL, imm24 [B]    | 0 0 0 0   | 1 0 1 0             | 0 0      | 1 1       | 0 0 1 0              | <b>←</b> | Low Offset | $\rightarrow$ |
|          |                   | ← High Of | ffset $\rightarrow$ | <b>←</b> | High-w    | Offset $\rightarrow$ |          |            |               |
|          | WHL, [TDE + A]    | 0 0 0 1   | 0 1 1 1             | 0 0      | 0 0       | 0 0 1 0              |          |            |               |
|          | WHL, [WHL + A]    | 0 0 0 1   | 0 1 1 1             | 0 0      | 0 1       | 0 0 1 0              |          |            |               |
|          | WHL, [TDE + B]    | 0 0 0 1   | 0 1 1 1             | 0 0      | 1 0       | 0 0 1 0              |          |            |               |
|          | WHI, [WHL + B]    | 0 0 0 1   | 0 1 1 1             | 0 0      | 1 1       | 0 0 1 0              |          |            |               |
|          | WHL, [VVP + DE]   | 0 0 0 1   | 0 1 1 1             | 0 1      | 0 0       | 0 0 1 0              |          |            |               |
|          | WHL, [VVP + HL]   | 0 0 0 1   | 0 1 1 1             | 0 1      | 0 1       | 0 0 1 0              |          |            |               |
|          | WHL, [TDE + C]    | 0 0 0 1   | 0 1 1 1             | 0 1      | 1 0       | 0 0 1 0              |          |            |               |
|          | WHL, [WHL + C]    | 0 0 0 1   | 0 1 1 1             | 0 1      | 1 1       | 0 0 1 0              |          |            |               |
|          | [TDE +], WHL      | 0 0 0 1   | 0 1 1 0             | 1 0      | 0 0       | 0 0 1 0              |          |            |               |
|          | [TDE –], WHL      | 0 0 0 1   | 0 1 1 0             | 1 0      | 1 0       | 0 0 1 0              |          |            |               |
|          | [TDE], WHL        | 0 0 0 1   | 0 1 1 0             | 1 1      | 0 0       | 0 0 1 0              |          |            |               |
|          | [WHL], WHL        | 0 0 0 1   | 0 1 1 0             | 1 1      | 0 1       | 0 0 1 0              |          |            |               |
|          | [VVP], WHL        | 0 0 0 1   | 0 1 1 0             | 1 1      | 1 0       | 0 0 1 0              |          |            |               |
|          | [UUP], WHL        | 0 0 0 1   | 0 1 1 0             | 1 1      | 1 1       | 0 0 1 0              |          |            |               |
|          | [TDE + byte], WHL | 0 0 0 0   | 0 1 1 0             | 1 0      | 0 0       | 0 0 1 0              | <b>←</b> | Low Offset | $\rightarrow$ |
|          | [SP + byte], WHL  | 0 0 0 0   | 0 1 1 0             | 1 0      | 0 1       | 0 0 1 0              | <b>←</b> | Low Offset | $\rightarrow$ |
|          | [WHL + byte], WHL | 0 0 0 0   | 0 1 1 0             | 1 0      | 1 0       | 0 0 1 0              | <b>←</b> | Low Offset | $\rightarrow$ |
|          | [UUP + byte], WHL | 0 0 0 0   | 0 1 1 0             | 1 0      | 1 1       | 0 0 1 0              | <b>←</b> | Low Offset | $\rightarrow$ |
|          | [VVP + byte], WHL | 0 0 0 0   | 0 1 1 0             | 1 1      | 0 0       | 0 0 1 0              | <b>←</b> | Low Offset | $\rightarrow$ |
|          | imm24 [DE], WHL   | 0 0 0 0   | 1 0 1 0             | 1 0      | 0 0       | 0 0 1 0              | <b>←</b> | Low Offset | $\rightarrow$ |
|          |                   | ← High Of | ffset $\rightarrow$ | ←        | High-w    | Offset $\rightarrow$ |          |            |               |
|          | imm24 [A], WHL    | 0 0 0 0   | 1 0 1 0             | 1 0      | 0 1       | 0 0 1 0              | <b>←</b> | Low Offset | $\rightarrow$ |
|          |                   | ← High Of | ffset $\rightarrow$ | ←        | High-w    | Offset →             |          |            |               |
|          | imm24 [HL], WHL   | 0 0 0 0   | 1 0 1 0             | 1 0      | 1 0       | 0 0 1 0              | <b>←</b> | Low Offset | $\rightarrow$ |
|          |                   | ← High Of | ffset $\rightarrow$ | ←        | High-w    | Offset →             |          |            |               |
|          | imm24 [B], WHL    | 0 0 0 0   | 1 0 1 0             | 1 0      | 1 1       | 0 0 1 0              | <b>←</b> | Low Offset | $\rightarrow$ |
|          |                   | ← High Of | ffset $\rightarrow$ | ←        | High-w    | Offset →             |          |            |               |
|          | [TDE + A], WHL    | 0 0 0 1   | 0 1 1 1             |          | 0 0       | 0 0 1 0              |          |            |               |
|          | [WHL + A], WHL    | 0 0 0 1   | 0 1 1 1             | 1 0      | 0 1       | 0 0 1 0              |          |            |               |
|          | [TDE + B], WHL    | 0 0 0 1   | 0 1 1 1             | 1 0      | 1 0       | 0 0 1 0              |          |            |               |

| Mnemonic | Operands        | Operation Code |         |         |         |    |
|----------|-----------------|----------------|---------|---------|---------|----|
|          |                 | B1             |         | В       | 2       | В3 |
|          |                 | B4             |         | В       | 5       | В6 |
|          |                 | В7             |         |         |         |    |
| MOVG     | [WHL + B], WHL  | 0 0 0 1        | 0 1 1 1 | 1 0 1 1 | 0 0 1 0 |    |
|          | [VVP + DE], WHL | 0 0 0 1        | 0 1 1 1 | 1 1 0 0 | 0 0 1 0 |    |
|          | [VVP + HL], WHL | 0 0 0 1        | 0 1 1 1 | 1 1 0 1 | 0 0 1 0 |    |
|          | [TDE + C], WHL  | 0 0 0 1        | 0 1 1 1 | 1 1 1 0 | 0 0 1 0 |    |
|          | [WHL + C], WHL  | 0 0 0 1        | 0 1 1 1 | 1 1 1 1 | 0 0 1 0 |    |

## (4) 8-bit data exchange instruction: XCH

| Mnemonic | Operands        |                                           |                                                                                                            |                                                                                                            |
|----------|-----------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
|          |                 | B1                                        | B2                                                                                                         | B3                                                                                                         |
|          |                 | B4                                        | B5                                                                                                         | В6                                                                                                         |
|          |                 | В7                                        |                                                                                                            |                                                                                                            |
| хсн      | r, r1           | 0 0 1 0 0 1 0 1                           | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 R <sub>2</sub> R <sub>1</sub> R <sub>0</sub> |                                                                                                            |
|          | r, r2           | 0 0 1 1 1 1 0 0                           | 0 0 1 0 0 1 0 1                                                                                            | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 R <sub>2</sub> R <sub>1</sub> R <sub>0</sub> |
|          | A, r1           | 1 1 0 1 1 R <sub>2</sub> R <sub>1</sub> 0 |                                                                                                            |                                                                                                            |
|          | A, r2           | 0 0 1 1 1 1 0 0                           | 1 1 0 1 1 R <sub>2</sub> R <sub>1</sub> R <sub>0</sub>                                                     |                                                                                                            |
|          | A, saddr2       | 0010 0001                                 | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   |                                                                                                            |
|          | r, saddr2       | 0 0 1 1 1 0 0 1                           | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 0 0 0                                        | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   |
|          | r, saddr1       | 0 0 1 1 1 0 0 1                           | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 0 0 1                                        | $\leftarrow$ Saddr1-offset $\rightarrow$                                                                   |
|          | r, sfr          | 0 0 1 1 1 0 0 1                           | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 0 1 0                                        | $\leftarrow$ Sfr-offset $\rightarrow$                                                                      |
|          | saddr2, saddr2' | 0010 1010                                 | 0000 0100                                                                                                  | $\leftarrow$ Saddr2'-offset $\rightarrow$                                                                  |
|          |                 | $\leftarrow$ Saddr2-offset $\rightarrow$  |                                                                                                            |                                                                                                            |
|          | saddr2, saddr1  | 0010 1010                                 | 0001 0100                                                                                                  | $\leftarrow$ Saddr1-offset $\rightarrow$                                                                   |
|          |                 | $\leftarrow$ Saddr2-offset $\rightarrow$  |                                                                                                            |                                                                                                            |
|          | saddr1, saddr2  | 0 0 1 0 1 0 1 0                           | 0010 0100                                                                                                  | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   |
|          |                 | $\leftarrow$ Saddr1-offset $\rightarrow$  |                                                                                                            |                                                                                                            |
|          | saddr1, saddr1' | 0 0 1 0 1 0 1 0                           | 0 0 1 1 0 1 0 0                                                                                            | $\leftarrow$ Saddr1'-offset $\rightarrow$                                                                  |
|          |                 | $\leftarrow$ Saddr1-offset $\rightarrow$  |                                                                                                            |                                                                                                            |
|          | r, !addr16      | 0 0 1 1 1 1 1 0                           | R7R6R5R4 0 1 0 0                                                                                           | $\leftarrow$ Low Address $\rightarrow$                                                                     |
|          |                 | $\leftarrow$ High Address $\rightarrow$   |                                                                                                            |                                                                                                            |
|          | r, !!addr24     | 0 0 1 1 1 1 1 0                           | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 1 1 0                                        | ← High-w Address →                                                                                         |
|          |                 | $\leftarrow$ Low Address $\rightarrow$    | $\leftarrow$ High Address $\rightarrow$                                                                    |                                                                                                            |
|          | A, [saddrp2]    | 0 0 1 0 0 0 1 1                           | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   |                                                                                                            |
|          | A, [saddrp1]    | 0 0 1 1 1 1 0 0                           | 0 0 1 0 0 0 1 1                                                                                            | $\leftarrow$ Saddr1-offset $\rightarrow$                                                                   |
|          | A, [%saddrg2]   | 0 0 0 0 0 1 1 1                           | 0 0 1 1 0 1 0 0                                                                                            | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   |
|          | A, [%saddrg1]   | 0 0 1 1 1 1 0 0                           | 0000 0111                                                                                                  | 0011 0100                                                                                                  |
|          |                 | $\leftarrow$ Saddr1-offset $\rightarrow$  |                                                                                                            |                                                                                                            |
|          | A, [TDE +]      | 0 0 0 1 0 1 1 0                           | 0 0 0 0 0 1 0 0                                                                                            |                                                                                                            |
|          | A, [WHL +]      | 0 0 0 1 0 1 1 0                           | 0 0 0 1 0 1 0 0                                                                                            |                                                                                                            |
|          | A, [TDE –]      | 0 0 0 1 0 1 1 0                           | 0010 0100                                                                                                  |                                                                                                            |
|          | A, [WHL –]      | 0 0 0 1 0 1 1 0                           | 0 0 1 1 0 1 0 0                                                                                            |                                                                                                            |
|          | A, [TDE]        | 0 0 0 1 0 1 1 0                           | 0 1 0 0 0 1 0 0                                                                                            |                                                                                                            |
|          | A, [WHL]        | 0 0 0 1 0 1 1 0                           | 0 1 0 1 0 1 0 0                                                                                            |                                                                                                            |
|          | A, [VVP]        | 0 0 0 1 0 1 1 0                           | 0110 0100                                                                                                  |                                                                                                            |
|          | A, [UUP]        | 0 0 0 1 0 1 1 0                           | 0 1 1 1 0 1 0 0                                                                                            |                                                                                                            |

| Mnemonic | Operands        |                                        | Operation Code                           |                                       |
|----------|-----------------|----------------------------------------|------------------------------------------|---------------------------------------|
|          |                 | B1                                     | B2                                       | В3                                    |
|          |                 | B4                                     | B5                                       | В6                                    |
|          |                 | B7                                     |                                          |                                       |
| хсн      | A, [TDE + byte] | 0 0 0 0 0 1 1 0                        | 0 0 0 0 0 1 0 0                          | $\leftarrow$ Low Offset $\rightarrow$ |
|          | A, [SP + byte]  | 0 0 0 0 0 1 1 0                        | 0 0 0 1 0 1 0 0                          | $\leftarrow$ Low Offset $\rightarrow$ |
|          | A, [WHL + byte] | 0000 0110                              | 0010 0100                                | $\leftarrow$ Low Offset $\rightarrow$ |
|          | A, [UUP + byte] | 0 0 0 0 0 1 1 0                        | 0 0 1 1 0 1 0 0                          | $\leftarrow$ Low Offset $\rightarrow$ |
|          | A, [VVP + byte] | 0 0 0 0 0 1 1 0                        | 0 1 0 0 0 1 0 0                          | $\leftarrow$ Low Offset $\rightarrow$ |
|          | A, imm24 [DE]   | 0000 1010                              | 0000 0100                                | $\leftarrow$ Low Offset $\rightarrow$ |
|          |                 | $\leftarrow$ High Offset $\rightarrow$ | $\leftarrow$ High-w Offset $\rightarrow$ |                                       |
|          | A, imm24 [A]    | 0 0 0 0 1 0 1 0                        | 0001 0100                                | $\leftarrow$ Low Offset $\rightarrow$ |
|          |                 | $\leftarrow$ High Offset $\rightarrow$ | $\leftarrow$ High-w Offset $\rightarrow$ |                                       |
|          | A, imm24 [HL]   | 0000 1010                              | 0010 0100                                | $\leftarrow$ Low Offset $\rightarrow$ |
|          |                 | $\leftarrow$ High Offset $\rightarrow$ | $\leftarrow$ High-w Offset $\rightarrow$ |                                       |
|          | A, imm24 [B]    | 0000 1010                              | 0011 0100                                | $\leftarrow$ Low Offset $\rightarrow$ |
|          |                 | $\leftarrow$ High Offset $\rightarrow$ | $\leftarrow$ High-w Offset $\rightarrow$ |                                       |
|          | A, [TDE + A]    | 0 0 0 1 0 1 1 1                        | 0 0 0 0 0 1 0 0                          |                                       |
|          | A, [WHL + A]    | 0 0 0 1 0 1 1 1                        | 0 0 0 1 0 1 0 0                          |                                       |
|          | A, [TDE + B]    | 0 0 0 1 0 1 1 1                        | 0010 0100                                |                                       |
|          | A, [WHL + B]    | 0001 0111                              | 0011 0100                                |                                       |
|          | A, [VVP + DE]   | 0 0 0 1 0 1 1 1                        | 0 1 0 0 0 1 0 0                          |                                       |
|          | A, [VVP + HL]   | 0001 0111                              | 0 1 0 1 0 1 0 0                          |                                       |
|          | A, [TDE + C]    | 0001 0111                              | 0110 0100                                |                                       |
|          | A, [WHL + C]    | 0001 0111                              | 0 1 1 1 0 1 0 0                          |                                       |

## (5) 16-bit data exchange instruction: XCHW

| AX, rp, rp, rp, AX, AX, AX, AX, sad | rp' X, saddrp2 saddrp2 saddrp1 sfrp X, [saddrp2] X, [saddrp1] X, [saddrp1] X, [wsaddrg2] X, [wsaddrg1] X, [wsaddrg1] X, [wsaddrg1] | B 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 1 ← Saddr1 0 0 0 1 1 ← Saddr1                | 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1-offset   1 1 0 0 1-offset   1 1 0 0 1-offset    3 1 0 1 0 1-offset   3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0  ← Saddr <sup>2</sup> P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0  P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0  P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0  0 0 1 0  0 0 0 0  0 0 1 1  0 0 0 0 | 1 0 0 0<br>1 0 0 1<br>1 0 1 0<br>0 1 0 1<br>0 1 1 1                       | B3 B6  ← Saddr2-offset → ← Saddr1-offset → ← Sfr-offset → ← Saddr2-offset →  0 0 1 0 0 1 0 1  ← Saddr2-offset →  0 0 1 1 0 1 0 1  ← Low Address →                                                |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AX, rp, rp, rp, AX, AX, AX, AX, sad | saddrp2 saddrp1 sfrp  (a, [saddrp2] (b, [saddrp1] (c, [saddrp1] (c, [%saddrg2] (d, [%saddrg1] (d, [%saddrg1] (d, [addr16)          | B 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 1 1 ← Saddr1 0 0 0 0 ← Saddr1 0 0 0 0 ← High A | 0 1 0 1<br>1 0 1 1<br>1 0 0 1<br>1 0 0 1<br>1 0 0 1<br>1 1 0 0<br>1 1 1 1<br>1 1 0 0<br>1 0 1 1 1<br>1 1 0 0<br>1 0 1 0<br>1 0 1 0<br>1 0 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0  ← Saddr <sup>2</sup> P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0  P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0  P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0  0 0 1 0  0 0 0 1  0 0 0 1 1        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                      | <ul> <li>← Saddr2-offset →</li> <li>← Saddr1-offset →</li> <li>← Sfr-offset →</li> <li>← Saddr2-offset →</li> <li>0 0 1 0 0 1 0 1</li> <li>← Saddr2-offset →</li> <li>0 0 1 1 0 1 0 1</li> </ul> |
| AX, rp, rp, rp, AX, AX, AX, AX, sad | saddrp2 saddrp1 sfrp  (a, [saddrp2] (b, [saddrp1] (c, [saddrp1] (c, [%saddrg2] (d, [%saddrg1] (d, [%saddrg1] (d, [addr16)          | 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 1 1 ← Saddr1 0 0 0 0 ← High A          | 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1-offset → 0 1 1 1 1 1 0 0 1-offset → 1 0 1 0 ddress →                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ← Saddr2  P7 P6 P5 0  P7 P6 P5 0  P7 P6 P5 0  0 0 1 0  0 0 1 1  0 0 0 0                                                                                                                                                                                 | 2-offset    1 0 0 0  1 0 0 1  1 0 1 0  0 1 0 1  0 1 0 1  0 1 0 1  0 1 0 1 | <ul> <li>← Saddr1-offset →</li> <li>← Sfr-offset →</li> <li>← Saddr2-offset →</li> <li>0 0 1 0 0 1 0 1</li> <li>← Saddr2-offset →</li> <li>0 0 1 1 0 1 0 1</li> </ul>                            |
| AX, rp, rp, rp, AX, AX, AX, AX, sad | saddrp2 saddrp1 sfrp  (a, [saddrp2] (b, [saddrp1] (c, [saddrp1] (c, [%saddrg2] (d, [%saddrg1] (d, [%saddrg1] (d, [addr16)          | 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 1 ← Saddr1 0 0 0 0 ← High A                            | 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 1 1 1 0 0 1-offset → 0 1 1 1 1 1 0 0 1-offset → 1 0 1 0 ddress →                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ← Saddr2  P7 P6 P5 0  P7 P6 P5 0  P7 P6 P5 0  0 0 1 0  0 0 1 1  0 0 0 0                                                                                                                                                                                 | 2-offset    1 0 0 0  1 0 0 1  1 0 1 0  0 1 0 1  0 1 0 1  0 1 0 1  0 1 0 1 | <ul> <li>← Saddr1-offset →</li> <li>← Sfr-offset →</li> <li>← Saddr2-offset →</li> <li>0 0 1 0 0 1 0 1</li> <li>← Saddr2-offset →</li> <li>0 0 1 1 0 1 0 1</li> </ul>                            |
| rp, rp, rp, AX, AX, AX, AX, Sad     | saddrp2 saddrp1 sfrp (, [saddrp2] (, [saddrp1] (, [%saddrg2] (, [%saddrg1] (, [%saddrg1]                                           | 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 1 ← Saddr1 0 0 0 0  C Saddr1 0 0 0 0 C High A                  | 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 1 1 1 0 0 I-offset → 0 1 1 1 1 1 0 0 I-offset → 1 0 1 0 ddress →                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0<br>P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0<br>P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0<br>0 0 1 0<br>0 0 0 0                                                                                | 1 0 0 0<br>1 0 0 1<br>1 0 1 0<br>0 1 0 1<br>0 1 1 1                       | <ul> <li>← Saddr1-offset →</li> <li>← Sfr-offset →</li> <li>← Saddr2-offset →</li> <li>0 0 1 0 0 1 0 1</li> <li>← Saddr2-offset →</li> <li>0 0 1 1 0 1 0 1</li> </ul>                            |
| rp, rp, AX, AX, AX, AX, Sad         | saddrp1 sfrp  G, [saddrp2]  G, [saddrp1]  G, [%saddrg2]  G, [%saddrg1]  G, [%saddrg1]                                              | 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 1 ← Saddr1 0 0 0 1 1 ← Saddr1 0 0 0 0 ← High A                         | 1 0 0 1 1 0 0 1 0 1 1 1 1 1 0 0 1-offset → 0 1 1 1 1 1 0 0 1-offset → 1 0 1 0 ddress →                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0 P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0                                                                                                                           | 1 0 0 1<br>1 0 1 0<br>0 1 0 1<br>0 1 1 1<br>0 1 0 1<br>0 1 1 1            | <ul> <li>← Saddr1-offset →</li> <li>← Sfr-offset →</li> <li>← Saddr2-offset →</li> <li>0 0 1 0 0 1 0 1</li> <li>← Saddr2-offset →</li> <li>0 0 1 1 0 1 0 1</li> </ul>                            |
| AX, AX, AX, AX, Sad                 | sfrp (f., [saddrp2] (f., [saddrp1] (f., [%saddrg2] (f., [%saddrg1] (f., !addr16                                                    | 0 0 1 1 0 0 0 0 0 0 1 1 ← Saddr1 0 0 0 1 1 ← Saddr1 0 0 0 0 ← High A                                 | 1 0 0 1 0 1 1 1 1 1 0 0 1-offset → 0 1 1 1 1 1 0 0 1-offset → 1 0 1 0 ddress →                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0                                                                                                                                                                          | 1 0 1 0<br>0 1 0 1<br>0 1 1 1<br>0 1 0 1<br>0 1 1 1                       | <ul> <li>← Sfr-offset →</li> <li>← Saddr2-offset →</li> <li>0 0 1 0 0 1 0 1</li> <li>← Saddr2-offset →</li> <li>0 0 1 1 0 1 0 1</li> </ul>                                                       |
| AX, AX, AX, AX, Sad                 | (, [saddrp2]<br>(, [saddrp1]<br>(, [%saddrg2]<br>(, [%saddrg1]<br>(, !addr16                                                       | 0 0 0 0  0 0 1 1  ← Saddr1  0 0 0 0  0 0 1 1  ← Saddr1  0 0 0 0  ← High A                            | 0 1 1 1 1 1 0 0 1-offset → 0 1 1 1 1 1 0 0 1-offset → 1 0 1 0 ddress →                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0                                                                                                                                                                                                                         | 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1                                           | <ul> <li>← Saddr2-offset →</li> <li>0 0 1 0 0 1 0 1</li> <li>← Saddr2-offset →</li> <li>0 0 1 1 0 1 0 1</li> </ul>                                                                               |
| AX, AX, AX, Sad                     | (, [saddrp1]<br>(, [%saddrg2]<br>(, [%saddrg1]<br>(, !addr16                                                                       | 0 0 1 1  ← Saddr1  0 0 0 0  0 0 1 1  ← Saddr1  0 0 0 0  ← High A                                     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 0 0 0                                                                                                                                                                                                                                                 | 0 1 1 1                                                                   | 0 0 1 0 0 1 0 1  ← Saddr2-offset →  0 0 1 1 0 1 0 1                                                                                                                                              |
| AX, AX, AX, sad                     | (, [%saddrg2]<br>(, [%saddrg1]<br>(, !addr16                                                                                       | ← Saddr1 0 0 0 0 0 0 1 1 ← Saddr1 0 0 0 0 ← High A                                                   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 0 1 1                                                                                                                                                                                                                                                 | 0 1 0 1                                                                   | ← Saddr2-offset → 0 0 1 1 0 1 0 1                                                                                                                                                                |
| AX, AX, sac                         | (, [%saddrg1]                                                                                                                      | 0 0 1 1  ← Saddr1  0 0 0 0  ← High A                                                                 | $\begin{array}{ccc} 1 & 1 & 0 & 0 \\ \text{1-offset} & \rightarrow & \\ & 1 & 0 & 1 & 0 \\ \text{ddress} & \rightarrow & \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 0 0 0                                                                                                                                                                                                                                                 | 0 1 1 1                                                                   | 0 0 1 1 0 1 0 1                                                                                                                                                                                  |
| AX, sad                             | 7, !addr16                                                                                                                         | ← Saddr1 0 0 0 0 ← High A                                                                            | $\begin{array}{ccc} \text{I-offset} & \rightarrow \\ & 1 & 0 & 1 & 0 \\ & & \text{ddress} & \rightarrow \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                         |                                                                           |                                                                                                                                                                                                  |
| sad                                 |                                                                                                                                    | ← High A                                                                                             | .ddress →                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 1 0 0                                                                                                                                                                                                                                                 | 0 1 0 1                                                                   | ← Low Address →                                                                                                                                                                                  |
| sad                                 | , !!addr24                                                                                                                         |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                         |                                                                           |                                                                                                                                                                                                  |
| sad                                 |                                                                                                                                    | ← Low A                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 1 0 1<br>← High A                                                                                                                                                                                                                                     | 0 1 0 1<br>ddress →                                                       | ← High-w Address →                                                                                                                                                                               |
|                                     | ddrp2, saddrp2'                                                                                                                    | 0 0 1 0                                                                                              | 1 0 1 0<br>2-offset →                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 0 0 0                                                                                                                                                                                                                                                 | 0 1 0 0                                                                   | ← Saddr2'-offset →                                                                                                                                                                               |
| sad                                 | ddrp2, saddrp1                                                                                                                     | 0 0 1 0<br>← Saddr2                                                                                  | 1 0 1 0<br>2-offset →                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 0 0 1                                                                                                                                                                                                                                                 | 0 1 0 0                                                                   | ← Saddr1-offset →                                                                                                                                                                                |
| 543                                 | ddrp1, saddrp2                                                                                                                     |                                                                                                      | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 0 1 0                                                                                                                                                                                                                                                 | 0 1 0 0                                                                   | ← Saddr2-offset →                                                                                                                                                                                |
| sad                                 | ddrp1, saddrp1'                                                                                                                    |                                                                                                      | $\begin{array}{ccccc} 1 & 0 & 1 & 0 \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ &$ | 1 0 1 1                                                                                                                                                                                                                                                 | 0 1 0 0                                                                   | ← Saddr1'-offset →                                                                                                                                                                               |
| AX                                  | (, [TDE + byte]                                                                                                                    | 0 0 0 0                                                                                              | 0 1 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 0 0 0                                                                                                                                                                                                                                                 | 0 1 0 1                                                                   | $\leftarrow$ Low Offset $\rightarrow$                                                                                                                                                            |
| AX                                  | (, [SP + byte]                                                                                                                     | 0 0 0 0                                                                                              | 0 1 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 0 0 1                                                                                                                                                                                                                                                 | 0 1 0 1                                                                   | $\leftarrow$ Low Offset $\rightarrow$                                                                                                                                                            |
| AX                                  | (, [WHL + byte]                                                                                                                    | 0 0 0 0                                                                                              | 0 1 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 0 1 0                                                                                                                                                                                                                                                 | 0 1 0 1                                                                   | $\leftarrow$ Low Offset $\rightarrow$                                                                                                                                                            |
| AX,                                 | (, [UUP + byte]                                                                                                                    | 0 0 0 0                                                                                              | 0 1 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 0 1 1                                                                                                                                                                                                                                                 | 0 1 0 1                                                                   | $\leftarrow$ Low Offset $\rightarrow$                                                                                                                                                            |
| AX                                  | (, [VVP + byte]                                                                                                                    | 0 0 0 0                                                                                              | 0 1 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 1 0 0                                                                                                                                                                                                                                                 | 0 1 0 1                                                                   | $\leftarrow$ Low Offset $\rightarrow$                                                                                                                                                            |
| AX.                                 | (, imm24 [DE]                                                                                                                      | 0 0 0 0                                                                                              | 1 0 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 0 0 0                                                                                                                                                                                                                                                 | 0 1 0 1                                                                   | $\leftarrow$ Low Offset $\rightarrow$                                                                                                                                                            |
|                                     |                                                                                                                                    | ← High (                                                                                             | Offset $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ← High-w                                                                                                                                                                                                                                                | Offset $\rightarrow$                                                      |                                                                                                                                                                                                  |
| AX                                  |                                                                                                                                    | 0 0 0 0                                                                                              | 1 0 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 0 0 1                                                                                                                                                                                                                                                 | 0 1 0 1<br>Offset →                                                       | $\leftarrow$ Low Offset $\rightarrow$                                                                                                                                                            |

| Mnemonic | Operands       | Operation Code                         |                                          |                                       |  |  |  |
|----------|----------------|----------------------------------------|------------------------------------------|---------------------------------------|--|--|--|
|          |                | B1                                     | B2                                       | В3                                    |  |  |  |
|          |                | B4                                     | B5                                       | В6                                    |  |  |  |
|          |                | B7                                     |                                          |                                       |  |  |  |
| XCHW     | AX, imm24 [HL] | 0 0 0 0 1 0 1 0                        | 0010 0101                                | $\leftarrow$ Low Offset $\rightarrow$ |  |  |  |
|          |                | $\leftarrow$ High Offset $\rightarrow$ | $\leftarrow$ High-w Offset $\rightarrow$ |                                       |  |  |  |
|          | AX, imm24 [B]  | 0 0 0 0 1 0 1 0                        | 0 0 1 1 0 1 0 1                          | $\leftarrow$ Low Offset $\rightarrow$ |  |  |  |
|          |                | $\leftarrow$ High Offset $\rightarrow$ | $\leftarrow$ High-w Offset $\rightarrow$ |                                       |  |  |  |
|          | AX, [TDE +]    | 0 0 0 1 0 1 1 0                        | 0000 0101                                |                                       |  |  |  |
|          | AX, [WHL +]    | 0 0 0 1 0 1 1 0                        | 0 0 0 1 0 1 0 1                          |                                       |  |  |  |
|          | AX, [TDE –]    | 0 0 0 1 0 1 1 0                        | 0010 0101                                |                                       |  |  |  |
|          | AX, [WHL –]    | 0 0 0 1 0 1 1 0                        | 0 0 1 1 0 1 0 1                          |                                       |  |  |  |
|          | AX, [TDE]      | 0 0 0 1 0 1 1 0                        | 0 1 0 0 0 1 0 1                          |                                       |  |  |  |
|          | AX, [WHL]      | 0 0 0 1 0 1 1 0                        | 0 1 0 1 0 1 0 1                          |                                       |  |  |  |
|          | AX, [VVP]      | 0 0 0 1 0 1 1 0                        | 0 1 1 0 0 1 0 1                          |                                       |  |  |  |
|          | AX, [UUP]      | 0 0 0 1 0 1 1 0                        | 0 1 1 1 0 1 0 1                          |                                       |  |  |  |
|          | AX, [TDE + A]  | 0 0 0 1 0 1 1 1                        | 0000 0101                                |                                       |  |  |  |
|          | AX, [WHL + A]  | 0 0 0 1 0 1 1 1                        | 0001 0101                                |                                       |  |  |  |
|          | AX, [TDE + B]  | 0 0 0 1 0 1 1 1                        | 0010 0101                                |                                       |  |  |  |
|          | AX, [WHL + B]  | 0001 0111                              | 0011 0101                                |                                       |  |  |  |
|          | AX, [VVP + DE] | 0001 0111                              | 0 1 0 0 0 1 0 1                          |                                       |  |  |  |
|          | AX, [VVP + HL] | 0001 0111                              | 0 1 0 1 0 1 0 1                          |                                       |  |  |  |
|          | AX, [TDE + C]  | 0001 0111                              | 0110 0101                                |                                       |  |  |  |
|          | AX, [WHL + C]  | 0 0 0 1 0 1 1 1                        | 0 1 1 1 0 1 0 1                          |                                       |  |  |  |

## (6) 8-bit operation instructions: ADD, ADDC, SUB, SUBC, CMP, AND, OR, XOR

| Mnemonic | Operands        | Operation Code                                   |                                                                                                            |                                                                                                            |  |
|----------|-----------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|
|          |                 | B1                                               | B2                                                                                                         | В3                                                                                                         |  |
|          |                 | B4                                               | B5                                                                                                         | В6                                                                                                         |  |
|          |                 | В7                                               |                                                                                                            |                                                                                                            |  |
| ADD      | A, #byte        | 1010 1000                                        | $\leftarrow$ #byte $\rightarrow$                                                                           |                                                                                                            |  |
|          | r, #byte        | 0 1 1 1 1 0 0 0                                  | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 0 1 1                                        | ← #byte →                                                                                                  |  |
|          | saddr2, #byte   | 0 1 1 0 1 0 0 0                                  | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   | $\leftarrow$ #byte $\rightarrow$                                                                           |  |
|          | saddr1, #byte   | 0011 1100                                        | 0110 1000                                                                                                  | $\leftarrow$ Saddr1-offset $\rightarrow$                                                                   |  |
|          |                 | $\leftarrow$ #byte $\rightarrow$                 |                                                                                                            |                                                                                                            |  |
|          | sfr, #byte      | 0000 0001                                        | 0110 1000                                                                                                  | $\leftarrow$ Sfr-offset $\rightarrow$                                                                      |  |
|          |                 | $\leftarrow$ #byte $\rightarrow$                 |                                                                                                            |                                                                                                            |  |
|          | r, r1           | 1 0 0 0 1 0 0 0                                  | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 R <sub>2</sub> R <sub>1</sub> R <sub>0</sub> |                                                                                                            |  |
|          | r, r2           | 0 0 1 1 1 1 0 0                                  | 1 0 0 0 1 0 0 0                                                                                            | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 R <sub>2</sub> R <sub>1</sub> R <sub>0</sub> |  |
|          | A, saddr2       | 1 0 0 1 1 0 0 0                                  | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   |                                                                                                            |  |
|          | r, saddr2       | 0 1 1 1 1 0 0 0                                  | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 0 0 0                                        | $\leftarrow  Saddr2\text{-offset}  \rightarrow $                                                           |  |
|          | r, saddr1       | 0 1 1 1 1 0 0 0                                  | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 0 0 1                                        | $\leftarrow$ Saddr1-offset $\rightarrow$                                                                   |  |
|          | saddr2, r       | 0 1 1 1 1 0 0 0                                  | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 1 0 0                                        | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   |  |
|          | saddr1, r       | 0 1 1 1 1 0 0 0                                  | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 1 0 1                                        | $\leftarrow$ Saddr1-offset $\rightarrow$                                                                   |  |
|          | r, sfr          | 0 1 1 1 1 0 0 0                                  | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 0 1 0                                        | $\leftarrow$ Sfr-offset $\rightarrow$                                                                      |  |
|          | sfr, r          | 0 1 1 1 1 0 0 0                                  | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 1 1 0                                        | $\leftarrow$ Sfr-offset $\rightarrow$                                                                      |  |
|          | saddr2, saddr2' | 0010 1010                                        | 0000 1000                                                                                                  | $\leftarrow$ Saddr2'-offset $\rightarrow$                                                                  |  |
|          |                 | $\leftarrow  Saddr2\text{-offset}  \rightarrow $ |                                                                                                            |                                                                                                            |  |
|          | saddr2, saddr1  | 0010 1010                                        | 0001 1000                                                                                                  | $\leftarrow$ Saddr1-offset $\rightarrow$                                                                   |  |
|          |                 | $\leftarrow$ Saddr2-offset $\rightarrow$         |                                                                                                            |                                                                                                            |  |
|          | saddr1, saddr2  | 0 0 1 0 1 0 1 0                                  | 0 0 1 0 1 0 0 0                                                                                            | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   |  |
|          |                 | $\leftarrow$ Saddr1-offset $\rightarrow$         |                                                                                                            |                                                                                                            |  |
|          | saddr1, saddr1' | 0010 1010                                        | 0 0 1 1 1 0 0 0                                                                                            | $\leftarrow$ Saddr1'-offset $\rightarrow$                                                                  |  |
|          |                 | $\leftarrow$ Saddr1-offset $\rightarrow$         |                                                                                                            |                                                                                                            |  |
|          | A, [saddrp2]    | 0 0 0 0 0 1 1 1                                  | 0 0 1 0 1 0 0 0                                                                                            | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   |  |
|          | A, [saddrp1]    | 0 0 1 1 1 1 0 0                                  | 0 0 0 0 0 1 1 1                                                                                            | 0 0 1 0 1 0 0 0                                                                                            |  |
|          |                 | ← Saddr1-offset →                                |                                                                                                            |                                                                                                            |  |
|          | A, [%saddrg2]   | 0 0 0 0 0 1 1 1                                  | 0 0 1 1 1 0 0 0                                                                                            | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   |  |
|          | A, [%saddrg1]   | 0 0 1 1 1 1 0 0                                  | 0 0 0 0 0 1 1 1                                                                                            | 0011 1000                                                                                                  |  |
|          |                 | $\leftarrow$ Saddr1-offset $\rightarrow$         | ]                                                                                                          |                                                                                                            |  |
|          | [saddrp2], A    | 0 0 0 0 0 1 1 1                                  | 1 0 1 0 1 0 0 0                                                                                            | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   |  |
|          | [saddrp1], A    | 0 0 1 1 1 1 0 0                                  | 0000 0111                                                                                                  | 1010 1000                                                                                                  |  |
|          |                 | ← Saddr1-offset →                                |                                                                                                            |                                                                                                            |  |

| Mnemonic | Operands        |                                         | Operation Code                           | Operation Code                                                  |  |  |  |
|----------|-----------------|-----------------------------------------|------------------------------------------|-----------------------------------------------------------------|--|--|--|
|          |                 | B1                                      | B2                                       | В3                                                              |  |  |  |
|          |                 | B4                                      | B5                                       | В6                                                              |  |  |  |
|          |                 | В7                                      |                                          |                                                                 |  |  |  |
| ADD      | [%saddrg2], A   | 0 0 0 0 0 1 1 1                         | 1011 1000                                | $\leftarrow  \text{Saddr2-offset}  \rightarrow $                |  |  |  |
|          | [%saddrg1], A   | 0 0 1 1 1 1 0 0                         | 0000 0111                                | 1011 1000                                                       |  |  |  |
|          |                 | ← Saddr1 Offset →                       |                                          |                                                                 |  |  |  |
|          | A, !addr16      | 0000 1010                               | 0100 1000                                | $\leftarrow$ Low Address $\rightarrow$                          |  |  |  |
|          |                 | $\leftarrow$ High Address $\rightarrow$ |                                          |                                                                 |  |  |  |
|          | A, !!addr24     | 0 0 0 0 1 0 1 0                         | 0101 1000                                | $\leftarrow$ High-w Address $\rightarrow$                       |  |  |  |
|          |                 | ← Low Address →                         | ← High Address →                         |                                                                 |  |  |  |
|          | !addr16, A      | 0000 1010                               | 1100 1000                                | $\leftarrow$ Low Address $ ightarrow$                           |  |  |  |
|          |                 | ← High Address →                        |                                          |                                                                 |  |  |  |
|          | !!addr24, A     | 0 0 0 0 1 0 1 0                         | 1101 1000                                | $\leftarrow$ High-w Address $\rightarrow$                       |  |  |  |
|          |                 | ← Low Address →                         | ← High Address →                         |                                                                 |  |  |  |
|          | A, [TDE +]      | 0 0 0 1 0 1 1 0                         | 0000 1000                                |                                                                 |  |  |  |
|          | A, [WHL +]      | 0 0 0 1 0 1 1 0                         | 0001 1000                                |                                                                 |  |  |  |
|          | A, [TDE –]      | 0 0 0 1 0 1 1 0                         | 0010 1000                                |                                                                 |  |  |  |
|          | A, [WHL –]      | 0 0 0 1 0 1 1 0                         | 0011 1000                                |                                                                 |  |  |  |
|          | A, [TDE]        | 0 0 0 1 0 1 1 0                         | 0100 1000                                |                                                                 |  |  |  |
|          | A, [WHL]        | 0 0 0 1 0 1 1 0                         | 0 1 0 1 1 0 0 0                          |                                                                 |  |  |  |
|          | A, [VVP]        | 0 0 0 1 0 1 1 0                         | 0110 1000                                |                                                                 |  |  |  |
|          | A, [UUP]        | 0 0 0 1 0 1 1 0                         | 0 1 1 1 1 0 0 0                          |                                                                 |  |  |  |
|          | A, [TDE + byte] | 0 0 0 0 0 1 1 0                         | 0000 1000                                | $\leftarrow$ Low Offset $\rightarrow$                           |  |  |  |
|          | A, [SP + byte]  | 0 0 0 0 0 1 1 0                         | 0001 1000                                | $\leftarrow \qquad \text{Low Offset} \qquad \rightarrow \qquad$ |  |  |  |
|          | A, [WHL + byte] | 0 0 0 0 0 1 1 0                         | 0010 1000                                | $\leftarrow$ Low Offset $\rightarrow$                           |  |  |  |
|          | A, [UUP + byte] | 0 0 0 0 0 1 1 0                         | 0011 1000                                | $\leftarrow$ Low Offset $\rightarrow$                           |  |  |  |
|          | A, [VVP + byte] | 0 0 0 0 0 1 1 0                         | 0 1 0 0 1 0 0 0                          | $\leftarrow \qquad \text{Low Offset} \qquad \rightarrow \qquad$ |  |  |  |
|          | A, imm24 [DE]   | 0 0 0 0 1 0 1 0                         | 0000 1000                                | $\leftarrow$ Low Offset $\rightarrow$                           |  |  |  |
|          |                 | ← High Offset →                         | $\leftarrow$ High-w Offset $\rightarrow$ |                                                                 |  |  |  |
|          | A, imm24 [A]    | 0 0 0 0 1 0 1 0                         | 0001 1000                                | $\leftarrow$ Low Offset $\rightarrow$                           |  |  |  |
|          |                 | ← High Offset →                         | $\leftarrow$ High-w Offset $\rightarrow$ |                                                                 |  |  |  |
|          | A, imm24 [HL]   | 0 0 0 0 1 0 1 0                         | 0010 1000                                | $\leftarrow$ Low Offset $\rightarrow$                           |  |  |  |
|          |                 | $\leftarrow$ High Offset $\rightarrow$  | $\leftarrow$ High-w Offset $\rightarrow$ |                                                                 |  |  |  |
|          | A, imm24 [B]    | 0000 1010                               | 0011 1000                                | $\leftarrow$ Low Offset $\rightarrow$                           |  |  |  |
|          |                 | $\leftarrow$ High Offset $\rightarrow$  | $\leftarrow$ High-w Offset $\rightarrow$ |                                                                 |  |  |  |
|          | A, [TDE + A]    | 0001 0111                               | 0000 1000                                |                                                                 |  |  |  |
|          | A, [WHL + A]    | 0 0 0 1 0 1 1 1                         | 0001 1000                                |                                                                 |  |  |  |

| Mnemonic | Operands        |          |                      | Operation | on Code                  |          |            |               |
|----------|-----------------|----------|----------------------|-----------|--------------------------|----------|------------|---------------|
|          |                 | В        | 1                    | Е         | 32                       |          | В3         |               |
|          |                 | В        | 4                    | Е         | 35                       |          | В6         |               |
|          |                 | В        | 7                    |           |                          |          |            |               |
| ADD      | A, [TDE + B]    | 0 0 0 1  | 0 1 1 1              | 0 0 1 0   | 1 0 0 0                  |          |            |               |
|          | A, [WHL + B]    | 0 0 0 1  | 0 1 1 1              | 0 0 1 1   | 1 0 0 0                  |          |            |               |
|          | A, [VVP + DE]   | 0 0 0 1  | 0 1 1 1              | 0 1 0 0   | 1 0 0 0                  |          |            |               |
|          | A, [VVP + HL]   | 0 0 0 1  | 0 1 1 1              | 0 1 0 1   | 1 0 0 0                  |          |            |               |
|          | A, [TDE + C]    | 0 0 0 1  | 0 1 1 1              | 0 1 1 0   | 1 0 0 0                  |          |            |               |
|          | A, [WHL + C]    | 0 0 0 1  | 0 1 1 1              | 0 1 1 1   | 1 0 0 0                  |          |            |               |
|          | [TDE +], A      | 0 0 0 1  | 0 1 1 0              | 1 0 0 0   | 1 0 0 0                  |          |            |               |
|          | [WHL +], A      | 0 0 0 1  | 0 1 1 0              | 1 0 0 1   | 1 0 0 0                  |          |            |               |
|          | [TDE –], A      | 0 0 0 1  | 0 1 1 0              | 1 0 1 0   | 1 0 0 0                  |          |            |               |
|          | [WHL –], A      | 0 0 0 1  | 0 1 1 0              | 1 0 1 1   | 1 0 0 0                  |          |            |               |
|          | [TDE], A        | 0 0 0 1  | 0 1 1 0              | 1 1 0 0   | 1 0 0 0                  |          |            |               |
|          | [WHL], A        | 0 0 0 1  | 0 1 1 0              | 1 1 0 1   | 1 0 0 0                  |          |            |               |
|          | [VVP], A        | 0 0 0 1  | 0 1 1 0              | 1 1 1 0   | 1 0 0 0                  |          |            |               |
|          | [UUP], A        | 0 0 0 1  | 0 1 1 0              | 1 1 1 1   | 1 0 0 0                  |          |            |               |
|          | [TDE + byte], A | 0 0 0 0  | 0 1 1 0              | 1 0 0 0   | 1 0 0 0                  | <b>←</b> | Low Offset | $\rightarrow$ |
|          | [SP + byte], A  | 0 0 0 0  | 0 1 1 0              | 1 0 0 1   | 1 0 0 0                  | <b>←</b> | Low Offset | $\rightarrow$ |
|          | [WHL + byte], A | 0 0 0 0  | 0 1 1 0              | 1 0 1 0   | 1 0 0 0                  | <b>←</b> | Low Offset | $\rightarrow$ |
|          | [UUP + byte], A | 0 0 0 0  | 0 1 1 0              | 1 0 1 1   | 1 0 0 0                  | <b>←</b> | Low Offset | $\rightarrow$ |
|          | [VVP + byte], A | 0 0 0 0  | 0 1 1 0              | 1 1 0 0   | 1 0 0 0                  | <b>←</b> | Low Offset | $\rightarrow$ |
|          | imm24 [DE], A   | 0 0 0 0  | 1010                 | 1 0 0 0   | 1 0 0 0                  | <b>←</b> | Low Offset | $\rightarrow$ |
|          |                 | ← High ( | Offset $\rightarrow$ | ← High-w  | $\sigma$ Offset $\sigma$ |          |            |               |
|          | imm24 [A], A    | 0 0 0 0  | 1 0 1 0              | 1 0 0 1   | 1 0 0 0                  | <b>←</b> | Low Offset | $\rightarrow$ |
|          |                 | ← High ( | Offset $\rightarrow$ | ← High-w  | Offset $\rightarrow$     |          |            |               |
|          | imm24 [HL], A   | 0 0 0 0  | 1 0 1 0              | 1 0 1 0   | 1 0 0 0                  | <b>←</b> | Low Offset | $\rightarrow$ |
|          |                 | ← High ( | Offset $\rightarrow$ | ← High-w  | Offset $\rightarrow$     |          |            |               |
|          | imm24 [B], A    | 0 0 0 0  | 1 0 1 0              | 1 0 1 1   | 1 0 0 0                  | <b>←</b> | Low Offset | $\rightarrow$ |
|          |                 | ← High ( | Offset $\rightarrow$ | ← High-w  | Offset $\rightarrow$     |          |            |               |
|          | [TDE + A], A    | 0 0 0 1  | 0 1 1 1              | 1 0 0 0   | 1 0 0 0                  |          |            |               |
|          | [WHL + A], A    | 0 0 0 1  | 0 1 1 1              | 1 0 0 1   | 1 0 0 0                  |          |            |               |
|          | [TDE + B], A    | 0 0 0 1  | 0 1 1 1              | 1 0 1 0   | 1 0 0 0                  |          |            |               |
|          | [WHL + B], A    | 0 0 0 1  | 0 1 1 1              | 1 0 1 1   | 1 0 0 0                  |          |            |               |
|          | [VVP + DE], A   | 0 0 0 1  | 0 1 1 1              | 1 1 0 0   | 1 0 0 0                  |          |            |               |
|          | [VVP + HL], A   | 0 0 0 1  | 0 1 1 1              | 1 1 0 1   | 1 0 0 0                  |          |            |               |
|          | [TDE + C], A    | 0 0 0 1  | 0 1 1 1              | 1 1 1 0   | 1 0 0 0                  |          |            |               |
|          | [WHL + C], A    | 0 0 0 1  | 0 1 1 1              | 1 1 1 1   | 1 0 0 0                  |          |            |               |

| Mnemonic | Operands        |                                          | Operation Code                                                                                             |                                                                                                            |
|----------|-----------------|------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
|          |                 | B1                                       | B2                                                                                                         | B3                                                                                                         |
|          |                 | B4                                       | B5                                                                                                         | В6                                                                                                         |
|          |                 | В7                                       |                                                                                                            |                                                                                                            |
| ADDC     | A, #byte        | 1010 1001                                | ← #byte →                                                                                                  |                                                                                                            |
|          | r, #byte        | 0 1 1 1 1 0 0 1                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 0 1 1                                        | $\leftarrow$ #byte $\rightarrow$                                                                           |
|          | saddr2, #byte   | 0 1 1 0 1 0 0 1                          | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   | $\leftarrow$ #byte $\rightarrow$                                                                           |
|          | saddr1, #byte   | 0 0 1 1 1 1 0 0                          | 0110 1001                                                                                                  | $\leftarrow$ Saddr1-offset $\rightarrow$                                                                   |
|          |                 | ← #byte →                                |                                                                                                            |                                                                                                            |
|          | sfr, #byte      | 0000 0001                                | 0110 1001                                                                                                  | $\leftarrow$ Sfr-offset $\rightarrow$                                                                      |
|          |                 | ← #byte →                                |                                                                                                            |                                                                                                            |
|          | r, r1           | 1 0 0 0 1 0 0 1                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 R <sub>2</sub> R <sub>1</sub> R <sub>0</sub> |                                                                                                            |
|          | r, r2           | 0 0 1 1 1 1 0 0                          | 1 0 0 0 1 0 0 1                                                                                            | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 R <sub>2</sub> R <sub>1</sub> R <sub>0</sub> |
|          | A, saddr2       | 1 0 0 1 1 0 0 1                          | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   |                                                                                                            |
|          | r, saddr2       | 0 1 1 1 1 0 0 1                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 0 0 0                                        | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   |
|          | r, saddr1       | 0 1 1 1 1 0 0 1                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 0 0 1                                        | $\leftarrow$ Saddr1-offset $\rightarrow$                                                                   |
|          | saddr2, r       | 0 1 1 1 1 0 0 1                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 1 0 0                                        | $\leftarrow  \text{Saddr2-offset}  \rightarrow $                                                           |
|          | saddr1, r       | 0 1 1 1 1 0 0 1                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 1 0 1                                        | $\leftarrow$ Saddr1-offset $\rightarrow$                                                                   |
|          | r, sfr          | 0 1 1 1 1 0 0 1                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 0 1 0                                        | $\leftarrow \qquad Sfr\text{-}offset \qquad \rightarrow \qquad$                                            |
|          | sfr, r          | 0 1 1 1 1 0 0 1                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 1 1 0                                        | $\leftarrow$ Sfr-offset $\rightarrow$                                                                      |
|          | saddr2, saddr2' | 0010 1010                                | 0000 1001                                                                                                  | $\leftarrow$ Saddr2'-offset $\rightarrow$                                                                  |
|          |                 | $\leftarrow$ Saddr2-offset $\rightarrow$ |                                                                                                            |                                                                                                            |
|          | saddr2, saddr1  | 0010 1010                                | 0001 1001                                                                                                  | $\leftarrow$ Saddr1-offset $\rightarrow$                                                                   |
|          |                 | $\leftarrow$ Saddr2-offset $\rightarrow$ |                                                                                                            |                                                                                                            |
|          | saddr1, saddr2  | 0010 1010                                | 0010 1001                                                                                                  | $\leftarrow  Saddr2\text{-offset}  \rightarrow $                                                           |
|          |                 | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                                                                            |                                                                                                            |
|          | saddr1, saddr1' | 0010 1010                                | 0011 1001                                                                                                  | $\leftarrow$ Saddr1'-offset $\rightarrow$                                                                  |
|          |                 | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                                                                            |                                                                                                            |
|          | A, [saddrp2]    | 0 0 0 0 0 1 1 1                          | 0 0 1 0 1 0 0 1                                                                                            | $\leftarrow  Saddr2\text{-offset}  \rightarrow $                                                           |
|          | A, [saddrp1]    | 0 0 1 1 1 1 0 0                          | 0000 0111                                                                                                  | 0010 1001                                                                                                  |
|          |                 | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                                                                            |                                                                                                            |
|          | A, [%saddrg2]   | 0 0 0 0 0 1 1 1                          | 0 0 1 1 1 0 0 1                                                                                            | $\leftarrow  \text{Saddr2-offset}  \rightarrow $                                                           |
|          | A, [%saddrg1]   | 0 0 1 1 1 1 0 0                          | 0000 0111                                                                                                  | 0011 1001                                                                                                  |
|          |                 | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                                                                            |                                                                                                            |
|          | [saddrp2], A    | 0 0 0 0 0 1 1 1                          | 1010 1001                                                                                                  | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   |
|          | [saddrp1], A    | 0 0 1 1 1 1 0 0                          | 0000 0111                                                                                                  | 1010 1001                                                                                                  |
|          |                 | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                                                                            |                                                                                                            |
|          | [%saddrg2], A   | 0 0 0 0 0 1 1 1                          | 1011 1001                                                                                                  | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   |

| Mnemonic | Operands        |                                          | Operation Code                           |                                                                 |
|----------|-----------------|------------------------------------------|------------------------------------------|-----------------------------------------------------------------|
|          |                 | B1                                       | B2                                       | В3                                                              |
|          |                 | B4                                       | B5                                       | B6                                                              |
|          |                 | В7                                       |                                          |                                                                 |
| ADDC     | [%saddrg1], A   | 0 0 1 1 1 1 0 0                          | 0000 0111                                | 1011 1001                                                       |
|          |                 | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                          |                                                                 |
|          | A, !addr16      | 0000 1010                                | 0100 1001                                | $\leftarrow$ Low Address $\rightarrow$                          |
|          |                 | $\leftarrow$ High Address $\rightarrow$  |                                          |                                                                 |
|          | A, !!addr24     | 0000 1010                                | 0101 1001                                | $\leftarrow$ High-w Address $\rightarrow$                       |
|          |                 | $\leftarrow$ Low Address $\rightarrow$   | $\leftarrow$ High Address $\rightarrow$  |                                                                 |
|          | !addr16, A      | 0000 1010                                | 1100 1001                                | $\leftarrow$ Low Address $\rightarrow$                          |
|          |                 | ← High Address →                         |                                          |                                                                 |
|          | !!addr24, A     | 0000 1010                                | 1101 1001                                | $\leftarrow$ High-w Address $\rightarrow$                       |
|          |                 | $\leftarrow$ Low Address $\rightarrow$   | ← High Address →                         |                                                                 |
|          | A, [TDE +]      | 0 0 0 1 0 1 1 0                          | 0000 1001                                |                                                                 |
|          | A, [WHL +]      | 0 0 0 1 0 1 1 0                          | 0001 1001                                |                                                                 |
|          | A, [TDE –]      | 0001 0110                                | 0010 1001                                |                                                                 |
|          | A, [WHL –]      | 0 0 0 1 0 1 1 0                          | 0011 1001                                |                                                                 |
|          | A, [TDE]        | 0 0 0 1 0 1 1 0                          | 0100 1001                                |                                                                 |
|          | A, [WHL]        | 0 0 0 1 0 1 1 0                          | 0 1 0 1 1 0 0 1                          |                                                                 |
|          | A, [VVP]        | 0 0 0 1 0 1 1 0                          | 0110 1001                                |                                                                 |
|          | A, [UUP]        | 0 0 0 1 0 1 1 0                          | 0111 1001                                |                                                                 |
|          | A, [TDE + byte] | 0 0 0 0 0 1 1 0                          | 0000 1001                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          | A, [SP + byte]  | 0000 0110                                | 0001 1001                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          | A, [WHL + byte] | 0000 0110                                | 0010 1001                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          | A, [UUP + byte] | 0 0 0 0 0 1 1 0                          | 0011 1001                                | $\leftarrow \qquad \text{Low Offset} \qquad \rightarrow \qquad$ |
|          | A, [VVP + byte] | 0 0 0 0 0 1 1 0                          | 0100 1001                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          | A, imm24 [DE]   | 0 0 0 0 1 0 1 0                          | 0000 1001                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          |                 | ← High Offset →                          | $\leftarrow$ High-w Offset $\rightarrow$ |                                                                 |
|          | A, imm24 [A]    | 0 0 0 0 1 0 1 0                          | 0001 1001                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          |                 | ← High Offset →                          | $\leftarrow$ High-w Offset $\rightarrow$ |                                                                 |
|          | A, imm24 [HL]   | 0000 1010                                | 0010 1001                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          |                 | $\leftarrow$ High Offset $\rightarrow$   | $\leftarrow$ High-w Offset $\rightarrow$ |                                                                 |
|          | A, imm24 [B]    | 0000 1010                                | 0011 1001                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          |                 | $\leftarrow$ High Offset $\rightarrow$   | $\leftarrow$ High-w Offset $\rightarrow$ |                                                                 |
|          | A, [TDE + A]    | 0 0 0 1 0 1 1 1                          | 0 0 0 0 1 0 0 1                          |                                                                 |
|          | A, [WHL + A]    | 0 0 0 1 0 1 1 1                          | 0001 1001                                |                                                                 |
|          | A, [TDE + B]    | 0 0 0 1 0 1 1 1                          | 0 0 1 0 1 0 0 1                          |                                                                 |

| Mnemonic | Operands        |          |                      | Ope   | ration Code               |          |            |               |
|----------|-----------------|----------|----------------------|-------|---------------------------|----------|------------|---------------|
|          |                 | B1       |                      |       | B2                        |          | В3         |               |
|          |                 | B4       | ļ                    |       | B5                        |          | В6         |               |
|          |                 | B7       | 7                    |       |                           |          |            |               |
| ADDC     | A, [WHL + B]    | 0 0 0 1  | 0 1 1 1              | 0 0 1 | 1 1001                    |          |            |               |
|          | A, [VVP + DE]   | 0 0 0 1  | 0 1 1 1              | 0 1 0 | 0 1001                    |          |            |               |
|          | A, [VVP + HL]   | 0 0 0 1  | 0 1 1 1              | 0 1 0 | 1 1 0 0 1                 |          |            |               |
|          | A, [TDE + C]    | 0 0 0 1  | 0 1 1 1              | 0 1 1 | 0 1 0 0 1                 |          |            |               |
|          | A, [WHL + C]    | 0 0 0 1  | 0 1 1 1              | 0 1 1 | 1 1001                    |          |            |               |
|          | [TDE +], A      | 0 0 0 1  | 0 1 1 0              | 1 0 0 | 0 1 0 0 1                 |          |            |               |
|          | [WHL +], A      | 0 0 0 1  | 0 1 1 0              | 1 0 0 | 1 1001                    |          |            |               |
|          | [TDE –], A      | 0 0 0 1  | 0 1 1 0              | 1 0 1 | 0 1001                    |          |            |               |
|          | [WHL –], A      | 0 0 0 1  | 0 1 1 0              | 1 0 1 | 1 1 0 0 1                 |          |            |               |
|          | [TDE], A        | 0 0 0 1  | 0 1 1 0              | 1 1 0 | 0 1 0 0 1                 |          |            |               |
|          | [WHL], A        | 0 0 0 1  | 0 1 1 0              | 1 1 0 | 1 1 0 0 1                 |          |            |               |
|          | [VVP], A        | 0 0 0 1  | 0 1 1 0              | 1 1 1 | 0 1 0 0 1                 |          |            |               |
|          | [UUP], A        | 0 0 0 1  | 0 1 1 0              | 1 1 1 | 1 1 0 0 1                 |          |            |               |
|          | [TDE + byte], A | 0 0 0 0  | 0 1 1 0              | 1 0 0 | 0 1 0 0 1                 | <b>←</b> | Low Offset | $\rightarrow$ |
|          | [SP + byte], A  | 0 0 0 0  | 0 1 1 0              | 1 0 0 | 1 1 0 0 1                 | <b>←</b> | Low Offset | $\rightarrow$ |
|          | [WHL + byte], A | 0 0 0 0  | 0 1 1 0              | 1 0 1 | 0 1 0 0 1                 | <b>←</b> | Low Offset | $\rightarrow$ |
|          | [UUP + byte], A | 0 0 0 0  | 0 1 1 0              | 1 0 1 | 1 1 0 0 1                 | <b>←</b> | Low Offset | $\rightarrow$ |
|          | [VVP + byte], A | 0 0 0 0  | 0 1 1 0              | 1 1 0 | 0 1 0 0 1                 | <b>←</b> | Low Offset | $\rightarrow$ |
|          | imm24 [DE], A   | 0 0 0 0  | 1 0 1 0              | 1 0 0 | 0 1001                    | <b>←</b> | Low Offset | $\rightarrow$ |
|          |                 | ← High C | Offset $\rightarrow$ | ← Hig | gh-w Offset $\rightarrow$ |          |            |               |
|          | imm24 [A], A    | 0 0 0 0  | 1 0 1 0              | 1 0 0 | 1 1001                    | <b>←</b> | Low Offset | $\rightarrow$ |
|          |                 | ← High C | Offset $\rightarrow$ | ← Hig | gh-w Offset $\rightarrow$ |          |            |               |
|          | imm24 [HL], A   | 0 0 0 0  | 1 0 1 0              | 1 0 1 | 0 1001                    | <b>←</b> | Low Offset | $\rightarrow$ |
|          |                 | ← High C | Offset $\rightarrow$ | ← Hig | gh-w Offset $ ightarrow$  |          |            |               |
|          | imm24 [B], A    | 0 0 0 0  | 1010                 | 1 0 1 | 1 1001                    | <b>←</b> | Low Offset | $\rightarrow$ |
|          |                 | ← High C | Offset $\rightarrow$ | ← Hig | h-w Offset $\rightarrow$  |          |            |               |
|          | [TDE + A], A    | 0 0 0 1  | 0 1 1 1              | 1 0 0 | 0 1 0 0 1                 |          |            |               |
|          | [WHL + A], A    | 0 0 0 1  | 0 1 1 1              | 1 0 0 | 1 1 0 0 1                 |          |            |               |
|          | [TDE + B], A    | 0 0 0 1  | 0 1 1 1              | 1 0 1 | 0 1 0 0 1                 |          |            |               |
|          | [WHL + B], A    | 0 0 0 1  | 0 1 1 1              | 1 0 1 | 1 1 0 0 1                 |          |            |               |
|          | [VVP + DE], A   | 0 0 0 1  | 0 1 1 1              | 1 1 0 | 0 1 0 0 1                 |          |            |               |
|          | [VVP + HL], A   | 0 0 0 1  | 0 1 1 1              | 1 1 0 | 1 1 0 0 1                 |          |            |               |
|          | [TDE + C], A    | 0 0 0 1  | 0 1 1 1              | 1 1 1 | 0 1 0 0 1                 |          |            |               |
|          | [WHL + C], A    | 0 0 0 1  | 0 1 1 1              | 1 1 1 | 1 1 0 0 1                 |          |            |               |

| Mnemonic | Operands Operation Code |                                          |                                                                                                            |                                                                                                            |
|----------|-------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
|          |                         | B1                                       | B2                                                                                                         | В3                                                                                                         |
|          |                         | B4                                       | B5                                                                                                         | В6                                                                                                         |
|          |                         | В7                                       |                                                                                                            |                                                                                                            |
| SUB      | A, #byte                | 1010 1010                                | ← #byte →                                                                                                  |                                                                                                            |
|          | r, #byte                | 0 1 1 1 1 0 1 0                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 0 1 1                                        | $\leftarrow$ #byte $\rightarrow$                                                                           |
|          | saddr2, #byte           | 0 1 1 0 1 0 1 0                          | $\leftarrow$ Saddr2 Offset $\rightarrow$                                                                   | $\leftarrow$ #byte $\rightarrow$                                                                           |
|          | saddr1, #byte           | 0 0 1 1 1 1 0 0                          | 0110 1010                                                                                                  | $\leftarrow$ Saddr1-Offset $\rightarrow$                                                                   |
|          |                         | $\leftarrow$ #byte $\rightarrow$         |                                                                                                            |                                                                                                            |
|          | sfr, #byte              | 0000 0001                                | 0110 1010                                                                                                  | $\leftarrow$ Sfr-offset $\rightarrow$                                                                      |
|          |                         | $\leftarrow$ #byte $\rightarrow$         |                                                                                                            |                                                                                                            |
|          | r, r1                   | 1 0 0 0 1 0 1 0                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 R <sub>2</sub> R <sub>1</sub> R <sub>0</sub> |                                                                                                            |
|          | r, r2                   | 0 0 1 1 1 1 0 0                          | 1000 1010                                                                                                  | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 R <sub>2</sub> R <sub>1</sub> R <sub>0</sub> |
|          | A, saddr2               | 1001 1010                                | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   |                                                                                                            |
|          | r, saddr2               | 0 1 1 1 1 0 1 0                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 0 0 0                                        | $\leftarrow  \text{Saddr2-offset}  \rightarrow $                                                           |
|          | r, saddr1               | 0 1 1 1 1 0 1 0                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 0 0 1                                        | $\leftarrow$ Saddr1-offset $\rightarrow$                                                                   |
|          | saddr2, r               | 0 1 1 1 1 0 1 0                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 1 0 0                                        | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   |
|          | saddr1, r               | 0 1 1 1 1 0 1 0                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 1 0 1                                        | $\leftarrow$ Saddr1-offset $\rightarrow$                                                                   |
|          | r, sfr                  | 0 1 1 1 1 0 1 0                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 0 1 0                                        | $\leftarrow \qquad Sfr\text{-}offset \qquad \rightarrow \qquad$                                            |
|          | sfr, r                  | 0 1 1 1 1 0 1 0                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 1 1 0                                        | $\leftarrow$ Sfr-offset $\rightarrow$                                                                      |
|          | saddr2, saddr2'         | 0010 1010                                | 0000 1010                                                                                                  | $\leftarrow$ Saddr2'-offset $\rightarrow$                                                                  |
|          |                         | $\leftarrow$ Saddr2-offset $\rightarrow$ |                                                                                                            |                                                                                                            |
|          | saddr2, saddr1          | 0010 1010                                | 0001 1010                                                                                                  | $\leftarrow$ Saddr1-offset $\rightarrow$                                                                   |
|          |                         | $\leftarrow$ Saddr2-offset $\rightarrow$ |                                                                                                            |                                                                                                            |
|          | saddr1, saddr2          | 0010 1010                                | 0010 1010                                                                                                  | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   |
|          |                         | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                                                                            |                                                                                                            |
|          | saddr1, saddr1'         | 0010 1010                                | 0011 1010                                                                                                  | $\leftarrow$ Saddr1'-offset $\rightarrow$                                                                  |
|          |                         | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                                                                            |                                                                                                            |
|          | A, [saddrp2]            | 0000 0111                                | 0010 1010                                                                                                  | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   |
|          | A, [saddrp1]            | 0 0 1 1 1 1 0 0                          | 0000 0111                                                                                                  | 0010 1010                                                                                                  |
|          |                         | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                                                                            |                                                                                                            |
|          | A, [%saddrg2]           | 0000 0111                                | 0 0 1 1 1 0 1 0                                                                                            | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   |
|          | A, [%saddrg1]           | 0 0 1 1 1 1 0 0                          | 0000 0111                                                                                                  | 0011 1010                                                                                                  |
|          |                         | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                                                                            |                                                                                                            |
|          | [saddrp2], A            | 0000 0111                                | 1010 1010                                                                                                  | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   |
|          | [saddrp1], A            | 0 0 1 1 1 1 0 0                          | 0000 0111                                                                                                  | 1010 1010                                                                                                  |
|          |                         | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                                                                            |                                                                                                            |
|          | [%saddrg2], A           | 0 0 0 0 0 1 1 1                          | 1011 1010                                                                                                  | $\leftarrow  \text{Saddr2-offset}  \rightarrow $                                                           |

| Mnemonic | Operands        |                                          | Operation Code                           |                                                                 |
|----------|-----------------|------------------------------------------|------------------------------------------|-----------------------------------------------------------------|
|          |                 | B1                                       | B2                                       | В3                                                              |
|          |                 | B4                                       | B5                                       | В6                                                              |
|          |                 | B7                                       |                                          |                                                                 |
| SUB      | [%saddrg1], A   | 0 0 1 1 1 1 0 0                          | 0000 0111                                | 1011 1010                                                       |
|          |                 | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                          |                                                                 |
|          | A, !addr16      | 0 0 0 0 1 0 1 0                          | 0100 1010                                | $\leftarrow$ Low Address $\rightarrow$                          |
|          |                 | ← High Address →                         |                                          |                                                                 |
|          | A, !!addr24     | 0000 1010                                | 0101 1010                                | $\leftarrow$ High-w Address $\rightarrow$                       |
|          |                 | $\leftarrow$ Low Address $\rightarrow$   | $\leftarrow$ High Address $\rightarrow$  |                                                                 |
|          | !addr16, A      | 0000 1010                                | 1100 1010                                | $\leftarrow$ Low Address $\rightarrow$                          |
|          |                 | $\leftarrow$ High Address $\rightarrow$  |                                          |                                                                 |
|          | !!addr24, A     | 0000 1010                                | 1101 1010                                | $\leftarrow$ High-w Address $\rightarrow$                       |
|          |                 | $\leftarrow$ Low Address $\rightarrow$   | ← High Address →                         |                                                                 |
|          | A, [TDE +]      | 0 0 0 1 0 1 1 0                          | 0000 1010                                |                                                                 |
|          | A, [WHL +]      | 0 0 0 1 0 1 1 0                          | 0001 1010                                |                                                                 |
|          | A, [TDE –]      | 0 0 0 1 0 1 1 0                          | 0010 1010                                |                                                                 |
|          | A, [WHL –]      | 0 0 0 1 0 1 1 0                          | 0011 1010                                |                                                                 |
|          | A, [TDE]        | 0 0 0 1 0 1 1 0                          | 0100 1010                                |                                                                 |
|          | A, [WHL]        | 0 0 0 1 0 1 1 0                          | 0 1 0 1 1 0 1 0                          |                                                                 |
|          | A, [VVP]        | 0 0 0 1 0 1 1 0                          | 0110 1010                                |                                                                 |
|          | A, [UUP]        | 0 0 0 1 0 1 1 0                          | 0 1 1 1 1 0 1 0                          |                                                                 |
|          | A, [TDE + byte] | 0 0 0 0 0 1 1 0                          | 0000 1010                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          | A, [SP + byte]  | 0 0 0 0 0 1 1 0                          | 0001 1010                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          | A, [WHL + byte] | 0000 0110                                | 0010 1010                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          | A, [UUP + byte] | 0 0 0 0 0 1 1 0                          | 0011 1010                                | $\leftarrow \qquad \text{Low Offset} \qquad \rightarrow \qquad$ |
|          | A, [VVP + byte] | 0 0 0 0 0 1 1 0                          | 0100 1010                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          | A, imm24 [DE]   | 0000 1010                                | 0000 1010                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          |                 | ← High Offset →                          | $\leftarrow$ High-w Offset $\rightarrow$ |                                                                 |
|          | A, imm24 [A]    | 0 0 0 0 1 0 1 0                          | 0001 1010                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          |                 | ← High Offset →                          | $\leftarrow$ High-w Offset $\rightarrow$ |                                                                 |
|          | A, imm24 [HL]   | 0000 1010                                | 0010 1010                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          |                 | $\leftarrow$ High Offset $\rightarrow$   | $\leftarrow$ High-w Offset $\rightarrow$ |                                                                 |
|          | A, imm24 [B]    | 0 0 0 0 1 0 1 0                          | 0011 1010                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          |                 | $\leftarrow$ High Offset $\rightarrow$   | $\leftarrow$ High-w Offset $\rightarrow$ |                                                                 |
|          | A, [TDE + A]    | 0 0 0 1 0 1 1 1                          | 0000 1010                                |                                                                 |
|          | A, [WHL + A]    | 0 0 0 1 0 1 1 1                          | 0001 1010                                |                                                                 |
|          | A, [TDE + B]    | 0 0 0 1 0 1 1 1                          | 0 0 1 0 1 0 1 0                          |                                                                 |

| Mnemonic | Operands        |         |                      | Operati  | on Code                |          |            |               |
|----------|-----------------|---------|----------------------|----------|------------------------|----------|------------|---------------|
|          |                 | В       | 1                    | E        | 32                     |          | В3         |               |
|          |                 | В       | 4                    |          | 35                     |          | В6         |               |
|          |                 | В       | 7                    |          |                        |          |            |               |
| SUB      | A, [WHL + B]    | 0 0 0 1 | 0 1 1 1              | 0 0 1 1  | 1 0 1 0                |          |            |               |
|          | A, [VVP + DE]   | 0 0 0 1 | 0 1 1 1              | 0 1 0 0  | 1 0 1 0                |          |            |               |
|          | A, [VVP + HL]   | 0 0 0 1 | 0 1 1 1              | 0 1 0 1  | 1 0 1 0                |          |            |               |
|          | A, [TDE + C]    | 0 0 0 1 | 0 1 1 1              | 0 1 1 0  | 1 0 1 0                |          |            |               |
|          | A, [WHL + C]    | 0 0 0 1 | 0 1 1 1              | 0 1 1 1  | 1 0 1 0                |          |            |               |
|          | [TDE +], A      | 0 0 0 1 | 0 1 1 0              | 1 0 0 0  | 1 0 1 0                |          |            |               |
|          | [WHL +], A      | 0 0 0 1 | 0 1 1 0              | 1 0 0 1  | 1 0 1 0                |          |            |               |
|          | [TDE –], A      | 0 0 0 1 | 0 1 1 0              | 1 0 1 0  | 1 0 1 0                |          |            |               |
|          | [WHL –], A      | 0 0 0 1 | 0 1 1 0              | 1 0 1 1  | 1 0 1 0                |          |            |               |
|          | [TDE], A        | 0 0 0 1 | 0 1 1 0              | 1 1 0 0  | 1 0 1 0                |          |            |               |
|          | [WHL], A        | 0 0 0 1 | 0 1 1 0              | 1 1 0 1  | 1 0 1 0                |          |            |               |
|          | [VVP], A        | 0 0 0 1 | 0 1 1 0              | 1 1 1 0  | 1 0 1 0                |          |            |               |
|          | [UUP], A        | 0 0 0 1 | 0 1 1 0              | 1 1 1 1  | 1 0 1 0                |          |            |               |
|          | [TDE + byte], A | 0 0 0 0 | 0 1 1 0              | 1 0 0 0  | 1 0 1 0                | <b>←</b> | Low Offset | $\rightarrow$ |
|          | [SP + byte], A  | 0 0 0 0 | 0 1 1 0              | 1 0 0 1  | 1 0 1 0                | <b>←</b> | Low Offset | $\rightarrow$ |
|          | [WHL + byte], A | 0 0 0 0 | 0 1 1 0              | 1 0 1 0  | 1 0 1 0                | <b>←</b> | Low Offset | $\rightarrow$ |
|          | [UUP + byte], A | 0 0 0 0 | 0 1 1 0              | 1 0 1 1  | 1 0 1 0                | <b>←</b> | Low Offset | $\rightarrow$ |
|          | [VVP + byte], A | 0 0 0 0 | 0 1 1 0              | 1 1 0 0  | 1 0 1 0                | <b>←</b> | Low Offset | $\rightarrow$ |
|          | imm24 [DE], A   | 0 0 0 0 | 1 0 1 0              | 1 0 0 0  | 1 0 1 0                | <b>←</b> | Low Offset | $\rightarrow$ |
|          |                 | ← High  | Offset $\rightarrow$ | ← High-\ | v Offset $\rightarrow$ |          |            |               |
|          | imm24 [A], A    | 0 0 0 0 | 1 0 1 0              | 1 0 0 1  | 1 0 1 0                | <b>←</b> | Low Offset | $\rightarrow$ |
|          |                 | ← High  | Offset $\rightarrow$ | ← High-v | v Offset $\rightarrow$ |          |            |               |
|          | imm24 [HL], A   | 0 0 0 0 | 1 0 1 0              | 1 0 1 0  | 1 0 1 0                | <b>←</b> | Low Offset | $\rightarrow$ |
|          |                 | ← High  | Offset $\rightarrow$ | ← High-v | v Offset $\rightarrow$ |          |            |               |
|          | imm24 [B], A    | 0 0 0 0 | 1 0 1 0              | 1 0 1 1  | 1 0 1 0                | <b>←</b> | Low Offset | $\rightarrow$ |
|          |                 | ← High  | Offset $\rightarrow$ | ← High-\ | v Offset $\rightarrow$ |          |            |               |
|          | [TDE + A], A    | 0 0 0 1 | 0 1 1 1              | 1 0 0 0  | 1 0 1 0                |          |            |               |
|          | [WHL + A], A    | 0 0 0 1 | 0 1 1 1              | 1 0 0 1  | 1 0 1 0                |          |            |               |
|          | [TDE + B], A    | 0 0 0 1 | 0 1 1 1              | 1 0 1 0  | 1 0 1 0                |          |            |               |
|          | [WHL + B], A    | 0 0 0 1 | 0 1 1 1              | 1 0 1 1  | 1 0 1 0                |          |            |               |
|          | [VVP + DE], A   | 0 0 0 1 | 0 1 1 1              | 1 1 0 0  | 1 0 1 0                |          |            |               |
|          | [VVP + HL], A   | 0 0 0 1 | 0 1 1 1              | 1 1 0 1  | 1 0 1 0                |          |            |               |
|          | [TDE + C], A    | 0 0 0 1 | 0 1 1 1              | 1 1 1 0  | 1 0 1 0                |          |            |               |
|          | [WHL + C], A    | 0 0 0 1 | 0 1 1 1              | 1 1 1 1  | 1 0 1 0                |          |            |               |

| Mnemonic | Operands        |                                          | Operation Code                                                                                             | Operation Code                                                                                             |  |  |  |
|----------|-----------------|------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|--|--|
|          |                 | B1                                       | B2                                                                                                         | B3                                                                                                         |  |  |  |
|          |                 | B4                                       | B5                                                                                                         | В6                                                                                                         |  |  |  |
|          |                 | В7                                       |                                                                                                            |                                                                                                            |  |  |  |
| SUBC     | A, #byte        | 1010 1011                                | ← #byte →                                                                                                  |                                                                                                            |  |  |  |
|          | r, #byte        | 0 1 1 1 1 0 1 1                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 0 1 1                                        | $\leftarrow$ #byte $\rightarrow$                                                                           |  |  |  |
|          | saddr2, #byte   | 0 1 1 0 1 0 1 1                          | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   | $\leftarrow$ #byte $\rightarrow$                                                                           |  |  |  |
|          | saddr1, #byte   | 0 0 1 1 1 1 0 0                          | 0110 1011                                                                                                  | $\leftarrow$ Saddr1-offset $\rightarrow$                                                                   |  |  |  |
|          |                 | $\leftarrow$ #byte $\rightarrow$         |                                                                                                            |                                                                                                            |  |  |  |
|          | sfr, #byte      | 0000 0001                                | 0 1 1 0 1 0 1 1                                                                                            | $\leftarrow$ Sfr-offset $\rightarrow$                                                                      |  |  |  |
|          |                 | $\leftarrow$ #byte $\rightarrow$         |                                                                                                            |                                                                                                            |  |  |  |
|          | r, r1           | 1 0 0 0 1 0 1 1                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 R <sub>2</sub> R <sub>1</sub> R <sub>0</sub> |                                                                                                            |  |  |  |
|          | r, r2           | 0 0 1 1 1 1 0 0                          | 1000 1011                                                                                                  | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 R <sub>2</sub> R <sub>1</sub> R <sub>0</sub> |  |  |  |
|          | A, saddr2       | 1001 1011                                | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   |                                                                                                            |  |  |  |
|          | r, saddr2       | 0 1 1 1 1 0 1 1                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 0 0 0                                        | $\leftarrow  \text{Saddr2-offset}  \rightarrow $                                                           |  |  |  |
|          | r, saddr1       | 0 1 1 1 1 0 1 1                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 0 0 1                                        | $\leftarrow$ Saddr1-offset $\rightarrow$                                                                   |  |  |  |
|          | saddr2, r       | 0 1 1 1 1 0 1 1                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 1 0 0                                        | $\leftarrow  Saddr2\text{-offset}  \rightarrow $                                                           |  |  |  |
|          | saddr1, r       | 0 1 1 1 1 0 1 1                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 1 0 1                                        | $\leftarrow  \text{Saddr1-offset}  \rightarrow $                                                           |  |  |  |
|          | r, sfr          | 0 1 1 1 1 0 1 1                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 0 1 0                                        | $\leftarrow \qquad Sfr\text{-}offset \qquad \rightarrow \qquad$                                            |  |  |  |
|          | sfr, r          | 0 1 1 1 1 0 1 1                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 1 1 0                                        | $\leftarrow \qquad Sfr\text{-}offset \qquad \rightarrow \qquad$                                            |  |  |  |
|          | saddr2, saddr2' | 0010 1010                                | 0000 1011                                                                                                  | $\leftarrow$ Saddr2'-offset $\rightarrow$                                                                  |  |  |  |
|          |                 | $\leftarrow$ Saddr2-offset $\rightarrow$ |                                                                                                            |                                                                                                            |  |  |  |
|          | saddr2, saddr1  | 0 0 1 0 1 0 1 0                          | 0001 1011                                                                                                  | $\leftarrow$ Saddr1-offset $\rightarrow$                                                                   |  |  |  |
|          |                 | $\leftarrow$ Saddr2-offset $\rightarrow$ |                                                                                                            |                                                                                                            |  |  |  |
|          | saddr1, saddr2  | 0 0 1 0 1 0 1 0                          | 0010 1011                                                                                                  | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   |  |  |  |
|          |                 | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                                                                            |                                                                                                            |  |  |  |
|          | saddr1, saddr1' | 0 0 1 0 1 0 1 0                          | 0011 1011                                                                                                  | $\leftarrow$ Saddr1'-offset $\rightarrow$                                                                  |  |  |  |
|          |                 | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                                                                            |                                                                                                            |  |  |  |
|          | A, [saddrp2]    | 0 0 0 0 0 1 1 1                          | 0 0 1 0 1 0 1 1                                                                                            | $\leftarrow  \text{Saddr2-offset}  \rightarrow $                                                           |  |  |  |
|          | A, [saddrp1]    | 0 0 1 1 1 1 0 0                          | 0000 0111                                                                                                  | 0010 1011                                                                                                  |  |  |  |
|          |                 | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                                                                            |                                                                                                            |  |  |  |
|          | A, [%saddrg2]   | 0000 0111                                | 0011 1011                                                                                                  | $\leftarrow  Saddr2\text{-offset}  \rightarrow $                                                           |  |  |  |
|          | A, [%saddrg1]   | 0 0 1 1 1 1 0 0                          | 0000 0111                                                                                                  | 0011 1011                                                                                                  |  |  |  |
|          |                 | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                                                                            |                                                                                                            |  |  |  |
|          | [saddrp2], A    | 0 0 0 0 0 1 1 1                          | 1010 1011                                                                                                  | $\leftarrow  \text{Saddr2-offset}  \rightarrow $                                                           |  |  |  |
|          | [saddrp1], A    | 0011 1100                                | 0000 0111                                                                                                  | 1010 1011                                                                                                  |  |  |  |
|          |                 | ← Saddr1-offset →                        |                                                                                                            |                                                                                                            |  |  |  |
|          | [%saddrg2], A   | 0 0 0 0 0 1 1 1                          | 1011 1011                                                                                                  | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   |  |  |  |

| Mnemonic | Operands        |                                          | Operation Code                           |                                                                 |
|----------|-----------------|------------------------------------------|------------------------------------------|-----------------------------------------------------------------|
|          |                 | B1                                       | B2                                       | В3                                                              |
|          |                 | B4                                       | B5                                       | В6                                                              |
|          |                 | В7                                       |                                          |                                                                 |
| SUBC     | [%saddrg1], A   | 0 0 1 1 1 1 0 0                          | 0000 0111                                | 1011 1011                                                       |
|          |                 | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                          |                                                                 |
|          | A, !addr16      | 0000 1010                                | 0100 1011                                | $\leftarrow$ Low Address $\rightarrow$                          |
|          |                 | $\leftarrow$ High Address $\rightarrow$  |                                          |                                                                 |
|          | A, !!addr24     | 0000 1010                                | 0101 1011                                | $\leftarrow$ High-w Address $\rightarrow$                       |
|          |                 | ← Low Address →                          | $\leftarrow$ High Address $\rightarrow$  |                                                                 |
|          | !addr16, A      | 0 0 0 0 1 0 1 0                          | 1 1 0 0 1 0 1 1                          | $\leftarrow$ Low Address $\rightarrow$                          |
|          |                 | ← High Address →                         |                                          |                                                                 |
|          | !!addr24, A     | 0000 1010                                | 1101 1011                                | $\leftarrow$ High-w Address $\rightarrow$                       |
|          |                 | ← Low Address →                          | $\leftarrow$ High Address $\rightarrow$  |                                                                 |
|          | A, [TDE +]      | 0 0 0 1 0 1 1 0                          | 0000 1011                                |                                                                 |
|          | A, [WHL +]      | 0 0 0 1 0 1 1 0                          | 0001 1011                                |                                                                 |
|          | A, [TDE –]      | 0 0 0 1 0 1 1 0                          | 0010 1011                                |                                                                 |
|          | A, [WHL –]      | 0 0 0 1 0 1 1 0                          | 0011 1011                                |                                                                 |
|          | A, [TDE]        | 0 0 0 1 0 1 1 0                          | 0100 1011                                |                                                                 |
|          | A, [WHL]        | 0 0 0 1 0 1 1 0                          | 0 1 0 1 1 0 1 1                          |                                                                 |
|          | A, [VVP]        | 0 0 0 1 0 1 1 0                          | 0110 1011                                |                                                                 |
|          | A, [UUP]        | 0 0 0 1 0 1 1 0                          | 0 1 1 1 1 0 1 1                          |                                                                 |
|          | A, [TDE + byte] | 0 0 0 0 0 1 1 0                          | 0000 1011                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          | A, [SP + byte]  | 0 0 0 0 0 1 1 0                          | 0001 1011                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          | A, [WHL + byte] | 0 0 0 0 0 1 1 0                          | 0010 1011                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          | A, [UUP + byte] | 0 0 0 0 0 1 1 0                          | 0011 1011                                | $\leftarrow \qquad \text{Low Offset} \qquad \rightarrow \qquad$ |
|          | A, [VVP + byte] | 0 0 0 0 0 1 1 0                          | 0100 1011                                | $\leftarrow \qquad \text{Low Offset} \qquad \rightarrow \qquad$ |
|          | A, imm24 [DE]   | 0000 1010                                | 0000 1011                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          |                 | ← High Offset →                          | $\leftarrow$ High-w Offset $\rightarrow$ |                                                                 |
|          | A, imm24 [A]    | 0 0 0 0 1 0 1 0                          | 0001 1011                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          |                 | ← High Offset →                          | $\leftarrow$ High-w Offset $\rightarrow$ |                                                                 |
|          | A, imm24 [HL]   | 0000 1010                                | 0010 1011                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          |                 | ← High Offset →                          | $\leftarrow$ High-w Offset $\rightarrow$ |                                                                 |
|          | A, imm24 [B]    | 0000 1010                                | 0011 1011                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          |                 | $\leftarrow$ High Offset $\rightarrow$   | $\leftarrow$ High-w Offset $\rightarrow$ |                                                                 |
|          | A, [TDE + A]    | 0 0 0 1 0 1 1 1                          | 0000 1011                                |                                                                 |
|          | A, [WHL + A]    | 0 0 0 1 0 1 1 1                          | 0001 1011                                |                                                                 |
|          | A, [TDE + B]    | 0 0 0 1 0 1 1 1                          | 0010 1011                                |                                                                 |

| Mnemonic | Operands        |          |                      | Operati  | on Code                       |          |            |               |
|----------|-----------------|----------|----------------------|----------|-------------------------------|----------|------------|---------------|
|          |                 | В        | 1                    | Е        | 32                            |          | В3         |               |
|          |                 | В        | 4                    | Е        | 35                            |          | В6         |               |
|          |                 | В        | 7                    |          |                               |          |            |               |
| SUBC     | A, [WHL + B]    | 0 0 0 1  | 0 1 1 1              | 0 0 1 1  | 1 0 1 1                       |          |            |               |
|          | A, [VVP + DE]   | 0 0 0 1  | 0 1 1 1              | 0 1 0 0  | 1 0 1 1                       |          |            |               |
|          | A, [VVP + HL]   | 0 0 0 1  | 0 1 1 1              | 0 1 0 1  | 1 0 1 1                       |          |            |               |
|          | A, [TDE + C]    | 0 0 0 1  | 0 1 1 1              | 0 1 1 0  | 1 0 1 1                       |          |            |               |
|          | A, [WHL + C]    | 0 0 0 1  | 0 1 1 1              | 0 1 1 1  | 1 0 1 1                       |          |            |               |
|          | [TDE +], A      | 0 0 0 1  | 0 1 1 0              | 1 0 0 0  | 1 0 1 1                       |          |            |               |
|          | [WHL +], A      | 0 0 0 1  | 0 1 1 0              | 1 0 0 1  | 1 0 1 1                       |          |            |               |
|          | [TDE –], A      | 0 0 0 1  | 0 1 1 0              | 1 0 1 0  | 1 0 1 1                       |          |            |               |
|          | [WHL –], A      | 0 0 0 1  | 0 1 1 0              | 1 0 1 1  | 1 0 1 1                       |          |            |               |
|          | [TDE], A        | 0 0 0 1  | 0 1 1 0              | 1 1 0 0  | 1 0 1 1                       |          |            |               |
|          | [WHL], A        | 0 0 0 1  | 0 1 1 0              | 1 1 0 1  | 1 0 1 1                       |          |            |               |
|          | [VVP], A        | 0 0 0 1  | 0 1 1 0              | 1 1 1 0  | 1 0 1 1                       |          |            |               |
|          | [UUP], A        | 0 0 0 1  | 0 1 1 0              | 1 1 1 1  | 1 0 1 1                       |          |            |               |
|          | [TDE + byte], A | 0 0 0 0  | 0 1 1 0              | 1 0 0 0  | 1 0 1 1                       | <b>←</b> | Low Offset | $\rightarrow$ |
|          | [SP + byte], A  | 0 0 0 0  | 0 1 1 0              | 1 0 0 1  | 1 0 1 1                       | <b>←</b> | Low Offset | $\rightarrow$ |
|          | [WHL + byte], A | 0 0 0 0  | 0 1 1 0              | 1 0 1 0  | 1 0 1 1                       | <b>←</b> | Low Offset | $\rightarrow$ |
|          | [UUP + byte], A | 0 0 0 0  | 0 1 1 0              | 1 0 1 1  | 1 0 1 1                       | <b>←</b> | Low Offset | $\rightarrow$ |
|          | [VVP + byte], A | 0 0 0 0  | 0 1 1 0              | 1 1 0 0  | 1 0 1 1                       | <b>←</b> | Low Offset | $\rightarrow$ |
|          | imm24 [DE], A   | 0 0 0 0  | 1 0 1 0              | 1 0 0 0  | 1 0 1 1                       | <b>←</b> | Low Offset | $\rightarrow$ |
|          |                 | ← High ( | Offset $\rightarrow$ | ← High-w | $\prime$ Offset $\rightarrow$ |          |            |               |
|          | imm24 [A], A    | 0 0 0 0  | 1 0 1 0              | 1 0 0 1  | 1 0 1 1                       | <b>←</b> | Low Offset | $\rightarrow$ |
|          |                 | ← High ( | Offset $\rightarrow$ | ← High-w | $\prime$ Offset $\rightarrow$ |          |            |               |
|          | imm24 [HL], A   | 0 0 0 0  | 1 0 1 0              | 1 0 1 0  | 1 0 1 1                       | <b>←</b> | Low Offset | $\rightarrow$ |
|          |                 | ← High   | Offset $\rightarrow$ | ← High-w | $\prime$ Offset $\rightarrow$ |          |            |               |
|          | imm24 [B], A    | 0 0 0 0  | 1 0 1 0              | 1 0 1 1  | 1 0 1 1                       | <b>←</b> | Low Offset | $\rightarrow$ |
|          |                 | ← High ( | Offset $\rightarrow$ | ← High-w | $\prime$ Offset $\rightarrow$ |          |            |               |
|          | [TDE + A], A    | 0 0 0 1  | 0 1 1 1              | 1 0 0 0  | 1 0 1 1                       |          |            |               |
|          | [WHL + A], A    | 0 0 0 1  | 0 1 1 1              | 1 0 0 1  | 1 0 1 1                       |          |            |               |
|          | [TDE + B], A    | 0 0 0 1  | 0 1 1 1              | 1 0 1 0  | 1 0 1 1                       |          |            |               |
|          | [WHL + B], A    | 0 0 0 1  | 0 1 1 1              | 1 0 1 1  | 1 0 1 1                       |          |            |               |
|          | [VVP + DE], A   | 0 0 0 1  | 0 1 1 1              | 1 1 0 0  | 1 0 1 1                       |          |            |               |
|          | [VVP + HL], A   | 0 0 0 1  | 0 1 1 1              | 1 1 0 1  | 1 0 1 1                       |          |            |               |
|          | [TDE + C], A    | 0 0 0 1  | 0 1 1 1              | 1 1 1 0  | 1 0 1 1                       |          |            |               |
|          | [WHL + C], A    | 0 0 0 1  | 0 1 1 1              | 1 1 1 1  | 1 0 1 1                       |          |            |               |

| Mnemonic | Operands Operation Code |                                          |                                                                                                            |                                                                                                            |
|----------|-------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
|          |                         | B1                                       | B2                                                                                                         | В3                                                                                                         |
|          |                         | B4                                       | B5                                                                                                         | В6                                                                                                         |
|          |                         | В7                                       |                                                                                                            |                                                                                                            |
| СМР      | A, #byte                | 1010 1111                                | ← #byte →                                                                                                  |                                                                                                            |
|          | r, #byte                | 0 1 1 1 1 1 1 1                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 0 1 1                                        | $\leftarrow$ #byte $\rightarrow$                                                                           |
|          | saddr2, #byte           | 0 1 1 0 1 1 1 1                          | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   | $\leftarrow$ #byte $\rightarrow$                                                                           |
|          | saddr1, #byte           | 0 0 1 1 1 1 0 0                          | 0110 1111                                                                                                  | $\leftarrow$ Saddr1-offset $\rightarrow$                                                                   |
|          |                         | $\leftarrow$ #byte $\rightarrow$         |                                                                                                            |                                                                                                            |
|          | sfr, #byte              | 0000 0001                                | 0 1 1 0 1 1 1 1                                                                                            | $\leftarrow$ Sfr-offset $\rightarrow$                                                                      |
|          |                         | $\leftarrow$ #byte $\rightarrow$         |                                                                                                            |                                                                                                            |
|          | r, r1                   | 1 0 0 0 1 1 1 1                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 R <sub>2</sub> R <sub>1</sub> R <sub>0</sub> |                                                                                                            |
|          | r, r2                   | 0 0 1 1 1 1 0 0                          | 1000 1111                                                                                                  | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 R <sub>2</sub> R <sub>1</sub> R <sub>0</sub> |
|          | A, saddr2               | 1001 1111                                | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   |                                                                                                            |
|          | r, saddr2               | 0 1 1 1 1 1 1 1                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 0 0 0                                        | $\leftarrow  \text{Saddr2-offset}  \rightarrow $                                                           |
|          | r, saddr1               | 0 1 1 1 1 1 1 1                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 0 0 1                                        | $\leftarrow$ Saddr1-offset $\rightarrow$                                                                   |
|          | saddr2, r               | 0 1 1 1 1 1 1 1                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 1 0 0                                        | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   |
|          | saddr1, r               | 0 1 1 1 1 1 1 1                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 1 0 1                                        | $\leftarrow$ Saddr1-offset $\rightarrow$                                                                   |
|          | r, sfr                  | 0 1 1 1 1 1 1 1                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 0 1 0                                        | $\leftarrow$ Sfr-offset $\rightarrow$                                                                      |
|          | sfr, r                  | 0 1 1 1 1 1 1 1                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 1 1 0                                        | $\leftarrow$ Sfr-offset $\rightarrow$                                                                      |
|          | saddr2, saddr2'         | 0010 1010                                | 0000 1111                                                                                                  | $\leftarrow$ Saddr2'-offset $\rightarrow$                                                                  |
|          |                         | $\leftarrow$ Saddr2-offset $\rightarrow$ |                                                                                                            |                                                                                                            |
|          | saddr2, saddr1          | 0010 1010                                | 0001 1111                                                                                                  | ← Saddr1-offset →                                                                                          |
|          |                         | $\leftarrow$ Saddr2-offset $\rightarrow$ |                                                                                                            |                                                                                                            |
|          | saddr1, saddr2          | 0010 1010                                | 0010 1111                                                                                                  | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   |
|          |                         | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                                                                            |                                                                                                            |
|          | saddr1, saddr1'         | 0010 1010                                | 0011 1111                                                                                                  | $\leftarrow$ Saddr1'-offset $\rightarrow$                                                                  |
|          |                         | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                                                                            |                                                                                                            |
|          | A, [saddrp2]            | 0000 0111                                | 0010 1111                                                                                                  | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   |
|          | A, [saddrp1]            | 0 0 1 1 1 1 0 0                          | 0000 0111                                                                                                  | 0010 1111                                                                                                  |
|          |                         | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                                                                            |                                                                                                            |
|          | A, [%saddrg2]           | 0000 0111                                | 0011 1111                                                                                                  | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   |
|          | A, [%saddrg1]           | 0 0 1 1 1 1 0 0                          | 0000 0111                                                                                                  | 0011 1111                                                                                                  |
|          |                         | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                                                                            |                                                                                                            |
|          | [saddrp2], A            | 0000 0111                                | 1010 1111                                                                                                  | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   |
|          | [saddrp1], A            | 0 0 1 1 1 1 0 0                          | 0000 0111                                                                                                  | 1010 1111                                                                                                  |
|          |                         | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                                                                            |                                                                                                            |
|          | [%saddrg2], A           | 0 0 0 0 0 1 1 1                          | 1011 1111                                                                                                  | $\leftarrow  \text{Saddr2-offset}  \rightarrow $                                                           |

| Mnemonic | Operands        |                                          | Operation Code                           |                                                                 |
|----------|-----------------|------------------------------------------|------------------------------------------|-----------------------------------------------------------------|
|          |                 | B1                                       | B2                                       | В3                                                              |
|          |                 | B4                                       | B5                                       | В6                                                              |
|          |                 | B7                                       |                                          |                                                                 |
| CMP      | [%saddrg1], A   | 0 0 1 1 1 1 0 0                          | 0000 0111                                | 1011 1111                                                       |
|          |                 | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                          |                                                                 |
|          | A, !addr16      | 0 0 0 0 1 0 1 0                          | 0100 1111                                | $\leftarrow$ Low Address $\rightarrow$                          |
|          |                 | ← High Address →                         |                                          |                                                                 |
|          | A, !!addr24     | 0000 1010                                | 0 1 0 1 1 1 1 1                          | $\leftarrow$ High-w Address $\rightarrow$                       |
|          |                 | $\leftarrow$ Low Address $\rightarrow$   | $\leftarrow$ High Address $\rightarrow$  |                                                                 |
|          | !addr16, A      | 0 0 0 0 1 0 1 0                          | 1 1 0 0 1 1 1 1                          | $\leftarrow$ Low Address $\rightarrow$                          |
|          |                 | $\leftarrow$ High Address $\rightarrow$  |                                          |                                                                 |
|          | !!addr24, A     | 0 0 0 0 1 0 1 0                          | 1 1 0 1 1 1 1 1                          | $\leftarrow$ High-w Address $\rightarrow$                       |
|          |                 | $\leftarrow$ Low Address $\rightarrow$   | $\leftarrow$ High Address $\rightarrow$  |                                                                 |
|          | A, [TDE +]      | 0 0 0 1 0 1 1 0                          | 0000 1111                                |                                                                 |
|          | A, [WHL +]      | 0001 0110                                | 0001 1111                                |                                                                 |
|          | A, [TDE –]      | 0 0 0 1 0 1 1 0                          | 0010 1111                                |                                                                 |
|          | A, [WHL –]      | 0 0 0 1 0 1 1 0                          | 0011 1111                                |                                                                 |
|          | A, [TDE]        | 0 0 0 1 0 1 1 0                          | 0 1 0 0 1 1 1 1                          |                                                                 |
|          | A, [WHL]        | 0 0 0 1 0 1 1 0                          | 0 1 0 1 1 1 1 1                          |                                                                 |
|          | A, [VVP]        | 0 0 0 1 0 1 1 0                          | 0110 1111                                |                                                                 |
|          | A, [UUP]        | 0 0 0 1 0 1 1 0                          | 0 1 1 1 1 1 1 1                          |                                                                 |
|          | A, [TDE + byte] | 0 0 0 0 0 1 1 0                          | 0000 1111                                | $\leftarrow \qquad \text{Low Offset} \qquad \rightarrow \qquad$ |
|          | A, [SP + byte]  | 0000 0110                                | 0001 1111                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          | A, [WHL + byte] | 0 0 0 0 0 1 1 0                          | 0010 1111                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          | A, [UUP + byte] | 0 0 0 0 0 1 1 0                          | 0 0 1 1 1 1 1 1                          | $\leftarrow \qquad \text{Low Offset} \qquad \rightarrow \qquad$ |
|          | A, [VVP + byte] | 0 0 0 0 0 1 1 0                          | 0 1 0 0 1 1 1 1                          | $\leftarrow \qquad \text{Low Offset} \qquad \rightarrow \qquad$ |
|          | A, imm24 [DE]   | 0000 1010                                | 0000 1111                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          |                 | $\leftarrow$ High Offset $\rightarrow$   | $\leftarrow$ High-w Offset $\rightarrow$ |                                                                 |
|          | A, imm24 [A]    | 0000 1010                                | 0001 1111                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          |                 | $\leftarrow$ High Offset $\rightarrow$   | $\leftarrow$ High-w Offset $\rightarrow$ |                                                                 |
|          | A, imm24 [HL]   | 0000 1010                                | 0010 1111                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          |                 | $\leftarrow$ High Offset $\rightarrow$   | $\leftarrow$ High-w Offset $\rightarrow$ |                                                                 |
|          | A, imm24 [B]    | 0000 1010                                | 0011 1111                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          |                 | $\leftarrow$ High Offset $\rightarrow$   | $\leftarrow$ High-w Offset $\rightarrow$ |                                                                 |
|          | A, [TDE + A]    | 0 0 0 1 0 1 1 1                          | 0000 1111                                |                                                                 |
|          | A, [WHL + A]    | 0001 0111                                | 0001 1111                                |                                                                 |
|          | A, [TDE + B]    | 0 0 0 1 0 1 1 1                          | 0 0 1 0 1 1 1 1                          |                                                                 |

| Mnemonic | Operands        |         |                      | Operati  | on Code                  |          |            |               |
|----------|-----------------|---------|----------------------|----------|--------------------------|----------|------------|---------------|
|          |                 | В       | 11                   | Е        | 32                       |          | В3         |               |
|          |                 | В       | 34                   | Е        | 35                       |          | В6         |               |
|          |                 | В       | 37                   |          |                          |          |            |               |
| СМР      | A, [WHL + B]    | 0 0 0 1 | 0 1 1 1              | 0 0 1 1  | 1 1 1 1                  |          |            |               |
|          | A, [VVP + DE]   | 0 0 0 1 | 0 1 1 1              | 0 1 0 0  | 1 1 1 1                  |          |            |               |
|          | A, [VVP + HL]   | 0 0 0 1 | 0 1 1 1              | 0 1 0 1  | 1 1 1 1                  |          |            |               |
|          | A, [TDE + C]    | 0 0 0 1 | 0 1 1 1              | 0 1 1 0  | 1 1 1 1                  |          |            |               |
|          | A, [WHL + C]    | 0 0 0 1 | 0 1 1 1              | 0 1 1 1  | 1 1 1 1                  |          |            |               |
|          | [TDE +], A      | 0 0 0 1 | 0 1 1 0              | 1 0 0 0  | 1 1 1 1                  |          |            |               |
|          | [WHL +], A      | 0 0 0 1 | 0 1 1 0              | 1 0 0 1  | 1 1 1 1                  |          |            |               |
|          | [TDE –], A      | 0 0 0 1 | 0 1 1 0              | 1 0 1 0  | 1 1 1 1                  |          |            |               |
|          | [WHL –], A      | 0 0 0 1 | 0 1 1 0              | 1 0 1 1  | 1 1 1 1                  |          |            |               |
|          | [TDE], A        | 0 0 0 1 | 0 1 1 0              | 1 1 0 0  | 1 1 1 1                  |          |            |               |
|          | [WHL], A        | 0 0 0 1 | 0 1 1 0              | 1 1 0 1  | 1 1 1 1                  |          |            |               |
|          | [VVP], A        | 0 0 0 1 | 0 1 1 0              | 1 1 1 0  | 1 1 1 1                  |          |            |               |
|          | [UUP], A        | 0 0 0 1 | 0 1 1 0              | 1 1 1 1  | 1 1 1 1                  |          |            |               |
|          | [TDE + byte], A | 0 0 0 0 | 0 1 1 0              | 1 0 0 0  | 1 1 1 1                  | <b>←</b> | Low Offset | $\rightarrow$ |
|          | [SP + byte], A  | 0 0 0 0 | 0 1 1 0              | 1 0 0 1  | 1 1 1 1                  | <b>←</b> | Low Offset | $\rightarrow$ |
|          | [WHL + byte], A | 0 0 0 0 | 0 1 1 0              | 1 0 1 0  | 1 1 1 1                  | <b>←</b> | Low Offset | $\rightarrow$ |
|          | [UUP + byte], A | 0 0 0 0 | 0 1 1 0              | 1 0 1 1  | 1 1 1 1                  | <b>←</b> | Low Offset | $\rightarrow$ |
|          | [VVP + byte], A | 0 0 0 0 | 0 1 1 0              | 1 1 0 0  | 1 1 1 1                  | <b>←</b> | Low Offset | $\rightarrow$ |
|          | imm24 [DE], A   | 0 0 0 0 | 1 0 1 0              | 1 0 0 0  | 1 1 1 1                  | <b>←</b> | Low Offset | $\rightarrow$ |
|          |                 | ← High  | Offset $\rightarrow$ | ← High-w | Offset $\rightarrow$     |          |            |               |
|          | imm24 [A], A    | 0 0 0 0 | 1 0 1 0              | 1 0 0 1  | 1 1 1 1                  | <b>←</b> | Low Offset | $\rightarrow$ |
|          |                 | ← High  | Offset $\rightarrow$ | ← High-w | $\sigma$ Offset $\sigma$ |          |            |               |
|          | imm24 [HL], A   | 0 0 0 0 | 1 0 1 0              | 1 0 1 0  | 1 1 1 1                  | <b>←</b> | Low Offset | $\rightarrow$ |
|          |                 | ← High  | Offset $\rightarrow$ | ← High-w | $\sigma$ Offset $\sigma$ |          |            |               |
|          | imm24 [B], A    | 0 0 0 0 | 1 0 1 0              | 1 0 1 1  | 1 1 1 1                  | <b>←</b> | Low Offset | $\rightarrow$ |
|          |                 | ← High  | Offset $\rightarrow$ | ← High-w | Offset $\rightarrow$     |          |            |               |
|          | [TDE + A], A    | 0 0 0 1 | 0 1 1 1              | 1 0 0 0  | 1 1 1 1                  |          |            |               |
|          | [WHL + A], A    | 0 0 0 1 | 0 1 1 1              | 1 0 0 1  | 1 1 1 1                  |          |            |               |
|          | [TDE + B], A    | 0 0 0 1 | 0 1 1 1              | 1 0 1 0  | 1 1 1 1                  |          |            |               |
|          | [WHL + B], A    | 0 0 0 1 | 0 1 1 1              | 1 0 1 1  | 1 1 1 1                  |          |            |               |
|          | [VVP + DE], A   | 0 0 0 1 | 0 1 1 1              | 1 1 0 0  | 1 1 1 1                  |          |            |               |
|          | [VVP + HL], A   | 0 0 0 1 | 0 1 1 1              | 1 1 0 1  | 1 1 1 1                  |          |            |               |
|          | [TDE + C], A    | 0 0 0 1 | 0 1 1 1              | 1 1 1 0  | 1 1 1 1                  |          |            |               |
|          | [WHL + C], A    | 0 0 0 1 | 0 1 1 1              | 1 1 1 1  | 1 1 1 1                  |          |            |               |

| Mnemonic | Operands        |                                          | Operation Code                                                                                             |                                                                 |  |  |
|----------|-----------------|------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|--|
|          |                 | B1                                       | B2                                                                                                         | В3                                                              |  |  |
|          |                 | B4                                       | B5                                                                                                         | В6                                                              |  |  |
|          |                 | В7                                       |                                                                                                            |                                                                 |  |  |
| AND      | A, #byte        | 1010 1100                                | ← #byte →                                                                                                  |                                                                 |  |  |
|          | r, #byte        | 0 1 1 1 1 1 0 0                          | R7 R6 R5 R4 0 0 1 1                                                                                        | $\leftarrow$ #byte $\rightarrow$                                |  |  |
|          | saddr2, #byte   | 0 1 1 0 1 1 0 0                          | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   | $\leftarrow$ #byte $\rightarrow$                                |  |  |
|          | saddr1, #byte   | 0011 1100                                | 0110 1100                                                                                                  | $\leftarrow$ Saddr1-offset $\rightarrow$                        |  |  |
|          |                 | ← #byte →                                |                                                                                                            |                                                                 |  |  |
|          | sfr, #byte      | 0000 0001                                | 0110 1100                                                                                                  | $\leftarrow$ Sfr-offset $\rightarrow$                           |  |  |
|          |                 | ← #byte →                                |                                                                                                            |                                                                 |  |  |
|          | r, r1           | 1000 1100                                | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 R <sub>2</sub> R <sub>1</sub> R <sub>0</sub> |                                                                 |  |  |
|          | r, r2           | 0 0 1 1 1 1 0 0                          | 1000 1100                                                                                                  | $R_7R_6R_5R_4 \qquad 0\ R_2R_1R_0$                              |  |  |
|          | A, saddr2       | 1 0 0 1 1 1 0 0                          | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   |                                                                 |  |  |
|          | r, saddr2       | 0 1 1 1 1 1 0 0                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 0 0 0                                        | $\leftarrow$ Saddr2-offset $\rightarrow$                        |  |  |
|          | r, saddr1       | 0 1 1 1 1 1 0 0                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 0 0 1                                        | $\leftarrow$ Saddr1-offset $\rightarrow$                        |  |  |
|          | saddr2, r       | 0 1 1 1 1 1 0 0                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 1 0 0                                        | $\leftarrow  \text{Saddr2-offset}  \rightarrow $                |  |  |
|          | saddr1, r       | 0 1 1 1 1 1 0 0                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 1 0 1                                        | $\leftarrow$ Saddr1-offset $\rightarrow$                        |  |  |
|          | r, sfr          | 0 1 1 1 1 1 0 0                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 0 1 0                                        | $\leftarrow$ Sfr-offset $\rightarrow$                           |  |  |
|          | sfr, r          | 0 1 1 1 1 1 0 0                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 1 1 0                                        | $\leftarrow \qquad Sfr\text{-}offset \qquad \rightarrow \qquad$ |  |  |
|          | saddr2, saddr2' | 0010 1010                                | 0000 1100                                                                                                  | $\leftarrow$ Saddr2'-offset $\rightarrow$                       |  |  |
|          |                 | $\leftarrow$ Saddr2-offset $\rightarrow$ |                                                                                                            |                                                                 |  |  |
|          | saddr2, saddr1  | 0010 1010                                | 0001 1100                                                                                                  | $\leftarrow$ Saddr1-offset $\rightarrow$                        |  |  |
|          |                 | $\leftarrow$ Saddr2-offset $\rightarrow$ |                                                                                                            |                                                                 |  |  |
|          | saddr1, saddr2  | 0010 1010                                | 0010 1100                                                                                                  | $\leftarrow$ Saddr2-offset $\rightarrow$                        |  |  |
|          |                 | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                                                                            |                                                                 |  |  |
|          | saddr1, saddr1' | 0010 1010                                | 0011 1100                                                                                                  | $\leftarrow$ Saddr1'-offset $\rightarrow$                       |  |  |
|          |                 | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                                                                            |                                                                 |  |  |
|          | A, [saddrp2]    | 0 0 0 0 0 1 1 1                          | 0 0 1 0 1 1 0 0                                                                                            | $\leftarrow$ Saddr2-offset $\rightarrow$                        |  |  |
|          | A, [saddrp1]    | 0011 1100                                | 0000 0111                                                                                                  | 0010 1100                                                       |  |  |
|          |                 | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                                                                            |                                                                 |  |  |
|          | A, [%saddrg2]   | 0 0 0 0 0 1 1 1                          | 0 0 1 1 1 1 0 0                                                                                            | $\leftarrow  \text{Saddr2-offset}  \rightarrow $                |  |  |
|          | A, [%saddrg1]   | 0011 1100                                | 0000 0111                                                                                                  | 0011 1100                                                       |  |  |
|          |                 | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                                                                            |                                                                 |  |  |
|          | [saddrp2], A    | 0 0 0 0 0 1 1 1                          | 1010 1100                                                                                                  | $\leftarrow$ Saddr2-offset $\rightarrow$                        |  |  |
|          | [saddrp1], A    | 0 0 1 1 1 1 0 0                          | 0000 0111                                                                                                  | 1010 1100                                                       |  |  |
|          |                 | ← Saddr1-offset →                        |                                                                                                            |                                                                 |  |  |
|          | [%saddrg2], A   | 0 0 0 0 0 1 1 1                          | 1011 1100                                                                                                  | $\leftarrow$ Saddr2-offset $\rightarrow$                        |  |  |

| Mnemonic | Operands        |                                          | Operation Code                           |                                                                 |
|----------|-----------------|------------------------------------------|------------------------------------------|-----------------------------------------------------------------|
|          |                 | B1                                       | B2                                       | В3                                                              |
|          |                 | B4                                       | B5                                       | В6                                                              |
|          |                 | В7                                       |                                          |                                                                 |
| AND      | [%saddrg1], A   | 0011 1100                                | 0000 0111                                | 1011 1100                                                       |
|          |                 | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                          |                                                                 |
|          | A, !addr16      | 0000 1010                                | 0100 1100                                | $\leftarrow$ Low Address $\rightarrow$                          |
|          |                 | ← High Address →                         |                                          |                                                                 |
|          | A, !!addr24     | 0000 1010                                | 0101 1100                                | $\leftarrow$ High-w Address $\rightarrow$                       |
|          |                 | $\leftarrow$ Low Address $\rightarrow$   | $\leftarrow$ High Address $\rightarrow$  |                                                                 |
|          | !addr16, A      | 0000 1010                                | 1100 1100                                | $\leftarrow$ Low Address $\rightarrow$                          |
|          |                 | ← High Address →                         |                                          |                                                                 |
|          | !!addr24, A     | 0000 1010                                | 1101 1100                                | $\leftarrow$ High-w Address $ ightarrow$                        |
|          |                 | $\leftarrow$ Low Address $\rightarrow$   | $\leftarrow$ High Address $\rightarrow$  |                                                                 |
|          | A, [TDE +]      | 0 0 0 1 0 1 1 0                          | 0000 1100                                |                                                                 |
|          | A, [WHL +]      | 0 0 0 1 0 1 1 0                          | 0001 1100                                |                                                                 |
|          | A, [TDE –]      | 0 0 0 1 0 1 1 0                          | 0010 1100                                |                                                                 |
|          | A, [WHL –]      | 0 0 0 1 0 1 1 0                          | 0011 1100                                |                                                                 |
|          | A, [TDE]        | 0 0 0 1 0 1 1 0                          | 0100 1100                                |                                                                 |
|          | A, [WHL]        | 0 0 0 1 0 1 1 0                          | 0101 1100                                |                                                                 |
|          | A, [VVP]        | 0 0 0 1 0 1 1 0                          | 0110 1100                                |                                                                 |
|          | A, [UUP]        | 0 0 0 1 0 1 1 0                          | 0111 1100                                |                                                                 |
|          | A, [TDE + byte] | 0 0 0 0 0 1 1 0                          | 0000 1100                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          | A, [SP + byte]  | 0000 0110                                | 0001 1100                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          | A, [WHL + byte] | 0000 0110                                | 0010 1100                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          | A, [UUP + byte] | 0 0 0 0 0 1 1 0                          | 0011 1100                                | $\leftarrow \qquad \text{Low Offset} \qquad \rightarrow \qquad$ |
|          | A, [VVP + byte] | 0 0 0 0 0 1 1 0                          | 0100 1100                                | $\leftarrow \qquad \text{Low Offset} \qquad \rightarrow \qquad$ |
|          | A, imm24 [DE]   | 0000 1010                                | 0000 1100                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          |                 | ← High Offset →                          | $\leftarrow$ High-w Offset $\rightarrow$ |                                                                 |
|          | A, imm24 [A]    | 0000 1010                                | 0001 1100                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          |                 | $\leftarrow$ High Offset $\rightarrow$   | $\leftarrow$ High-w Offset $\rightarrow$ |                                                                 |
|          | A, imm24 [HL]   | 0000 1010                                | 0010 1100                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          |                 | $\leftarrow$ High Offset $\rightarrow$   | $\leftarrow$ High-w Offset $\rightarrow$ |                                                                 |
|          | A, imm24 [B]    | 0000 1010                                | 0011 1100                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          |                 | $\leftarrow$ High Offset $\rightarrow$   | $\leftarrow$ High-w Offset $\rightarrow$ |                                                                 |
|          | A, [TDE + A]    | 0 0 0 1 0 1 1 1                          | 0000 1100                                |                                                                 |
|          | A, [WHL + A]    | 0 0 0 1 0 1 1 1                          | 0001 1100                                |                                                                 |
|          | A, [TDE + B]    | 0 0 0 1 0 1 1 1                          | 0010 1100                                |                                                                 |

| Mnemonic | Operands        |          |                      | Oper    | Operation Code           |          |            |               |
|----------|-----------------|----------|----------------------|---------|--------------------------|----------|------------|---------------|
|          |                 | B1       | B1                   |         | B2                       |          | В3         |               |
|          |                 | B4       | ļ                    |         | B5                       |          | В6         |               |
|          |                 | В7       | 7                    |         |                          |          |            |               |
| AND      | A, [WHL + B]    | 0 0 0 1  | 0 1 1 1              | 0 0 1 1 | 1 1 0 0                  |          |            |               |
|          | A, [VVP + DE]   | 0 0 0 1  | 0 1 1 1              | 0 1 0 0 | 1 1 0 0                  |          |            |               |
|          | A, [VVP + HL]   | 0 0 0 1  | 0 1 1 1              | 0 1 0 1 | 1 1 0 0                  |          |            |               |
|          | A, [TDE + C]    | 0 0 0 1  | 0 1 1 1              | 0 1 1 0 | 1 1 0 0                  |          |            |               |
|          | A, [WHL + C]    | 0 0 0 1  | 0 1 1 1              | 0 1 1 1 | 1 1 0 0                  |          |            |               |
|          | [TDE +], A      | 0 0 0 1  | 0 1 1 0              | 1 0 0 0 | 1 1 0 0                  |          |            |               |
|          | [WHL +], A      | 0 0 0 1  | 0 1 1 0              | 1 0 0 1 | 1 1 0 0                  |          |            |               |
|          | [TDE –], A      | 0 0 0 1  | 0 1 1 0              | 1 0 1 0 | 1 1 0 0                  |          |            |               |
|          | [WHL –], A      | 0 0 0 1  | 0 1 1 0              | 1 0 1 1 | 1 1 0 0                  |          |            |               |
|          | [TDE], A        | 0 0 0 1  | 0 1 1 0              | 1 1 0 0 | 1 1 0 0                  |          |            |               |
|          | [WHL], A        | 0 0 0 1  | 0 1 1 0              | 1 1 0 1 | 1 1 0 0                  |          |            |               |
|          | [VVP], A        | 0 0 0 1  | 0 1 1 0              | 1 1 1 0 | 1 1 0 0                  |          |            |               |
|          | [UUP], A        | 0 0 0 1  | 0 1 1 0              | 1 1 1 1 | 1 1 0 0                  |          |            |               |
|          | [TDE + byte], A | 0 0 0 0  | 0 1 1 0              | 1 0 0 0 | 1 1 0 0                  | ←        | Low Offset | $\rightarrow$ |
|          | [SP + byte], A  | 0 0 0 0  | 0 1 1 0              | 1 0 0 1 | 1 1 0 0                  | <b>←</b> | Low Offset | $\rightarrow$ |
|          | [WHL + byte], A | 0 0 0 0  | 0 1 1 0              | 1 0 1 0 | 1 1 0 0                  | <b>←</b> | Low Offset | $\rightarrow$ |
|          | [UUP + byte], A | 0 0 0 0  | 0 1 1 0              | 1 0 1 1 | 1 1 0 0                  | <b>←</b> | Low Offset | $\rightarrow$ |
|          | [VVP + byte], A | 0 0 0 0  | 0 1 1 0              | 1 1 0 0 | 1 1 0 0                  | <b>←</b> | Low Offset | $\rightarrow$ |
|          | imm24 [DE], A   | 0 0 0 0  | 1 0 1 0              | 1 0 0 0 | 1 1 0 0                  | <b>←</b> | Low Offset | $\rightarrow$ |
|          |                 | ← High C | Offset $\rightarrow$ | ← High  | n-w Offset $\rightarrow$ |          |            |               |
|          | imm24 [A], A    | 0 0 0 0  | 1 0 1 0              | 1 0 0 1 | 1 1 0 0                  | <b>←</b> | Low Offset | $\rightarrow$ |
|          |                 | ← High C | Offset $\rightarrow$ | ← High  | n-w Offset $\rightarrow$ |          |            |               |
|          | imm24 [HL], A   | 0 0 0 0  | 1 0 1 0              | 1 0 1 0 | 1 1 0 0                  | <b>←</b> | Low Offset | $\rightarrow$ |
|          |                 | ← High C | Offset $\rightarrow$ | ← High  | n-w Offset $\rightarrow$ |          |            |               |
|          | imm24 [B], A    | 0 0 0 0  | 1 0 1 0              | 1 0 1 1 | 1 1 0 0                  | <b>←</b> | Low Offset | $\rightarrow$ |
|          |                 | ← High C | Offset $\rightarrow$ | ← High  | n-w Offset $\rightarrow$ |          |            |               |
|          | [TDE + A], A    | 0 0 0 1  | 0 1 1 1              | 1 0 0 0 | 1 1 0 0                  |          |            |               |
|          | [WHL + A], A    | 0 0 0 1  | 0 1 1 1              | 1 0 0 1 | 1 1 0 0                  |          |            |               |
|          | [TDE + B], A    | 0 0 0 1  | 0 1 1 1              | 1 0 1 0 | 1 1 0 0                  |          |            |               |
|          | [WHL + B], A    | 0 0 0 1  | 0 1 1 1              | 1 0 1 1 | 1 1 0 0                  |          |            |               |
|          | [VVP + DE], A   | 0 0 0 1  | 0 1 1 1              | 1 1 0 0 | 1 1 0 0                  |          |            |               |
|          | [VVP + HL], A   | 0 0 0 1  | 0 1 1 1              | 1 1 0 1 | 1 1 0 0                  |          |            |               |
|          | [TDE + C], A    | 0 0 0 1  | 0 1 1 1              | 1 1 1 0 | 1 1 0 0                  |          |            |               |
|          | [WHL + C], A    | 0 0 0 1  | 0 1 1 1              | 1 1 1 1 | 1 1 0 0                  |          |            |               |

| Mnemonic | Operands        |                                          | Operation Code                                                                                             |                                           |
|----------|-----------------|------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------|
|          |                 | B1                                       | B2                                                                                                         | B3                                        |
|          |                 | B4                                       | B5                                                                                                         | B6                                        |
|          |                 | В7                                       |                                                                                                            |                                           |
| OR       | A, #byte        | 1010 1110                                | ← #byte →                                                                                                  |                                           |
|          | r, #byte        | 0 1 1 1 1 1 1 0                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 0 1 1                                        | $\leftarrow$ #byte $\rightarrow$          |
|          | saddr2, #byte   | 0 1 1 0 1 1 1 0                          | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   | ← #byte →                                 |
|          | saddr1, #byte   | 0 0 1 1 1 1 0 0                          | 0 1 1 0 1 1 1 0                                                                                            | $\leftarrow$ Saddr1-offset $\rightarrow$  |
|          |                 | $\leftarrow$ #byte $\rightarrow$         |                                                                                                            |                                           |
|          | sfr, #byte      | 0000 0001                                | 0 1 1 0 1 1 1 0                                                                                            | $\leftarrow$ Sfr-offset $\rightarrow$     |
|          |                 | ← #byte →                                |                                                                                                            |                                           |
|          | r, r1           | 1 0 0 0 1 1 1 0                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 R <sub>2</sub> R <sub>1</sub> R <sub>0</sub> |                                           |
|          | r, r2           | 0 0 1 1 1 1 0 0                          | 1000 1110                                                                                                  | R7 R6 R5 R4                               |
|          | A, saddr2       | 1 0 0 1 1 1 1 0                          | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   |                                           |
|          | r, saddr2       | 0 1 1 1 1 1 1 0                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 0 0 0                                        | $\leftarrow$ Saddr2-offset $\rightarrow$  |
|          | r, saddr1       | 0 1 1 1 1 1 1 0                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 0 0 1                                        | ← Saddr1-offset →                         |
|          | saddr2, r       | 0 1 1 1 1 1 1 0                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 1 0 0                                        | ← Saddr2-offset →                         |
|          | saddr1, r       | 0 1 1 1 1 1 1 0                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 1 0 1                                        | $\leftarrow$ Saddr1-offset $\rightarrow$  |
|          | r, sfr          | 0 1 1 1 1 1 1 0                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 0 1 0                                        | $\leftarrow$ Sfr-offset $\rightarrow$     |
|          | sfr, r          | 0 1 1 1 1 1 1 0                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 1 1 0                                        | $\leftarrow$ Sfr-offset $\rightarrow$     |
|          | saddr2, saddr2' | 0010 1010                                | 0000 1110                                                                                                  | $\leftarrow$ Saddr2'-offset $\rightarrow$ |
|          |                 | $\leftarrow$ Saddr2-offset $\rightarrow$ |                                                                                                            |                                           |
|          | saddr2, saddr1  | 0010 1010                                | 0 0 0 1 1 1 1 0                                                                                            | ← Saddr1-offset →                         |
|          |                 | $\leftarrow$ Saddr2-offset $\rightarrow$ |                                                                                                            |                                           |
|          | saddr1, saddr2  | 0010 1010                                | 0010 1110                                                                                                  | $\leftarrow$ Saddr2-offset $\rightarrow$  |
|          |                 | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                                                                            |                                           |
|          | saddr1, saddr1' | 0010 1010                                | 0 0 1 1 1 1 1 0                                                                                            | ← Saddr1'-offset →                        |
|          |                 | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                                                                            |                                           |
|          | A, [saddrp2]    | 0000 0111                                | 0 0 1 0 1 1 1 0                                                                                            | $\leftarrow$ Saddr2-offset $\rightarrow$  |
|          | A, [saddrp1]    | 0011 1100                                | 0000 0111                                                                                                  | 0010 1110                                 |
|          |                 | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                                                                            |                                           |
|          | A, [%saddrg2]   | 0000 0111                                | 0 0 1 1 1 1 1 0                                                                                            | $\leftarrow$ Saddr2-offset $\rightarrow$  |
|          | A, [%saddrg1]   | 0011 1100                                | 0000 0111                                                                                                  | 0011 1110                                 |
|          |                 | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                                                                            |                                           |
|          | [saddrp2], A    | 0000 0111                                | 1010 1110                                                                                                  | $\leftarrow$ Saddr2-offset $\rightarrow$  |
|          | [saddrp1], A    | 0011 1100                                | 0000 0111                                                                                                  | 1010 1110                                 |
|          |                 | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                                                                            |                                           |
|          | [%saddrg2], A   | 0 0 0 0 0 1 1 1                          | 1011 1110                                                                                                  | $\leftarrow$ Saddr2-offset $\rightarrow$  |

| Mnemonic | Operands        |                                          | Operation Code                           |                                                                 |
|----------|-----------------|------------------------------------------|------------------------------------------|-----------------------------------------------------------------|
|          |                 | B1                                       | B2                                       | В3                                                              |
|          |                 | B4                                       | B5                                       | В6                                                              |
|          |                 | B7                                       |                                          |                                                                 |
| OR       | [%saddrg1], A   | 0011 1100                                | 0000 0111                                | 1011 1110                                                       |
|          |                 | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                          |                                                                 |
|          | A, !addr16      | 0 0 0 0 1 0 1 0                          | 0100 1110                                | $\leftarrow$ Low Address $\rightarrow$                          |
|          |                 | ← High Address →                         |                                          |                                                                 |
|          | A, !!addr24     | 0000 1010                                | 0101 1110                                | $\leftarrow$ High-w Address $\rightarrow$                       |
|          |                 | $\leftarrow$ Low Address $\rightarrow$   | $\leftarrow$ High Address $\rightarrow$  |                                                                 |
|          | !addr16, A      | 0 0 0 0 1 0 1 0                          | 1100 1110                                | $\leftarrow$ Low Address $\rightarrow$                          |
|          |                 | $\leftarrow$ High Address $\rightarrow$  |                                          |                                                                 |
|          | !!addr24, A     | 0 0 0 0 1 0 1 0                          | 1101 1110                                | $\leftarrow$ High-w Address $\rightarrow$                       |
|          |                 | $\leftarrow$ Low Address $\rightarrow$   | ← High Address →                         |                                                                 |
|          | A, [TDE +]      | 0 0 0 1 0 1 1 0                          | 0000 1110                                |                                                                 |
|          | A, [WHL +]      | 0001 0110                                | 0001 1110                                |                                                                 |
|          | A, [TDE –]      | 0 0 0 1 0 1 1 0                          | 0010 1110                                |                                                                 |
|          | A, [WHL –]      | 0 0 0 1 0 1 1 0                          | 0 0 1 1 1 1 1 0                          |                                                                 |
|          | A, [TDE]        | 0 0 0 1 0 1 1 0                          | 0 1 0 0 1 1 1 0                          |                                                                 |
|          | A, [WHL]        | 0 0 0 1 0 1 1 0                          | 0 1 0 1 1 1 1 0                          |                                                                 |
|          | A, [VVP]        | 0 0 0 1 0 1 1 0                          | 0 1 1 0 1 1 1 0                          |                                                                 |
|          | A, [UUP]        | 0 0 0 1 0 1 1 0                          | 0 1 1 1 1 1 1 0                          |                                                                 |
|          | A, [TDE + byte] | 0 0 0 0 0 1 1 0                          | 0 0 0 0 1 1 1 0                          | $\leftarrow \qquad \text{Low Offset} \qquad \rightarrow \qquad$ |
|          | A, [SP + byte]  | 0000 0110                                | 0001 1110                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          | A, [WHL + byte] | 0000 0110                                | 0010 1110                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          | A, [UUP + byte] | 0 0 0 0 0 1 1 0                          | 0 0 1 1 1 1 1 0                          | $\leftarrow \qquad \text{Low Offset} \qquad \rightarrow \qquad$ |
|          | A, [VVP + byte] | 0 0 0 0 0 1 1 0                          | 0 1 0 0 1 1 1 0                          | $\leftarrow \qquad \text{Low Offset} \qquad \rightarrow \qquad$ |
|          | A, imm24 [DE]   | 0000 1010                                | 0000 1110                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          |                 | $\leftarrow$ High Offset $\rightarrow$   | $\leftarrow$ High-w Offset $\rightarrow$ |                                                                 |
|          | A, imm24 [A]    | 0000 1010                                | 0001 1110                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          |                 | $\leftarrow$ High Offset $\rightarrow$   | $\leftarrow$ High-w Offset $\rightarrow$ |                                                                 |
|          | A, imm24 [HL]   | 0000 1010                                | 0010 1110                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          |                 | $\leftarrow$ High Offset $\rightarrow$   | $\leftarrow$ High-w Offset $\rightarrow$ |                                                                 |
|          | A, imm24 [B]    | 0 0 0 0 1 0 1 0                          | 0011 1110                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          |                 | $\leftarrow$ High Offset $\rightarrow$   | $\leftarrow$ High-w Offset $\rightarrow$ |                                                                 |
|          | A, [TDE + A]    | 0 0 0 1 0 1 1 1                          | 0 0 0 0 1 1 1 0                          |                                                                 |
|          | A, [WHL + A]    | 0 0 0 1 0 1 1 1                          | 0 0 0 1 1 1 1 0                          |                                                                 |
|          | A, [TDE + B]    | 0 0 0 1 0 1 1 1                          | 0 0 1 0 1 1 1 0                          |                                                                 |

| Mnemonic | Operands        |         |                      | Operation | on Code                  |          |            |               |
|----------|-----------------|---------|----------------------|-----------|--------------------------|----------|------------|---------------|
|          |                 | В       | 31                   | Е         | 32                       |          | В3         |               |
|          |                 | В       | 34                   | Е         | 35                       |          | В6         |               |
|          |                 | В       | 37                   |           |                          |          |            |               |
| OR       | A, [WHL + B]    | 0 0 0 1 | 0 1 1 1              | 0 0 1 1   | 1 1 1 0                  |          |            |               |
|          | A, [VVP + DE]   | 0 0 0 1 | 0 1 1 1              | 0 1 0 0   | 1 1 1 0                  |          |            |               |
|          | A, [VVP + HL]   | 0 0 0 1 | 0 1 1 1              | 0 1 0 1   | 1 1 1 0                  |          |            |               |
|          | A, [TDE + C]    | 0 0 0 1 | 0 1 1 1              | 0 1 1 0   | 1 1 1 0                  |          |            |               |
|          | A, [WHL + C]    | 0 0 0 1 | 0 1 1 1              | 0 1 1 1   | 1 1 1 0                  |          |            |               |
|          | [TDE +], A      | 0 0 0 1 | 0 1 1 0              | 1 0 0 0   | 1 1 1 0                  |          |            |               |
|          | [WHL +], A      | 0 0 0 1 | 0 1 1 0              | 1 0 0 1   | 1 1 1 0                  |          |            |               |
|          | [TDE –], A      | 0 0 0 1 | 0 1 1 0              | 1 0 1 0   | 1 1 1 0                  |          |            |               |
|          | [WHL –], A      | 0 0 0 1 | 0 1 1 0              | 1 0 1 1   | 1 1 1 0                  |          |            |               |
|          | [TDE], A        | 0 0 0 1 | 0 1 1 0              | 1 1 0 0   | 1 1 1 0                  |          |            |               |
|          | [WHL], A        | 0 0 0 1 | 0 1 1 0              | 1 1 0 1   | 1 1 1 0                  |          |            |               |
|          | [VVP], A        | 0 0 0 1 | 0 1 1 0              | 1 1 1 0   | 1 1 1 0                  |          |            |               |
|          | [UUP], A        | 0 0 0 1 | 0 1 1 0              | 1 1 1 1   | 1 1 1 0                  |          |            |               |
|          | [TDE + byte], A | 0 0 0 0 | 0 1 1 0              | 1 0 0 0   | 1 1 1 0                  | <b>←</b> | Low Offset | $\rightarrow$ |
|          | [SP + byte], A  | 0 0 0 0 | 0 1 1 0              | 1 0 0 1   | 1 1 1 0                  | <b>←</b> | Low Offset | $\rightarrow$ |
|          | [WHL + byte], A | 0 0 0 0 | 0 1 1 0              | 1 0 1 0   | 1 1 1 0                  | <b>←</b> | Low Offset | $\rightarrow$ |
|          | [UUP + byte], A | 0 0 0 0 | 0 1 1 0              | 1 0 1 1   | 1 1 1 0                  | <b>←</b> | Low Offset | $\rightarrow$ |
|          | [VVP + byte], A | 0 0 0 0 | 0 1 1 0              | 1 1 0 0   | 1 1 1 0                  | <b>←</b> | Low Offset | $\rightarrow$ |
|          | imm24 [DE], A   | 0 0 0 0 | 1 0 1 0              | 1 0 0 0   | 1 1 1 0                  | <b>←</b> | Low Offset | $\rightarrow$ |
|          |                 | ← High  | Offset $\rightarrow$ | ← High-w  | $\sigma$ Offset $\sigma$ |          |            |               |
|          | imm24 [A], A    | 0 0 0 0 | 1 0 1 0              | 1 0 0 1   | 1 1 1 0                  | <b>←</b> | Low Offset | $\rightarrow$ |
|          |                 | ← High  | Offset $\rightarrow$ | ← High-w  | $\sigma$ Offset $\sigma$ |          |            |               |
|          | imm24 [HL], A   | 0 0 0 0 | 1 0 1 0              | 1 0 1 0   | 1 1 1 0                  | <b>←</b> | Low Offset | $\rightarrow$ |
|          |                 | ← High  | Offset $\rightarrow$ | ← High-w  | $\sigma$ Offset $\sigma$ |          |            |               |
|          | imm24 [B], A    | 0 0 0 0 | 1 0 1 0              | 1 0 1 1   | 1 1 1 0                  | <b>←</b> | Low Offset | $\rightarrow$ |
|          |                 | ← High  | Offset $\rightarrow$ | ← High-w  | $\sigma$ Offset $\sigma$ |          |            |               |
|          | [TDE + A], A    | 0 0 0 1 | 0 1 1 1              | 1 0 0 0   | 1 1 1 0                  |          |            |               |
|          | [WHL + A], A    | 0 0 0 1 | 0 1 1 1              | 1 0 0 1   | 1 1 1 0                  |          |            |               |
|          | [TDE + B], A    | 0 0 0 1 | 0 1 1 1              | 1 0 1 0   | 1 1 1 0                  |          |            |               |
|          | [WHL + B], A    | 0 0 0 1 | 0 1 1 1              | 1 0 1 1   | 1 1 1 0                  |          |            |               |
|          | [VVP + DE], A   | 0 0 0 1 | 0 1 1 1              | 1 1 0 0   | 1 1 1 0                  |          |            |               |
|          | [VVP + HL], A   | 0 0 0 1 | 0 1 1 1              | 1 1 0 1   | 1 1 1 0                  |          |            |               |
|          | [TDE + C], A    | 0 0 0 1 | 0 1 1 1              | 1 1 1 0   | 1 1 1 0                  |          |            |               |
|          | [WHL + C], A    | 0 0 0 1 | 0 1 1 1              | 1 1 1 1   | 1 1 1 0                  |          |            |               |

| Mnemonic | Operands        |                                          | Operation Code                                                                                             |                                                                                                            |  |  |
|----------|-----------------|------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|--|
|          |                 | B1                                       | B2                                                                                                         | B3                                                                                                         |  |  |
|          |                 | B4                                       | B5                                                                                                         | B6                                                                                                         |  |  |
|          |                 | В7                                       |                                                                                                            |                                                                                                            |  |  |
| XOR      | A, #byte        | 1010 1101                                | ← #byte →                                                                                                  |                                                                                                            |  |  |
|          | r, #byte        | 0 1 1 1 1 1 0 1                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 0 1 1                                        | $\leftarrow$ #byte $\rightarrow$                                                                           |  |  |
|          | saddr2, #byte   | 0 1 1 0 1 1 0 1                          | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   | $\leftarrow$ #byte $\rightarrow$                                                                           |  |  |
|          | saddr1, #byte   | 0 0 1 1 1 1 0 0                          | 0110 1101                                                                                                  | $\leftarrow$ Saddr1-offset $\rightarrow$                                                                   |  |  |
|          |                 | $\leftarrow$ #byte $\rightarrow$         |                                                                                                            |                                                                                                            |  |  |
|          | sfr, #byte      | 0000 0001                                | 0 1 1 0 1 1 0 1                                                                                            | $\leftarrow$ Sfr-offset $\rightarrow$                                                                      |  |  |
|          |                 | $\leftarrow$ #byte $\rightarrow$         |                                                                                                            |                                                                                                            |  |  |
|          | r, r1           | 1000 1101                                | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 R <sub>2</sub> R <sub>1</sub> R <sub>0</sub> |                                                                                                            |  |  |
|          | r, r2           | 0 0 1 1 1 1 0 0                          | 1000 1101                                                                                                  | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 R <sub>2</sub> R <sub>1</sub> R <sub>0</sub> |  |  |
|          | A, saddr2       | 1001 1101                                | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   |                                                                                                            |  |  |
|          | r, saddr2       | 0 1 1 1 1 1 0 1                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 0 0 0                                        | $\leftarrow  \text{Saddr2-offset}  \rightarrow $                                                           |  |  |
|          | r, saddr1       | 0 1 1 1 1 1 0 1                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 0 0 1                                        | $\leftarrow$ Saddr1-offset $\rightarrow$                                                                   |  |  |
|          | saddr2, r       | 0 1 1 1 1 1 0 1                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 1 0 0                                        | $\leftarrow  Saddr2\text{-offset}  \rightarrow $                                                           |  |  |
|          | saddr1, r       | 0 1 1 1 1 1 0 1                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 1 0 1                                        | $\leftarrow  \text{Saddr1-offset}  \rightarrow $                                                           |  |  |
|          | r, sfr          | 0 1 1 1 1 1 0 1                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 0 1 0                                        | $\leftarrow \qquad Sfr\text{-}offset \qquad \rightarrow \qquad$                                            |  |  |
|          | sfr, r          | 0 1 1 1 1 1 0 1                          | R <sub>7</sub> R <sub>6</sub> R <sub>5</sub> R <sub>4</sub> 0 1 1 0                                        | $\leftarrow \qquad Sfr\text{-}offset \qquad \rightarrow \qquad$                                            |  |  |
|          | saddr2, saddr2' | 0010 1010                                | 0000 1101                                                                                                  | $\leftarrow$ Saddr2'-offset $\rightarrow$                                                                  |  |  |
|          |                 | $\leftarrow$ Saddr2-offset $\rightarrow$ |                                                                                                            |                                                                                                            |  |  |
|          | saddr2, saddr1  | 0010 1010                                | 0001 1101                                                                                                  | $\leftarrow$ Saddr1-offset $\rightarrow$                                                                   |  |  |
|          |                 | $\leftarrow$ Saddr2-offset $\rightarrow$ |                                                                                                            |                                                                                                            |  |  |
|          | saddr1, saddr2  | 0010 1010                                | 0010 1101                                                                                                  | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   |  |  |
|          |                 | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                                                                            |                                                                                                            |  |  |
|          | saddr1, saddr1' | 0010 1010                                | 0011 1101                                                                                                  | $\leftarrow$ Saddr1'-offset $\rightarrow$                                                                  |  |  |
|          |                 | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                                                                            |                                                                                                            |  |  |
|          | A, [saddrp2]    | 0 0 0 0 0 1 1 1                          | 0 0 1 0 1 1 0 1                                                                                            | $\leftarrow  \text{Saddr2-offset}  \rightarrow $                                                           |  |  |
|          | A, [saddrp1]    | 0 0 1 1 1 1 0 0                          | 0000 0111                                                                                                  | 0010 1101                                                                                                  |  |  |
|          |                 | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                                                                            |                                                                                                            |  |  |
|          | A, [%saddrg2]   | 0000 0111                                | 0 0 1 1 1 1 0 1                                                                                            | $\leftarrow  \text{Saddr2-offset}  \rightarrow $                                                           |  |  |
|          | A, [%saddrg1]   | 0011 1100                                | 0000 0111                                                                                                  | 0011 1101                                                                                                  |  |  |
|          |                 | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                                                                            |                                                                                                            |  |  |
|          | [saddrp2], A    | 0000 0111                                | 1010 1101                                                                                                  | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   |  |  |
|          | [saddrp1], A    | 0011 1100                                | 0000 0111                                                                                                  | 1010 1101                                                                                                  |  |  |
|          |                 | ← Saddr1-offset →                        |                                                                                                            |                                                                                                            |  |  |
|          | [%saddrg2], A   | 0 0 0 0 0 1 1 1                          | 1011 1101                                                                                                  | $\leftarrow$ Saddr2-offset $\rightarrow$                                                                   |  |  |

| Mnemonic | Operands        |                                          | Operation Code                           |                                                                 |
|----------|-----------------|------------------------------------------|------------------------------------------|-----------------------------------------------------------------|
|          |                 | B1                                       | B2                                       | В3                                                              |
|          |                 | B4                                       | B5                                       | В6                                                              |
|          |                 | В7                                       |                                          |                                                                 |
| XOR      | [%saddrg1], A   | 0 0 1 1 1 1 0 0                          | 0000 0111                                | 1011 1101                                                       |
|          |                 | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                          |                                                                 |
|          | A, !addr16      | 0000 1010                                | 0100 1101                                | $\leftarrow$ Low Address $\rightarrow$                          |
|          |                 | $\leftarrow$ High Address $\rightarrow$  |                                          |                                                                 |
|          | A, !!addr24     | 0000 1010                                | 0101 1101                                | $\leftarrow$ High-w Address $\rightarrow$                       |
|          |                 | $\leftarrow$ Low Address $\rightarrow$   | $\leftarrow$ High Address $\rightarrow$  |                                                                 |
|          | !addr16, A      | 0000 1010                                | 1100 1101                                | $\leftarrow$ Low Address $\rightarrow$                          |
|          |                 | $\leftarrow$ High Address $\rightarrow$  |                                          |                                                                 |
|          | !!addr24, A     | 0000 1010                                | 1101 1101                                | $\leftarrow$ High-w Address $\rightarrow$                       |
|          |                 | $\leftarrow$ Low Address $\rightarrow$   | $\leftarrow$ High Address $\rightarrow$  |                                                                 |
|          | A, [TDE +]      | 0 0 0 1 0 1 1 0                          | 0 0 0 0 1 1 0 1                          |                                                                 |
|          | A, [WHL +]      | 0 0 0 1 0 1 1 0                          | 0001 1101                                |                                                                 |
|          | A, [TDE –]      | 0 0 0 1 0 1 1 0                          | 0010 1101                                |                                                                 |
|          | A, [WHL –]      | 0 0 0 1 0 1 1 0                          | 0011 1101                                |                                                                 |
|          | A, [TDE]        | 0 0 0 1 0 1 1 0                          | 0 1 0 0 1 1 0 1                          |                                                                 |
|          | A, [WHL]        | 0 0 0 1 0 1 1 0                          | 0 1 0 1 1 1 0 1                          |                                                                 |
|          | A, [VVP]        | 0 0 0 1 0 1 1 0                          | 0 1 1 0 1 1 0 1                          |                                                                 |
|          | A, [UUP]        | 0 0 0 1 0 1 1 0                          | 0 1 1 1 1 1 0 1                          |                                                                 |
|          | A, [TDE + byte] | 0 0 0 0 0 1 1 0                          | 0 0 0 0 1 1 0 1                          | $\leftarrow \qquad \text{Low Offset} \qquad \rightarrow \qquad$ |
|          | A, [SP + byte]  | 0 0 0 0 0 1 1 0                          | 0 0 0 1 1 1 0 1                          | $\leftarrow \qquad \text{Low Offset} \qquad \rightarrow \qquad$ |
|          | A, [WHL + byte] | 0 0 0 0 0 1 1 0                          | 0010 1101                                | $\leftarrow \qquad \text{Low Offset} \qquad \rightarrow \qquad$ |
|          | A, [UUP + byte] | 0 0 0 0 0 1 1 0                          | 0 0 1 1 1 1 0 1                          | $\leftarrow \qquad \text{Low Offset} \qquad \rightarrow \qquad$ |
|          | A, [VVP + byte] | 0 0 0 0 0 1 1 0                          | 0 1 0 0 1 1 0 1                          | $\leftarrow$ Low Offset $\rightarrow$                           |
|          | A, imm24 [DE]   | 0000 1010                                | 0000 1101                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          |                 | $\leftarrow$ High Offset $\rightarrow$   | $\leftarrow$ High-w Offset $\rightarrow$ |                                                                 |
|          | A, imm24 [A]    | 0000 1010                                | 0001 1101                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          |                 | $\leftarrow$ High Offset $\rightarrow$   | $\leftarrow$ High-w Offset $\rightarrow$ |                                                                 |
|          | A, imm24 [HL]   | 0000 1010                                | 0010 1101                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          |                 | $\leftarrow$ High Offset $\rightarrow$   | $\leftarrow$ High-w Offset $\rightarrow$ |                                                                 |
|          | A, imm24 [B]    | 0000 1010                                | 0011 1101                                | $\leftarrow$ Low Offset $\rightarrow$                           |
|          |                 | ← High Offset →                          | $\leftarrow$ High-w Offset $\rightarrow$ |                                                                 |
|          | A, [TDE + A]    | 0 0 0 1 0 1 1 1                          | 0000 1101                                |                                                                 |
|          | A, [WHL + A]    | 0001 0111                                | 0 0 0 1 1 1 0 1                          |                                                                 |
|          | A, [TDE + B]    | 0 0 0 1 0 1 1 1                          | 0010 1101                                |                                                                 |

| Mnemonic | Operands        |            |                   |          | Operation | n Code |               |          |            |               |
|----------|-----------------|------------|-------------------|----------|-----------|--------|---------------|----------|------------|---------------|
|          |                 | B1         | B1                |          | В         | 2      |               |          | В3         |               |
|          |                 | B4         |                   |          | В         | 5      |               |          | В6         |               |
|          |                 | В7         |                   |          |           |        |               |          |            |               |
| XOR      | A, [WHL + B]    | 0 0 0 1    | 0 1 1 1           | 0 0      | 1 1       | 1 1    | 0 1           |          |            |               |
|          | A, [VVP + DE]   | 0 0 0 1    | 0 1 1 1           | 0 1      | 0 0       | 1 1    | 0 1           |          |            |               |
|          | A, [VVP + HL]   | 0 0 0 1    | 0 1 1 1           | 0 1      | 0 1       | 1 1    | 0 1           |          |            |               |
|          | A, [TDE + C]    | 0 0 0 1    | 0 1 1 1           | 0 1      | 1 0       | 1 1    | 0 1           |          |            |               |
|          | A, [WHL + C]    | 0 0 0 1    | 0 1 1 1           | 0 1      | 1 1       | 1 1    | 0 1           |          |            |               |
|          | [TDE +], A      | 0 0 0 1    | 0 1 1 0           | 1 0      | 0 0       | 1 1    | 0 1           |          |            |               |
|          | [WHL +], A      | 0 0 0 1    | 0 1 1 0           | 1 0      | 0 1       | 1 1    | 0 1           |          |            |               |
|          | [TDE –], A      | 0 0 0 1    | 0 1 1 0           | 1 0      | 1 0       | 1 1    | 0 1           |          |            |               |
|          | [WHL –], A      | 0 0 0 1    | 0 1 1 0           | 1 0      | 1 1       | 1 1    | 0 1           |          |            |               |
|          | [TDE], A        | 0 0 0 1    | 0 1 1 0           | 1 1      | 0 0       | 1 1    | 0 1           |          |            |               |
|          | [WHL], A        | 0 0 0 1    | 0 1 1 0           | 1 1      | 0 1       | 1 1    | 0 1           |          |            |               |
|          | [VVP], A        | 0 0 0 1    | 0 1 1 0           | 1 1      | 1 0       | 1 1    | 0 1           |          |            |               |
|          | [UUP], A        | 0 0 0 1    | 0 1 1 0           | 1 1      | 1 1       | 1 1    | 0 1           |          |            |               |
|          | [TDE + byte], A | 0 0 0 0    | 0 1 1 0           | 1 0      | 0 0       | 1 1    | 0 1           | <b>←</b> | Low Offset | $\rightarrow$ |
|          | [SP + byte], A  | 0 0 0 0    | 0 1 1 0           | 1 0      | 0 1       | 1 1    | 0 1           | <b>←</b> | Low Offset | $\rightarrow$ |
|          | [WHL + byte], A | 0 0 0 0    | 0 1 1 0           | 1 0      | 1 0       | 1 1    | 0 1           | <b>←</b> | Low Offset | $\rightarrow$ |
|          | [UUP + byte], A | 0 0 0 0    | 0 1 1 0           | 1 0      | 1 1       | 1 1    | 0 1           | <b>←</b> | Low Offset | $\rightarrow$ |
|          | [VVP + byte], A | 0 0 0 0    | 0 1 1 0           | 1 1      | 0 0       | 1 1    | 0 1           | <b>←</b> | Low Offset | $\rightarrow$ |
|          | imm24 [DE], A   | 0 0 0 0    | 1 0 1 0           | 1 0      | 0 0       | 1 1    | 0 1           | <b>←</b> | Low Offset | $\rightarrow$ |
|          |                 | ← High Off | set $\rightarrow$ | <b>←</b> | High-w    | Offset | $\rightarrow$ |          |            |               |
|          | imm24 [A], A    | 0 0 0 0    | 1 0 1 0           | 1 0      | 0 1       | 1 1    | 0 1           | <b>←</b> | Low Offset | $\rightarrow$ |
|          |                 | ← High Off | set $\rightarrow$ | <b>←</b> | High-w    | Offset | $\rightarrow$ |          |            |               |
|          | imm24 [HL], A   | 0 0 0 0    | 1 0 1 0           | 1 0      | 1 0       | 1 1    | 0 1           | <b>←</b> | Low Offset | $\rightarrow$ |
|          |                 | ← High Off | set $\rightarrow$ | <b>←</b> | High-w    | Offset | $\rightarrow$ |          |            |               |
|          | imm24 [B], A    | 0 0 0 0    | 1 0 1 0           | 1 0      | 1 1       | 1 1    | 0 1           | <b>←</b> | Low Offset | $\rightarrow$ |
|          |                 | ← High Off | set $\rightarrow$ | <b>←</b> | High-w    | Offset | $\rightarrow$ |          |            |               |
|          | [TDE + A], A    | 0 0 0 1    | 0 1 1 1           | 1 0      | 0 0       | 1 1    | 0 1           |          |            |               |
|          | [WHL + A], A    | 0 0 0 1    | 0 1 1 1           | 1 0      | 0 1       | 1 1    | 0 1           |          |            |               |
|          | [TDE + B], A    | 0 0 0 1    | 0 1 1 1           | 1 0      | 1 0       | 1 1    | 0 1           |          |            |               |
|          | [WHL + B], A    | 0 0 0 1    | 0 1 1 1           | 1 0      | 1 1       | 1 1    | 0 1           |          |            |               |
|          | [VVP + DE], A   | 0 0 0 1    | 0 1 1 1           | 1 1      | 0 0       | 1 1    | 0 1           |          |            |               |
|          | [VVP + HL], A   | 0 0 0 1    | 0 1 1 1           | 1 1      | 0 1       | 1 1    | 0 1           |          |            |               |
|          | [TDE + C], A    | 0 0 0 1    | 0 1 1 1           | 1 1      | 1 0       | 1 1    | 0 1           |          |            |               |
|          | [WHL + C], A    | 0 0 0 1    | 0 1 1 1           | 1 1      | 1 1       | 1 1    | 0 1           |          |            |               |

# (7) 16-bit operation instructions: ADDW, SUBW, CMPW

| Mnemonic | Operands          |                                          |                                                                                               |                                           |
|----------|-------------------|------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------|
|          |                   | B1                                       | B2                                                                                            | B3                                        |
|          |                   | B4                                       | B5                                                                                            | B6                                        |
|          |                   | В7                                       |                                                                                               |                                           |
| ADDW     | AX, #word         | 0 0 1 0 1 1 0 1                          | $\leftarrow$ Low Byte $\rightarrow$                                                           | $\leftarrow$ High Byte $\rightarrow$      |
|          | rp, #word         | 0 1 1 1 1 0 0 0                          | P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0 1 0 1 1                                        | $\leftarrow$ Low Byte $\rightarrow$       |
|          |                   | $\leftarrow$ High Byte $\rightarrow$     |                                                                                               |                                           |
|          | rp, rp'           | 1 0 0 0 1 0 0 0                          | P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0 1 P <sub>2</sub> P <sub>1</sub> P <sub>0</sub> |                                           |
|          | AX, saddrp2       | 0 0 0 1 1 1 0 1                          | $\leftarrow$ Saddr2-offset $\rightarrow$                                                      |                                           |
|          | rp, saddrp2       | 0 1 1 1 1 0 0 0                          | P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0 1 0 0 0                                        | $\leftarrow$ Saddr2-offset $\rightarrow$  |
|          | rp, saddrp1       | 0 1 1 1 1 0 0 0                          | P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0 1 0 0 1                                        | $\leftarrow$ Saddr1-offset $\rightarrow$  |
|          | saddrp2, rp       | 0 1 1 1 1 0 0 0                          | P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0 1 1 0 0                                        | $\leftarrow$ Saddr2-offset $\rightarrow$  |
|          | saddrp1, rp       | 0 1 1 1 1 0 0 0                          | P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0 1 1 0 1                                        | $\leftarrow$ Saddr1-offset $\rightarrow$  |
|          | rp, sfrp          | 0 1 1 1 1 0 0 0                          | P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0 1 0 1 0                                        | $\leftarrow$ Sfr-offset $\rightarrow$     |
|          | sfrp, rp          | 0 1 1 1 1 0 0 0                          | P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0 1 1 1 0                                        | $\leftarrow$ Sfr-offset $\rightarrow$     |
|          | saddrp2, #word    | 0 0 0 0 1 1 0 1                          | ← Saddr2-offset →                                                                             | $\leftarrow$ Low Byte $\rightarrow$       |
|          |                   | ← High Byte →                            |                                                                                               |                                           |
|          | saddrp1, #word    | 0 0 1 1 1 1 0 0                          | 0 0 0 0 1 1 0 1                                                                               | $\leftarrow$ Saddr1-offset $\rightarrow$  |
|          |                   | ← Low Byte →                             | ← High Byte →                                                                                 |                                           |
|          | sfrp, #word       | 0 0 0 0 0 0 0 1                          | 0 0 0 0 1 1 0 1                                                                               | $\leftarrow$ Sfr-offset $\rightarrow$     |
|          |                   | ← Low Byte →                             | ← High Byte →                                                                                 |                                           |
|          | saddrp2, saddrp2' | 0 0 1 0 1 0 1 0                          | 1000 1101                                                                                     | $\leftarrow$ Saddr2'-offset $\rightarrow$ |
|          |                   | $\leftarrow$ Saddr2-offset $\rightarrow$ |                                                                                               |                                           |
|          | saddrp2, saddrp1  | 0 0 1 0 1 0 1 0                          | 1001 1101                                                                                     | $\leftarrow$ Saddr1-offset $\rightarrow$  |
|          |                   | $\leftarrow$ Saddr2-offset $\rightarrow$ |                                                                                               |                                           |
|          | saddrp1, saddrp2  | 0 0 1 0 1 0 1 0                          | 1010 1101                                                                                     | $\leftarrow$ Saddr2-offset $\rightarrow$  |
|          |                   | ← Saddr1-offset →                        |                                                                                               |                                           |
|          | saddrp1, saddrp1' | 0 0 1 0 1 0 1 0                          | 1011 1101                                                                                     | ← Saddr1'-offset →                        |
|          |                   | ← Saddr1-offset →                        |                                                                                               |                                           |
| SUBW     | AX, #word         | 0 0 1 0 1 1 1 0                          | $\leftarrow$ Low Byte $\rightarrow$                                                           | $\leftarrow$ High Byte $\rightarrow$      |
|          | rp, #word         | 0 1 1 1 1 0 1 0                          | P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0 1 0 1 1                                        | $\leftarrow$ Low Byte $\rightarrow$       |
|          |                   | ← High Byte →                            |                                                                                               |                                           |
|          | rp, rp'           | 1 0 0 0 1 0 1 0                          | P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0 1 P <sub>2</sub> P <sub>1</sub> P <sub>0</sub> |                                           |
|          | AX, saddrp2       | 0 0 0 1 1 1 1 0                          | ← Saddr2-offset →                                                                             |                                           |
|          | rp, saddrp2       | 0 1 1 1 1 0 1 0                          | P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0 1 0 0 0                                        | ← Saddr2-offset →                         |
|          | rp, saddrp1       | 0 1 1 1 1 0 1 0                          | P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0 1 0 0 1                                        | ← Saddr1-offset →                         |
|          | saddrp2, rp       | 0 1 1 1 1 0 1 0                          | P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0 1 1 0 0                                        | ← Saddr2-offset →                         |

| Mnemonic | Operands          | Operation Code                           |                                                                                               |                                           |  |  |
|----------|-------------------|------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------|--|--|
|          |                   | B1                                       | B2                                                                                            | В3                                        |  |  |
|          |                   | B4                                       | B5                                                                                            | В6                                        |  |  |
|          |                   | В7                                       |                                                                                               |                                           |  |  |
| SUBW     | saddrp1, rp       | 0 1 1 1 1 0 1 0                          | P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0 1 1 0 1                                        | $\leftarrow$ Saddr1-offset $\rightarrow$  |  |  |
|          | rp, sfrp          | 0 1 1 1 1 0 1 0                          | P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0 1 0 1 0                                        | $\leftarrow$ Sfr-offset $\rightarrow$     |  |  |
|          | sfrp, rp          | 0 1 1 1 1 0 1 0                          | P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0 1 1 1 0                                        | $\leftarrow$ Sfr-offset $\rightarrow$     |  |  |
|          | saddrp2, #word    | 0 0 0 0 1 1 1 0                          | $\leftarrow$ Saddr2-offset $\rightarrow$                                                      | $\leftarrow$ Low Byte $\rightarrow$       |  |  |
|          |                   | $\leftarrow$ High Byte $\rightarrow$     |                                                                                               |                                           |  |  |
|          | saddrp1, #word    | 0 0 1 1 1 1 0 0                          | 0000 1110                                                                                     | $\leftarrow$ Saddr1-offset $\rightarrow$  |  |  |
|          |                   | $\leftarrow$ Low Byte $\rightarrow$      | $\leftarrow$ High Byte $\rightarrow$                                                          |                                           |  |  |
|          | sfrp, #word       | 0 0 0 0 0 0 0 1                          | 0 0 0 0 1 1 1 0                                                                               | $\leftarrow$ Sfr-offset $\rightarrow$     |  |  |
|          |                   | $\leftarrow$ Low Byte $\rightarrow$      | $\leftarrow$ High Byte $\rightarrow$                                                          |                                           |  |  |
|          | saddrp2, saddrp2' | 0 0 1 0 1 0 1 0                          | 1000 1110                                                                                     | $\leftarrow$ Saddr2'-offset $\rightarrow$ |  |  |
|          |                   | $\leftarrow$ Saddr2-offset $\rightarrow$ |                                                                                               |                                           |  |  |
|          | saddrp2, saddrp1  | 0 0 1 0 1 0 1 0                          | 1001 1110                                                                                     | $\leftarrow$ Saddr1-offset $\rightarrow$  |  |  |
|          |                   | $\leftarrow$ Saddr2-offset $\rightarrow$ |                                                                                               |                                           |  |  |
|          | saddrp1, saddrp2  | 0 0 1 0 1 0 1 0                          | 1010 1110                                                                                     | $\leftarrow$ Saddr2-offset $\rightarrow$  |  |  |
|          |                   | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                                                               |                                           |  |  |
|          | saddrp1, saddrp1' | 0010 1010                                | 1011 1110                                                                                     | $\leftarrow$ Saddr1'-offset $\rightarrow$ |  |  |
|          |                   | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                                                               |                                           |  |  |
| CMPW     | AX, #word         | 0 0 1 0 1 1 1 1                          | $\leftarrow$ Low Byte $\rightarrow$                                                           | ← High Byte →                             |  |  |
|          | rp, #word         | 0 1 1 1 1 1 1 1                          | P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0 1 0 1 1                                        | $\leftarrow$ Low Byte $\rightarrow$       |  |  |
|          |                   | $\leftarrow$ High Byte $\rightarrow$     |                                                                                               |                                           |  |  |
|          | rp, rp'           | 1 0 0 0 1 1 1 1                          | P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0 1 P <sub>2</sub> P <sub>1</sub> P <sub>0</sub> |                                           |  |  |
|          | AX, saddrp2       | 0 0 0 1 1 1 1 1                          | $\leftarrow$ Saddr2-offset $\rightarrow$                                                      |                                           |  |  |
|          | rp, saddrp2       | 0 1 1 1 1 1 1 1                          | P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0 1 0 0 0                                        | $\leftarrow$ Saddr2-offset $\rightarrow$  |  |  |
|          | rp, saddrp1       | 0 1 1 1 1 1 1 1                          | P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0 1 0 0 1                                        | $\leftarrow$ Saddr1-offset $\rightarrow$  |  |  |
|          | saddrp2, rp       | 0 1 1 1 1 1 1 1                          | P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0 1 1 0 0                                        | $\leftarrow$ Saddr2-offset $\rightarrow$  |  |  |
|          | saddrp1, rp       | 0 1 1 1 1 1 1 1                          | P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0 1 1 0 1                                        | $\leftarrow$ Saddr1-offset $\rightarrow$  |  |  |
|          | rp, sfrp          | 0 1 1 1 1 1 1 1                          | P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0 1 0 1 0                                        | $\leftarrow$ Sfr-offset $\rightarrow$     |  |  |
|          | sfrp, rp          | 0 1 1 1 1 1 1 1                          | P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> 0 1 1 1 0                                        | $\leftarrow$ Sfr-offset $\rightarrow$     |  |  |
|          | saddrp2, #word    | 0000 1111                                | $\leftarrow$ Saddr2-offset $\rightarrow$                                                      | $\leftarrow$ Low Byte $\rightarrow$       |  |  |
|          |                   | ← High Byte →                            |                                                                                               |                                           |  |  |
|          | saddrp1, #word    | 0 0 1 1 1 1 0 0                          | 0000 1111                                                                                     | $\leftarrow$ Saddr1-offset $\rightarrow$  |  |  |
|          |                   | ← Low Byte →                             | ← High Byte →                                                                                 |                                           |  |  |
|          | sfrp, #word       | 0000 0001                                | 0000 1111                                                                                     | $\leftarrow$ Sfr-offset $\rightarrow$     |  |  |
|          |                   | ← Low Byte →                             | ← High Byte →                                                                                 |                                           |  |  |

| Mnemonic | Operands          | Operation Code                               |               |
|----------|-------------------|----------------------------------------------|---------------|
|          |                   | B1 B2 B3                                     |               |
|          |                   | B4 B5 B6                                     |               |
|          |                   | B7                                           |               |
| СМРW     | saddrp2, saddrp2' | 0 0 1 0 1 0 1 0 0 0 1 1 1 1 ← Saddr2'-offset | $\rightarrow$ |
|          |                   | $\leftarrow$ Saddr2-offset $\rightarrow$     |               |
|          | saddrp2, saddrp1  | 0 0 1 0 1 0 1 0 0 1 1 1 1 1 ← Saddr1-offset  | $\rightarrow$ |
|          |                   | $\leftarrow$ Saddr2-offset $\rightarrow$     |               |
|          | saddrp1, saddrp2  | 0 0 1 0 1 0 1 0 1 0 1 1 1 1 ← Saddr2-offset  | $\rightarrow$ |
|          |                   | ← Saddr1-offset →                            |               |
|          | saddrp1, saddrp1' | 0 0 1 0 1 0 1 0 1 1 1 1 1 1 ← Saddr1'-offset | $\rightarrow$ |
|          |                   | ← Saddr1-offset →                            |               |

# (8) 24-bit operation instructions: ADDG, SUBG

| Mnemonic | Operands     |                                      | Operation Code                                                      |                                          |
|----------|--------------|--------------------------------------|---------------------------------------------------------------------|------------------------------------------|
|          |              | B1                                   | B2                                                                  | В3                                       |
|          |              | B4                                   | B5                                                                  | В6                                       |
|          |              | В7                                   |                                                                     |                                          |
| ADDG     | rg, rg'      | 1000 1000                            | 1 G <sub>6</sub> G <sub>5</sub> 1 1 G <sub>2</sub> G <sub>1</sub> 1 |                                          |
|          | rg, #imm24   | 0 1 1 1 1 0 0 0                      | 1 G <sub>6</sub> G <sub>5</sub> 1 1 0 1 1                           | $\leftarrow$ Low Byte $\rightarrow$      |
|          |              | $\leftarrow$ High Byte $\rightarrow$ | ← High-w Byte →                                                     |                                          |
|          | WHL, saddrg2 | 0 1 1 1 1 0 0 0                      | 1 1 1 1 1 0 0 0                                                     | $\leftarrow$ Saddr2-offset $\rightarrow$ |
|          | WHL, saddrg1 | 0 1 1 1 1 0 0 0                      | 1111 1001                                                           | ← Saddr1-offset →                        |
| SUBG     | rg, rg'      | 1000 1010                            | 1 G <sub>6</sub> G <sub>5</sub> 1 1 G <sub>2</sub> G <sub>1</sub> 1 |                                          |
|          | rg, #imm24   | 0 1 1 1 1 0 1 0                      | 1 G <sub>6</sub> G <sub>5</sub> 1 1 0 1 1                           | $\leftarrow$ Low Byte $\rightarrow$      |
|          |              | ← High Byte →                        | ← High-w Byte →                                                     |                                          |
|          | WHL, saddrg2 | 0 1 1 1 1 0 1 0                      | 1 1 1 1 1 0 0 0                                                     | $\leftarrow$ Saddr2-offset $\rightarrow$ |
|          | WHL, saddrg1 | 0 1 1 1 1 0 1 0                      | 1 1 1 1 1 0 0 1                                                     | ← Saddr1-offset →                        |

# (9) Multiplication instructions: MULU, MULUW, MULW, DIVUW, DIVUX

| Mnemonic | Operands | Operation Code |   |         |                                                |         |                                                |
|----------|----------|----------------|---|---------|------------------------------------------------|---------|------------------------------------------------|
|          |          | B1             |   | B2      | 2                                              | E       | 33                                             |
|          |          | B4             |   | B5      | 5                                              | E       | 36                                             |
|          |          | B7             |   |         |                                                |         |                                                |
| MULU     | r1       | 0000 010       | 1 | 0 0 0 0 | 1 R <sub>2</sub> R <sub>1</sub> R <sub>0</sub> |         |                                                |
|          | r2       | 0 0 1 1 1 1 0  | 0 | 0 0 0 0 | 0 1 0 1                                        | 0 0 0 0 | 1 R <sub>2</sub> R <sub>1</sub> R <sub>0</sub> |
| MULUW    | rp       | 0 0 0 0 0 1 0  | 1 | 0 0 1 0 | 1 P <sub>2</sub> P <sub>1</sub> P <sub>0</sub> |         |                                                |
| MULW     | rp       | 0 0 0 0 0 1 0  | 1 | 0 0 1 1 | 1 P <sub>2</sub> P <sub>1</sub> P <sub>0</sub> |         |                                                |
| DIVUW    | r1       | 0 0 0 0 0 1 0  | 1 | 0 0 0 1 | 1 R <sub>2</sub> R <sub>1</sub> R <sub>0</sub> |         |                                                |
|          | r2       | 0 0 1 1 1 1 0  | 0 | 0 0 0 0 | 0 1 0 1                                        | 0 0 0 1 | 1 R <sub>2</sub> R <sub>1</sub> R <sub>0</sub> |
| DIVUX    | rp       | 0 0 0 0 0 1 0  | 1 | 1 1 1 0 | 1 P <sub>2</sub> P <sub>1</sub> P <sub>0</sub> |         |                                                |

### (10) Special operation instructions: MACW, MACSW, SACW

| Mnemonic | Operands           | Operation Code  |                 |                                 |  |
|----------|--------------------|-----------------|-----------------|---------------------------------|--|
|          |                    | B1              | B2              | В3                              |  |
|          |                    | B4              | B5              | B6                              |  |
|          |                    | B7              |                 |                                 |  |
| MACW     | byte               | 0000 0111       | 1 0 0 0 0 1 0 1 | $\leftarrow$ byte $\rightarrow$ |  |
| MACSW    | byte               | 0000 0111       | 1 0 0 1 0 1 0 1 | $\leftarrow$ byte $\rightarrow$ |  |
| SACW     | [TDE + ], [WHL + ] | 0 0 0 0 1 0 0 1 | 0 1 1 0 0 1 0 0 | 0 1 0 0 0 0 0 1                 |  |
|          |                    | 0 1 0 0 0 1 1 0 |                 |                                 |  |

# (11) Increment/decrement instructions: INC, DEC, INCW, DECW, INCG, DECG

| Mnemonic | Operands |          |                                                | Operation                         | n Code                                         |          |                             |
|----------|----------|----------|------------------------------------------------|-----------------------------------|------------------------------------------------|----------|-----------------------------|
|          |          | B1       |                                                | B2                                | 2                                              |          | В3                          |
|          |          | B        | 4                                              | B5                                | 5                                              |          | B6                          |
|          |          | В        | 7                                              |                                   |                                                |          |                             |
| INC      | r1       | 1 1 0 0  | 0 R <sub>2</sub> R <sub>1</sub> R <sub>0</sub> |                                   |                                                |          |                             |
|          | r2       | 0 0 1 1  | 1 1 0 0                                        | 1 1 0 0                           | $0\ R_2R_1R_0$                                 |          |                             |
|          | saddr2   | 0 0 1 0  | 0 1 1 0                                        | ← Saddr2-                         | -offset $\rightarrow$                          |          |                             |
|          | saddr1   | 0 0 1 1  | 1 1 0 0                                        | 0 0 1 0                           | 0 1 1 0                                        | <b>←</b> | Saddr1-offset $\rightarrow$ |
| DEC      | r1       | 1 1 0 0  | 1 R <sub>2</sub> R <sub>1</sub> R <sub>0</sub> |                                   |                                                |          |                             |
|          | r2       | 0 0 1 1  | 1 1 0 0                                        | 1 1 0 0                           | 1 R <sub>2</sub> R <sub>1</sub> R <sub>0</sub> |          |                             |
|          | saddr2   | 0 0 1 0  | 0 1 1 1                                        | ← Saddr2-                         | -offset $\rightarrow$                          |          |                             |
|          | saddr1   | 0 0 1 1  | 1 1 0 0                                        | 0 0 1 0                           | 0 1 1 1                                        | <b>←</b> | Saddr1-offset $\rightarrow$ |
| INCW     | RP0      | 0 0 1 1  | 1 1 1 0                                        | 0 0 0 0                           | 1 1 0 1                                        |          |                             |
|          | RP1      | 0 0 1 1  | 1 1 1 0                                        | 0 0 1 0                           | 1 1 0 1                                        |          |                             |
|          | RP2      | 0 0 1 1  | 1 1 1 0                                        | 0 1 0 0                           | 1 1 0 1                                        |          |                             |
|          | RP3      | 0 0 1 1  | 1 1 1 0                                        | 0 1 1 0                           | 1 1 0 1                                        |          |                             |
|          | VP (RP4) | 0 1 0 0  | 0 1 0 0                                        |                                   |                                                |          |                             |
|          | UP (RP5) | 0 1 0 0  | 0 1 0 1                                        |                                   |                                                |          |                             |
|          | DE (RP6) | 0 1 0 0  | 0 1 1 0                                        |                                   |                                                |          |                             |
|          | HL (RP7) | 0 1 0 0  | 0 1 1 1                                        |                                   |                                                |          |                             |
|          | saddrp2  | 0 0 0 0  | 0 1 1 1                                        | 1 1 1 0                           | 1 0 0 0                                        | <b>←</b> | Saddr2-offset $\rightarrow$ |
|          | saddrp1  | 0 0 1 1  | 1 1 0 0                                        | 0 0 0 0                           | 0 1 1 1                                        | 1 1      | 1 0 1 0 0 0                 |
|          |          | ← Saddr1 | -offset $\rightarrow$                          |                                   |                                                |          |                             |
| DECW     | RP0      | 0 0 1 1  | 1 1 1 0                                        | 0 0 0 0                           | 1 1 1 1                                        |          |                             |
|          | RP1      | 0 0 1 1  | 1 1 1 0                                        | 0 0 1 0                           | 1 1 1 1                                        |          |                             |
|          | RP2      | 0 0 1 1  | 1 1 1 0                                        | 0 1 0 0                           | 1 1 1 1                                        |          |                             |
|          | RP3      | 0 0 1 1  | 1 1 1 0                                        | 0 1 1 0                           | 1 1 1 1                                        |          |                             |
|          | VP (RP4) | 0 1 0 0  | 1 1 0 0                                        |                                   |                                                |          |                             |
|          | UP (RP5) | 0 1 0 0  | 1 1 0 1                                        |                                   |                                                |          |                             |
|          | DE (RP6) | 0 1 0 0  | 1 1 1 0                                        |                                   |                                                |          |                             |
|          | HL (RP7) | 0 1 0 0  | 1 1 1 1                                        |                                   |                                                |          |                             |
|          | saddrp2  | 0 0 0 0  | 0 1 1 1                                        | 1 1 1 0                           | 1 0 0 1                                        | <b>←</b> | Saddr2-offset $\rightarrow$ |
|          | saddrp1  | 0 0 1 1  | 1 1 0 0                                        | 0 0 0 0                           | 0 1 1 1                                        | 1 1      | 1 0 1 0 0 1                 |
|          |          | ← Saddr1 | -offset $ ightarrow$                           |                                   |                                                |          |                             |
| INCG     | rg       | 0 0 1 1  | 1 1 1 0                                        | 1 G <sub>6</sub> G <sub>5</sub> 1 | 1 1 0 1                                        |          |                             |
| DECG     | rg       | 0 0 1 1  | 1 1 1 0                                        | 1 G <sub>6</sub> G <sub>5</sub> 1 | 1 1 1 1                                        |          |                             |

# (12) Adjustment instructions: ADJBA, ADJBS, CVTBW

| Mnemonic | Operands | Operation Code |           |    |  |
|----------|----------|----------------|-----------|----|--|
|          |          | B1             | B2        | В3 |  |
|          |          | B4             | B5        | B6 |  |
|          |          | B7             |           |    |  |
| ADJBA    |          | 0000 0101      | 1111 1110 |    |  |
| ADJBS    |          | 0000 0101      | 1111 1111 |    |  |
| CVTBW    |          | 0000 0100      |           |    |  |

### (13) Shift/rotate instructions: ROR, ROL, RORC, ROLC, SHR, SHL, SHRW, SHLW, ROR4, ROL4

| Mnemonic | Operands | Operation Code |         |                                   | on Code                                                     |                                   |                   |
|----------|----------|----------------|---------|-----------------------------------|-------------------------------------------------------------|-----------------------------------|-------------------|
|          |          | В              | 31      | В                                 | 2                                                           | В                                 | 33                |
|          |          | В              | 34      | В                                 | 5                                                           | Е                                 | 36                |
|          |          | В              | 37      |                                   |                                                             |                                   |                   |
| ROR      | r1, n    | 0 0 1 1        | 0 0 0 0 | 0 1 N <sub>2</sub> N <sub>1</sub> | No R2 R1 R0                                                 |                                   |                   |
|          | r2, n    | 0 0 1 1        | 1 1 0 0 | 0 0 1 1                           | 0 0 0 0                                                     | 0 1 N <sub>2</sub> N <sub>1</sub> | $N_0 R_2 R_1 R_0$ |
| ROL      | r1, n    | 0 0 1 1        | 0 0 0 1 | 0 1 N <sub>2</sub> N <sub>1</sub> | $N_0 R_2 R_1 R_0$                                           |                                   |                   |
|          | r2, n    | 0 0 1 1        | 1 1 0 0 | 0 0 1 1                           | 0 0 0 1                                                     | 0 1 N <sub>2</sub> N <sub>1</sub> | No R2 R1 R0       |
| RORC     | r1, n    | 0 0 1 1        | 0 0 0 0 | 0 0 N <sub>2</sub> N <sub>1</sub> | $N_0 R_2 R_1 R_0$                                           |                                   |                   |
|          | r2, n    | 0 0 1 1        | 1 1 0 0 | 0 0 1 1                           | 0 0 0 0                                                     | 0 0 N <sub>2</sub> N <sub>1</sub> | $N_0 R_2 R_1 R_0$ |
| ROLC     | r1, n    | 0 0 1 1        | 0 0 0 1 | 0 0 N <sub>2</sub> N <sub>1</sub> | $N_0R_2R_1R_0$                                              |                                   |                   |
|          | r2, n    | 0 0 1 1        | 1 1 0 0 | 0 0 1 1                           | 0 0 0 1                                                     | 0 0 N <sub>2</sub> N <sub>1</sub> | No R2 R1 R0       |
| SHR      | r1, n    | 0 0 1 1        | 0 0 0 0 | 1 0 N <sub>2</sub> N <sub>1</sub> | $N_0 R_2 R_1 R_0$                                           |                                   |                   |
|          | r2, n    | 0 0 1 1        | 1 1 0 0 | 0 0 1 1                           | 0 0 0 0                                                     | 1 0 N <sub>2</sub> N <sub>1</sub> | $N_0 R_2 R_1 R_0$ |
| SHL      | r1, n    | 0 0 1 1        | 0 0 0 1 | 1 0 N <sub>2</sub> N <sub>1</sub> | $N_0 R_2 R_1 R_0$                                           |                                   |                   |
|          | r2, n    | 0 0 1 1        | 1 1 0 0 | 0 0 1 1                           | 0 0 0 1                                                     | 1 0 N <sub>2</sub> N <sub>1</sub> | No R2 R1 R0       |
| SHRW     | rp, n    | 0 0 1 1        | 0 0 0 0 | 1 1 N <sub>2</sub> N <sub>1</sub> | N <sub>0</sub> P <sub>2</sub> P <sub>1</sub> P <sub>0</sub> |                                   |                   |
| SHLW     | rp, n    | 0 0 1 1        | 0 0 0 1 | 1 1 N <sub>2</sub> N <sub>1</sub> | N <sub>0</sub> P <sub>2</sub> P <sub>1</sub> P <sub>0</sub> |                                   |                   |
| ROR4     | mem3     | 0 0 0 0        | 0 1 0 1 | 1 0 0 0                           | 1 P <sub>2</sub> P <sub>1</sub> P <sub>0</sub>              |                                   |                   |
| ROL4     | mem3     | 0 0 0 0        | 0 1 0 1 | 1 0 0 1                           | 1 P <sub>2</sub> P <sub>1</sub> P <sub>0</sub>              |                                   |                   |

# (14) Bit manipulation instructions: MOV1, AND1, OR1, XOR1, NOT1, SET1, CLR1

| Mnemonic | Operands         |                                          | Operation Code                                         |                                                                 |
|----------|------------------|------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------|
|          |                  | B1                                       | B2                                                     | В3                                                              |
|          |                  | B4                                       | B5                                                     | В6                                                              |
|          |                  | B7                                       |                                                        |                                                                 |
| MOV1     | CY, saddr2. bit  | 0 0 0 0 1 0 0 0                          | 0 0 0 0 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | $\leftarrow  \text{Saddr2-offset}  \rightarrow $                |
|          | CY, saddr1. bit  | 0011 1100                                | 0000 1000                                              | 0 0 0 0 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub>          |
|          |                  | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                        |                                                                 |
|          | CY, sfr. bit     | 0 0 0 0 1 0 0 0                          | 0 0 0 0 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | $\leftarrow \qquad Sfr\text{-}offset \qquad \rightarrow \qquad$ |
|          | CY, X. bit       | 0 0 0 0 0 0 1 1                          | 0 0 0 0 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |
|          | CY, A. bit       | 0 0 0 0 0 0 1 1                          | 0 0 0 0 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |
|          | CY, PSWL. bit    | 0 0 0 0 0 0 1 0                          | 0 0 0 0 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |
|          | CY, PSWH. bit    | 0 0 0 0 0 0 1 0                          | 0 0 0 0 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |
|          | CY, [TDE]. bit   | 0 0 1 1 1 1 0 1                          | 0 0 0 0 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |
|          | CY, [WHL]. bit   | 0 0 1 1 1 1 0 1                          | 0 0 0 0 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |
|          | CY, !addr16.bit  | 0 0 0 0 1 0 0 1                          | 1 1 0 1 0 0 0 0                                        | 0 0 0 0 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub>          |
|          |                  | $\leftarrow$ Low Address $\rightarrow$   | $\leftarrow$ High Address $ ightarrow$                 |                                                                 |
|          | CY, !!addr24.bit | 0 0 0 0 1 0 0 1                          | 1 1 0 1 0 0 0 0                                        | 0 0 0 0 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub>          |
|          |                  | ← High-w Address →                       | $\leftarrow$ Low Address $\rightarrow$                 | $\leftarrow$ High Address $ ightarrow$                          |
|          | saddr2. bit, CY  | 0 0 0 0 1 0 0 0                          | 0 0 0 1 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | $\leftarrow$ Saddr2-offset $\rightarrow$                        |
|          | saddr1. bit, CY  | 0 0 1 1 1 1 0 0                          | 0000 1000                                              | 0 0 0 1 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub>          |
|          |                  | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                        |                                                                 |
|          | sfr. bit, CY     | 0 0 0 0 1 0 0 0                          | 0 0 0 1 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | $\leftarrow \qquad Sfr\text{-}offset \qquad \rightarrow \qquad$ |
|          | X. bit, CY       | 0 0 0 0 0 0 1 1                          | 0 0 0 1 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |
|          | A. bit, CY       | 0 0 0 0 0 0 1 1                          | 0 0 0 1 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |
|          | PSWL. bit, CY    | 0 0 0 0 0 0 1 0                          | 0 0 0 1 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |
|          | PSWH. bit, CY    | 0 0 0 0 0 0 1 0                          | 0 0 0 1 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |
|          | [TDE]. bit, CY   | 0 0 1 1 1 1 0 1                          | 0 0 0 1 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |
|          | [WHL]. bit, CY   | 0 0 1 1 1 1 0 1                          | 0 0 0 1 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |
|          | !addr16. bit, CY | 0 0 0 0 1 0 0 1                          | 1 1 0 1 0 0 0 0                                        | 0 0 0 1 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub>          |
|          |                  | ← Low Address →                          | $\leftarrow$ High Address $\rightarrow$                |                                                                 |
|          | !addr24. bit, CY | 0 0 0 0 1 0 0 1                          | 1 1 0 1 0 0 0 0                                        | 0 0 0 1 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub>          |
|          |                  | ← High-w Address →                       | $\leftarrow$ Low Address $\rightarrow$                 | $\leftarrow$ High Address $\rightarrow$                         |
| AND1     | CY, saddr2. bit  | 0 0 0 0 1 0 0 0                          | 0 0 1 0 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | $\leftarrow  \text{Saddr2-offset}  \rightarrow $                |
|          | CY, saddr1. bit  | 0 0 1 1 1 1 0 0                          | 0 0 0 0 1 0 0 0                                        | 0 0 1 0 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub>          |
|          |                  | ← Saddr1-offset →                        |                                                        |                                                                 |
|          | CY,/saddr2. bit  | 0 0 0 0 1 0 0 0                          | 0 0 1 1 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | $\leftarrow  \text{Saddr2-offset}  \rightarrow $                |

| Mnemonic | Operands          |                                          | Operation Code                                         |                                                                 |  |  |  |
|----------|-------------------|------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------|--|--|--|
|          |                   | B1                                       | B2                                                     | B3                                                              |  |  |  |
|          |                   | B4                                       | B5                                                     | В6                                                              |  |  |  |
|          |                   | В7                                       |                                                        |                                                                 |  |  |  |
| AND1     | CY,/saddr1. bit   | 0 0 1 1 1 1 0 0                          | 0000 1000                                              | 0 0 1 1 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub>          |  |  |  |
|          |                   | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                        |                                                                 |  |  |  |
|          | CY, sfr. bit      | 0 0 0 0 1 0 0 0                          | 0 0 1 0 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | $\leftarrow \qquad Sfr\text{-}offset \qquad \rightarrow \qquad$ |  |  |  |
|          | CY,/sfr. bit      | 0 0 0 0 1 0 0 0                          | 0 0 1 1 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | $\leftarrow$ Sfr-offset $\rightarrow$                           |  |  |  |
|          | CY, X. bit        | 0000 0011                                | 0 0 1 0 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |  |  |  |
|          | CY,/X. bit        | 0000 0011                                | 0 0 1 1 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |  |  |  |
|          | CY, A. bit        | 0 0 0 0 0 0 1 1                          | 0 0 1 0 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |  |  |  |
|          | CY,/A. bit        | 0000 0011                                | 0 0 1 1 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |  |  |  |
|          | CY, PSWL. bit     | 0000 0010                                | 0 0 1 0 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |  |  |  |
|          | CY,/PSWL. bit     | 0 0 0 0 0 0 1 0                          | 0 0 1 1 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |  |  |  |
|          | CY, PSWH. bit     | 0 0 0 0 0 0 1 0                          | 0 0 1 0 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |  |  |  |
|          | CY,/PSWH. bit     | 0000 0010                                | 0 0 1 1 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |  |  |  |
|          | CY, [TDE]. bit    | 0 0 1 1 1 1 0 1                          | 0 0 1 0 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |  |  |  |
|          | CY,/ [TDE]. bit   | 0 0 1 1 1 1 0 1                          | 0 0 1 1 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |  |  |  |
|          | CY, [WHL]. bit    | 0 0 1 1 1 1 0 1                          | 0 0 1 0 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |  |  |  |
|          | CY,/ [WHL]. bit   | 0 0 1 1 1 1 0 1                          | 0 0 1 1 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |  |  |  |
|          | CY, !addr16.bit   | 0 0 0 0 1 0 0 1                          | 1 1 0 1 0 0 0 0                                        | 0 0 1 0 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub>          |  |  |  |
|          |                   | $\leftarrow$ Low Address $\rightarrow$   | $\leftarrow$ High Address $ ightarrow$                 |                                                                 |  |  |  |
|          | CY, /!addr16.bit  | 0 0 0 0 1 0 0 1                          | 1 1 0 1 0 0 0 0                                        | 0 0 1 1 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub>          |  |  |  |
|          |                   | $\leftarrow$ Low Address $\rightarrow$   | $\leftarrow$ High Address $ ightarrow$                 |                                                                 |  |  |  |
|          | CY, !!addr24.bit  | 0 0 0 0 1 0 0 1                          | 1 1 0 1 0 0 0 0                                        | 0 0 1 0 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub>          |  |  |  |
|          |                   | ← High-w Address →                       | $\leftarrow$ Low Address $\rightarrow$                 | $\leftarrow$ High Address $ ightarrow$                          |  |  |  |
|          | CY, /!!addr24.bit | 0 0 0 0 1 0 0 1                          | 1 1 0 1 0 0 0 0                                        | 0 0 1 1 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub>          |  |  |  |
|          |                   | ← High-w Address →                       | ← Low Address →                                        | $\leftarrow$ High Address $ ightarrow$                          |  |  |  |
| OR1      | CY, saddr2. bit   | 0 0 0 0 1 0 0 0                          | 0 1 0 0 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | $\leftarrow  \text{Saddr2-offset}  \rightarrow $                |  |  |  |
|          | CY, saddr1. bit   | 0 0 1 1 1 1 0 0                          | 0 0 0 0 1 0 0 0                                        | 0 1 0 0 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub>          |  |  |  |
|          |                   | ← Saddr1-offset →                        |                                                        |                                                                 |  |  |  |
|          | CY, /saddr2. bit  | 0 0 0 0 1 0 0 0                          | 0 1 0 1 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | $\leftarrow$ Saddr2-offset $\rightarrow$                        |  |  |  |
|          | CY, /saddr1. bit  | 0 0 1 1 1 1 0 0                          | 0 0 0 0 1 0 0 0                                        | 0 1 0 1 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub>          |  |  |  |
|          |                   | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                        |                                                                 |  |  |  |
|          | CY, sfr. bit      | 0 0 0 0 1 0 0 0                          | 0 1 0 0 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | $\leftarrow$ Sfr-offset $\rightarrow$                           |  |  |  |
|          | CY,/sfr. bit      | 0 0 0 0 1 0 0 0                          | 0 1 0 1 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | $\leftarrow$ Sfr-offset $\rightarrow$                           |  |  |  |
|          | CY, X. bit        | 0 0 0 0 0 0 1 1                          | 0 1 0 0 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |  |  |  |
|          | CY,/X. bit        | 0 0 0 0 0 0 1 1                          | 0 1 0 1 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |  |  |  |

| Mnemonic | Operands         |                                          | Operation Code                                         |                                                                 |
|----------|------------------|------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------|
|          |                  | B1                                       | B2                                                     | В3                                                              |
|          |                  | B4                                       | B5                                                     | В6                                                              |
|          |                  | В7                                       |                                                        |                                                                 |
| OR1      | CY, A. bit       | 0 0 0 0 0 0 1 1                          | 0 1 0 0 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |
|          | CY,/A. bit       | 0 0 0 0 0 0 1 1                          | 0 1 0 1 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |
|          | CY, PSWL. bit    | 0 0 0 0 0 0 1 0                          | 0 1 0 0 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |
|          | CY,/PSWL. bit    | 0 0 0 0 0 0 1 0                          | 0 1 0 1 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |
|          | CY, PSWH. bit    | 0 0 0 0 0 0 1 0                          | 0 1 0 0 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |
|          | CY,/PSWH. bit    | 0 0 0 0 0 0 1 0                          | 0 1 0 1 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |
|          | CY, [TDE]. bit   | 0 0 1 1 1 1 0 1                          | 0 1 0 0 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |
|          | CY,/ [TDE]. bit  | 0 0 1 1 1 1 0 1                          | 0 1 0 1 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |
|          | CY, [WHL]. bit   | 0 0 1 1 1 1 0 1                          | 0 1 0 0 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |
|          | CY,/ [WHL]. bit  | 0 0 1 1 1 1 0 1                          | 0 1 0 1 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |
|          | CY, !addr16.bit  | 0 0 0 0 1 0 0 1                          | 1 1 0 1 0 0 0 0                                        | 0 1 0 0 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub>          |
|          |                  | $\leftarrow$ Low Address $\rightarrow$   | $\leftarrow$ High Address $ ightarrow$                 |                                                                 |
|          | CY,/!addr16.bit  | 0 0 0 0 1 0 0 1                          | 1 1 0 1 0 0 0 0                                        | 0 1 0 1 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub>          |
|          |                  | ← Low Address →                          | ← High Address →                                       |                                                                 |
|          | CY, !!addr24.bit | 0 0 0 0 1 0 0 1                          | 1 1 0 1 0 0 0 0                                        | 0 1 0 0 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub>          |
|          |                  | ← High-w Address →                       | $\leftarrow$ Low Address $\rightarrow$                 | $\leftarrow$ High Address $\rightarrow$                         |
|          | CY,/!!addr24.bit | 0000 1001                                | 1101 0000                                              | 0 1 0 1 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub>          |
|          |                  | ← High-w Address →                       | $\leftarrow$ Low Address $\rightarrow$                 | $\leftarrow$ High Address $\rightarrow$                         |
| XOR1     | CY, saddr2. bit  | 0 0 0 0 1 0 0 0                          | 0 1 1 0 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | $\leftarrow  Saddr2\text{-offset}  \rightarrow $                |
|          | CY, saddr1. bit  | 0011 1100                                | 0000 1000                                              | 0 1 1 0 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub>          |
|          |                  | $\leftarrow$ Saddr1-offset $\rightarrow$ |                                                        |                                                                 |
|          | CY, sfr. bit     | 0 0 0 0 1 0 0 0                          | 0 1 1 0 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | $\leftarrow \qquad Sfr\text{-}offset \qquad \rightarrow \qquad$ |
|          | CY, X. bit       | 0 0 0 0 0 0 1 1                          | 0 1 1 0 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |
|          | CY, A. bit       | 0 0 0 0 0 0 1 1                          | 0 1 1 0 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |
|          | CY, PSWL. bit    | 0 0 0 0 0 0 1 0                          | 0 1 1 0 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |
|          | CY, PSWH. bit    | 0 0 0 0 0 0 1 0                          | 0 1 1 0 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |
|          | CY, [TDE]. bit   | 0 0 1 1 1 1 0 1                          | 0 1 1 0 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |
|          | CY, [WHL]. bit   | 0 0 1 1 1 1 0 1                          | 0 1 1 0 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                                 |
|          | CY, !addr16.bit  | 0000 1001                                | 1101 0000                                              | 0 1 1 0 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub>          |
|          |                  | $\leftarrow$ Low Address $\rightarrow$   | $\leftarrow$ High Address $\rightarrow$                |                                                                 |
|          | CY, !!addr24.bit | 0000 1001                                | 1 1 0 1 0 0 0 0                                        | 0 1 1 0 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub>          |
|          |                  | ← High-w Address →                       | $\leftarrow$ Low Address $ ightarrow$                  | $\leftarrow$ High Address $ ightarrow$                          |

| Mnemonic | Operands      |                                                        | Operation Code                                         |                                                        |
|----------|---------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
|          |               | B1                                                     | B2                                                     | В3                                                     |
|          |               | B4                                                     | B5                                                     | В6                                                     |
|          |               | B7                                                     |                                                        |                                                        |
| NOT1     | saddr2. bit   | 0 0 0 0 1 0 0 0                                        | 0 1 1 1 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | $\leftarrow  \text{Saddr2-offset}  \rightarrow $       |
|          | saddr1. bit   | 0 0 1 1 1 1 0 0<br>← Saddr1-offset →                   | 0000 1000                                              | 0 1 1 1 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |
|          | sfr. bit      | 0 0 0 0 1 0 0 0                                        | 0 1 1 1 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | $\leftarrow$ Sfr-offset $\rightarrow$                  |
|          | X. bit        | 0 0 0 0 0 0 1 1                                        | 0 1 1 1 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                        |
|          | A. bit        | 0 0 0 0 0 0 1 1                                        | 0 1 1 1 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                        |
|          | PSWL. bit     | 0 0 0 0 0 0 1 0                                        | 0 1 1 1 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                        |
|          | PSWH. bit     | 0 0 0 0 0 0 1 0                                        | 0 1 1 1 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                        |
|          | [TDE]. bit    | 0 0 1 1 1 1 0 1                                        | 0 1 1 1 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                        |
|          | [WHL]. bit    | 0 0 1 1 1 1 0 1                                        | 0 1 1 1 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                        |
|          | !addr16.bit   | 0 0 0 0 1 0 0 1                                        | 1 1 0 1 0 0 0 0                                        | 0 1 1 1 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |
|          |               | ← Low Address →                                        | ← High Address →                                       |                                                        |
|          | !!addr24.bit  | 0 0 0 0 1 0 0 1                                        | 1 1 0 1 0 0 0 0                                        | 0 1 1 1 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |
|          |               | ← High-w Address →                                     | ← Low Address →                                        | ← High Address →                                       |
|          | CY            | 0 1 0 0 0 0 1 0                                        |                                                        |                                                        |
| SET1     | saddr2. bit   | 1 0 1 1 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | $\leftarrow$ Saddr2-offset $\rightarrow$               |                                                        |
|          | saddr1. bit   | 0 0 1 1 1 1 0 0                                        | 1 0 1 1 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | $\leftarrow$ Saddr1-offset $\rightarrow$               |
|          | sfr. bit      | 0 0 0 0 1 0 0 0                                        | 1 0 0 0 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | $\leftarrow$ Sfr-offset $\rightarrow$                  |
|          | X. bit        | 0 0 0 0 0 0 1 1                                        | 1 0 0 0 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                        |
|          | A. bit        | 0 0 0 0 0 0 1 1                                        | 1 0 0 0 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                        |
|          | PSWL. bit     | 0 0 0 0 0 0 1 0                                        | 1 0 0 0 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                        |
|          | PSWH. bit     | 0 0 0 0 0 0 1 0                                        | 1 0 0 0 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                        |
|          | [TDE]. bit    | 0 0 1 1 1 1 0 1                                        | 1 0 0 0 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                        |
|          | [WHL]. bit    | 0 0 1 1 1 1 0 1                                        | 1 0 0 0 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                        |
|          | !addr16. bit  | 0 0 0 0 1 0 0 1                                        | 1 1 0 1 0 0 0 0                                        | 1 0 0 0 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |
|          |               | ← Low Address →                                        | $\leftarrow$ High Address $ ightarrow$                 |                                                        |
|          | !!addr24. bit | 0000 1001                                              | 1101 0000                                              | 1 0 0 0 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |
|          |               | ← High-w Address →                                     | $\leftarrow$ Low Address $\rightarrow$                 | $\leftarrow$ High Address $\rightarrow$                |
|          | CY            | 0 1 0 0 0 0 0 1                                        |                                                        |                                                        |

| Mnemonic | Operands     | Operation Code                                         |                                                        |                                                        |  |
|----------|--------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--|
|          |              | B1                                                     | B2                                                     | В3                                                     |  |
|          |              | B4                                                     | B5                                                     | В6                                                     |  |
|          |              | В7                                                     |                                                        |                                                        |  |
| CLR1     | saddr2. bit  | 1 0 1 0 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | $\leftarrow$ Saddr2-offset $\rightarrow$               |                                                        |  |
|          | saddr1. bit  | 0 0 1 1 1 1 0 0                                        | 1 0 1 0 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | $\leftarrow$ Saddr1-offset $\rightarrow$               |  |
|          | sfr. bit     | 0 0 0 0 1 0 0 0                                        | 1 0 0 1 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | $\leftarrow$ Sfr-offset $\rightarrow$                  |  |
|          | X. bit       | 0 0 0 0 0 0 1 1                                        | 1 0 0 1 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                        |  |
|          | A. bit       | 0000 0011                                              | 1 0 0 1 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                        |  |
|          | PSWL. bit    | 0 0 0 0 0 0 1 0                                        | 1 0 0 1 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                        |  |
|          | PSWH. bit    | 0 0 0 0 0 0 1 0                                        | 1 0 0 1 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                        |  |
|          | [TDE]. bit   | 0 0 1 1 1 1 0 1                                        | 1 0 0 1 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                        |  |
|          | [WHL]. bit   | 0 0 1 1 1 1 0 1                                        | 1 0 0 1 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |                                                        |  |
|          | !addr16.bit  | 0000 1001                                              | 1101 0000                                              | 1 0 0 1 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |  |
|          |              | $\leftarrow$ Low Address $\rightarrow$                 | ← High Address →                                       |                                                        |  |
|          | !!addr24.bit | 0000 1001                                              | 1101 0000                                              | 1 0 0 1 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |  |
|          |              | $\leftarrow$ High-w address $\rightarrow$              | $\leftarrow$ Low Address $\rightarrow$                 | $\leftarrow$ High Address $\rightarrow$                |  |
|          | CY           | 0 1 0 0 0 0 0 0                                        |                                                        |                                                        |  |

# (15) Stack manipulation instructions: PUSH, PUSHU, POP, POPU, MOVG, ADDWG, SUBWG, INCG, DECG

| Mnemonic | Operands   | Operation Code                       |                                           |                                                                 |
|----------|------------|--------------------------------------|-------------------------------------------|-----------------------------------------------------------------|
|          |            | B1                                   | B2                                        | В3                                                              |
|          |            | B4                                   | B5                                        | В6                                                              |
|          |            | В7                                   |                                           |                                                                 |
| PUSH     | PSW        | 0100 1001                            |                                           |                                                                 |
|          | sfrp       | 0 0 0 0 0 1 1 1                      | 1 1 0 1 1 0 0 1                           | $\leftarrow \qquad \text{sfr-offset} \qquad \rightarrow \qquad$ |
|          | sfr        | 0 0 0 0 0 1 1 1                      | 1 1 0 1 1 0 1 1                           | $\leftarrow \qquad \text{sfr-offset} \qquad \rightarrow \qquad$ |
|          | post       | 0011 0101                            | $\leftarrow$ post $\rightarrow$           |                                                                 |
|          | rg         | 0 0 0 0 1 0 0 1                      | 1 0 0 0 1 G <sub>2</sub> G <sub>1</sub> 1 |                                                                 |
| PUSHU    | post       | 0011 0111                            | $\leftarrow$ post $\rightarrow$           |                                                                 |
| POP      | PSW        | 0 1 0 0 1 0 0 0                      |                                           |                                                                 |
|          | sfrp       | 0000 0111                            | 1 1 0 1 1 0 0 0                           | $\leftarrow$ Sfr-offset $\rightarrow$                           |
|          | sfr        | 0000 0111                            | 1 1 0 1 1 0 1 0                           | $\leftarrow$ Sfr-offset $\rightarrow$                           |
|          | post       | 0011 0100                            | $\leftarrow$ post $\rightarrow$           |                                                                 |
|          | rg         | 0000 1001                            | 1 0 0 1 1 G <sub>2</sub> G <sub>1</sub> 1 |                                                                 |
| POPU     | post       | 0011 0110                            | $\leftarrow$ post $\rightarrow$           |                                                                 |
| MOVG     | SP, #imm24 | 0000 1001                            | 0010 0000                                 | $\leftarrow$ Low Byte $\rightarrow$                             |
|          |            | $\leftarrow$ High Byte $\rightarrow$ | $\leftarrow$ High-w Byte $\rightarrow$    |                                                                 |
|          | SP, WHL    | 0000 0101                            | 1111 1011                                 |                                                                 |
|          | WHL, SP    | 0000 0101                            | 1 1 1 1 1 0 1 0                           |                                                                 |
| ADDWG    | SP, #word  | 0000 1001                            | 0010 1000                                 | $\leftarrow$ Low Byte $\rightarrow$                             |
|          |            | ← High Byte →                        |                                           |                                                                 |
| SUBWG    | SP, #word  | 0000 1001                            | 0010 1010                                 | $\leftarrow$ Low Byte $\rightarrow$                             |
|          |            | ← High Byte →                        |                                           |                                                                 |
| INCG     | SP         | 0000 0101                            | 1 1 1 1 1 0 0 0                           |                                                                 |
| DECG     | SP         | 0000 0101                            | 1 1 1 1 1 0 0 1                           |                                                                 |

# (16) Call/return instructions: CALL, CALLF, CALLT, BRK, BRKCS, RET, RETI, RETB, RETCS, RETCSB

| Mnemonic | Operands  | Operation Code                                                                   |                                                        |                                         |  |
|----------|-----------|----------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------|--|
|          |           | B1                                                                               | B2                                                     | В3                                      |  |
|          |           | B4                                                                               | B5                                                     | В6                                      |  |
|          |           | В7                                                                               |                                                        |                                         |  |
| CALL     | !addr16   | 0 0 1 0 1 0 0 0                                                                  | $\leftarrow$ Low Address $\rightarrow$                 | $\leftarrow$ High Address $\rightarrow$ |  |
|          | !!addr20  | 0000 1001                                                                        | 1 1 1 1 Hi-w Add                                       | $\leftarrow$ Low Address $ ightarrow$   |  |
|          |           | $\leftarrow$ High Address $\rightarrow$                                          |                                                        |                                         |  |
|          | rp        | 0000 0101                                                                        | 0 1 0 1 1 P <sub>2</sub> P <sub>1</sub> P <sub>0</sub> |                                         |  |
|          | rg        | 0 0 0 0 0 1 0 1                                                                  | 0 1 0 1 0 G <sub>2</sub> G <sub>1</sub> 1              |                                         |  |
|          | [rp]      | 0 0 0 0 0 1 0 1                                                                  | 0 1 1 1 1 P <sub>2</sub> P <sub>1</sub> P <sub>0</sub> |                                         |  |
|          | [rg]      | 0 0 0 0 0 1 0 1                                                                  | 0 1 1 1 0 G <sub>2</sub> G <sub>1</sub> 1              |                                         |  |
|          | \$!addr20 | 0 0 1 1 1 1 1 1                                                                  | $\leftarrow$ \$addr Low $\rightarrow$                  | $\leftarrow$ \$addr High $\rightarrow$  |  |
| CALLF    | !addr11   | 1 0 0 1 0                                                                        | $\leftarrow$ fa $\rightarrow$                          |                                         |  |
| CALLT    | [addr5]   | 1 1 1 T <sub>4</sub> T <sub>3</sub> T <sub>2</sub> T <sub>1</sub> T <sub>0</sub> |                                                        |                                         |  |
| BRK      |           | 0 1 0 1 1 1 1 0                                                                  |                                                        |                                         |  |
| BRKCS    | RBn       | 0 0 0 0 0 1 0 1                                                                  | 1 1 0 1 1 E <sub>2</sub> E <sub>1</sub> E <sub>0</sub> |                                         |  |
| RET      |           | 0 1 0 1 0 1 1 0                                                                  |                                                        |                                         |  |
| RETI     |           | 0 1 0 1 0 1 1 1                                                                  |                                                        |                                         |  |
| RETB     |           | 0 1 0 1 1 1 1 1                                                                  |                                                        |                                         |  |
| RETCS    | !addr16   | 0 0 1 0 1 0 0 1                                                                  | $\leftarrow$ Low Address $\rightarrow$                 | ← High Address →                        |  |
| RETCSB   | !addr16   | 0000 1001                                                                        | 1011 0000                                              | $\leftarrow$ Low Address $\rightarrow$  |  |
|          |           | ← High Address →                                                                 |                                                        |                                         |  |

## (17) Unconditional branch instruction: BR

| Mnemonic | Operands  |                                         | Operation Code                                         |                  |
|----------|-----------|-----------------------------------------|--------------------------------------------------------|------------------|
|          |           | B1                                      | B2                                                     | В3               |
|          |           | B4                                      | B5                                                     | В6               |
|          |           | B7                                      |                                                        |                  |
| BR       | !addr16   | 0010 1100                               | $\leftarrow$ Low Address $\rightarrow$                 | ← High Address → |
|          | !!addr20  | 0000 1001                               | 1 1 1 0 Hi-w Add                                       | ← Low Address →  |
|          |           | $\leftarrow$ High Address $\rightarrow$ |                                                        |                  |
|          | rp        | 0000 0101                               | 0 1 0 0 1 P <sub>2</sub> P <sub>1</sub> P <sub>0</sub> |                  |
|          | rg        | 0 0 0 0 0 1 0 1                         | 0 1 0 0 0 G <sub>2</sub> G <sub>1</sub> 1              |                  |
|          | [rp]      | 0000 0101                               | 0 1 1 0 1 P <sub>2</sub> P <sub>1</sub> P <sub>0</sub> |                  |
|          | [rg]      | 0000 0101                               | 0 1 1 0 0 G <sub>2</sub> G <sub>1</sub> 1              |                  |
|          | \$addr20  | 0 0 0 1 0 1 0 0                         | ← \$addr20 →                                           |                  |
|          | \$!addr20 | 0 1 0 0 0 0 1 1                         | ← \$addr Low →                                         | ← \$addr High →  |

# (18) Conditional branch instructions: BNZ, BNE, BZ, BE, BNC, BNL, BC, BL, BNV, BPO, BV, BPE, BP, BN, BLT, BGE, BLE, BGT, BNH, BH, BF, BT, BTCLR, BFSET, DBNZ

| Mnemonic | Operands |                 | Operation Code  |              |
|----------|----------|-----------------|-----------------|--------------|
|          |          | B1              | B2              | В3           |
|          |          | B4              | B5              | В6           |
|          |          | В7              |                 |              |
| BNZ      | \$addr20 | 1000 0000       | ← \$addr20 →    |              |
| BNE      |          |                 |                 |              |
| BZ       | \$addr20 | 1000 0001       | ← \$addr20 →    |              |
| BE       |          |                 |                 |              |
| BNC      | \$addr20 | 1000 0010       | ← \$addr20 →    |              |
| BNL      |          |                 |                 |              |
| вс       | \$addr20 | 1000 0011       | ← \$addr20 →    |              |
| BL       |          |                 |                 |              |
| BNV      | \$addr20 | 1000 0100       | ← \$addr20 →    |              |
| вро      |          |                 |                 |              |
| BV       | \$addr20 | 1000 0101       | ← \$addr20 →    |              |
| BPE      |          |                 |                 |              |
| ВР       | \$addr20 | 1000 0110       | ← \$addr20 →    |              |
| BN       | \$addr20 | 1000 0111       | ← \$addr20 →    |              |
| BLT      | \$addr20 | 0 0 0 0 0 1 1 1 | 1 1 1 1 1 0 0 0 | ← \$addr20 → |

| Mnemonic | Operands               |          |                                                | Operation | on Code                                        |          |                      |                               |
|----------|------------------------|----------|------------------------------------------------|-----------|------------------------------------------------|----------|----------------------|-------------------------------|
|          |                        | В        | 1                                              | В         | 2                                              |          | В3                   |                               |
|          |                        | В        | 4                                              | В         | 15                                             |          | В6                   |                               |
|          |                        | В        | 7                                              |           |                                                |          |                      |                               |
| BGE      | \$addr20               | 0 0 0 0  | 0 1 1 1                                        | 1 1 1 1   | 1 0 0 1                                        | <b>←</b> | \$addr20             | $\rightarrow$                 |
| BLE      | \$addr20               | 0 0 0 0  | 0 1 1 1                                        | 1 1 1 1   | 1 0 1 0                                        | <b>←</b> | \$addr20             | $\rightarrow$                 |
| BGT      | \$addr20               | 0 0 0 0  | 0 1 1 1                                        | 1 1 1 1   | 1 0 1 1                                        | <b>←</b> | \$addr20             | $\rightarrow$                 |
| BNH      | \$addr20               | 0 0 0 0  | 0 1 1 1                                        | 1 1 1 1   | 1 1 0 0                                        | <b>←</b> | \$addr20             | $\rightarrow$                 |
| вн       | \$addr20               | 0 0 0 0  | 0 1 1 1                                        | 1 1 1 1   | 1 1 0 1                                        | <b>←</b> | \$addr20             | $\rightarrow$                 |
| BF       | saddr2. bit, \$addr20  | 0 0 0 0  | 1 0 0 0                                        | 1 0 1 0   | 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | ← S      | addr2-offset         | $\rightarrow$                 |
|          |                        | ← \$ado  | dr20 →                                         |           |                                                |          |                      |                               |
|          | saddr1. bit, \$addr20  | 0 0 1 1  | 1 1 0 0                                        | 0 0 0 0   | 1 0 0 0                                        | 1 0 1    | 0 0 B <sub>2</sub> I | B1 B0                         |
|          |                        | ← Saddr1 | -offset $\rightarrow$                          | ← \$ad    | dr20 →                                         |          |                      |                               |
|          | sfr. bit, \$addr20     | 0000     | 1 0 0 0                                        | 1010      | 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | ←        | Sfr-offset           | $\rightarrow$                 |
|          |                        | ← \$add  | dr20 →                                         |           |                                                |          |                      |                               |
|          | X. bit, \$addr20       | 0 0 0 0  | 0 0 1 1                                        | 1 0 1 0   | 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | <b>←</b> | \$addr20             | $\rightarrow$                 |
|          | A. bit, \$addr20       | 0 0 0 0  | 0 0 1 1                                        | 1 0 1 0   | 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | <b>←</b> | \$addr20             | $\rightarrow$                 |
|          | PSWL. bit, \$addr20    | 0 0 0 0  | 0 0 1 0                                        | 1 0 1 0   | 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | <b>←</b> | \$addr20             | $\rightarrow$                 |
|          | PSWH. bit, \$addr20    | 0 0 0 0  | 0 0 1 0                                        | 1 0 1 0   | 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | <b>←</b> | \$addr20             | $\rightarrow$                 |
|          | [TDE]. bit, \$addr20   | 0 0 1 1  | 1 1 0 1                                        | 1 0 1 0   | 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | ←        | \$addr20             | $\rightarrow$                 |
|          | [WHL]. bit, \$addr20   | 0 0 1 1  | 1 1 0 1                                        | 1 0 1 0   | 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | <b>←</b> | \$addr20             | $\rightarrow$                 |
|          | !addr16.bit, \$addr20  | 0000     | 1 0 0 1                                        | 1 1 0 1   | 0 0 0 0                                        | 1 0 1    | 0 0 B <sub>2</sub> I | B <sub>1</sub> B <sub>0</sub> |
|          |                        | ← Low Ad | ddress $\rightarrow$                           | ← High A  | $\rightarrow$                                  | <b>←</b> | \$addr20             | $\rightarrow$                 |
|          | !!addr24.bit, \$addr20 | 0 0 0 0  | 1 0 0 1                                        | 1 1 0 1   | 0 0 0 0                                        | 1 0 1    | 0 1 B <sub>2</sub> F | B1 B0                         |
|          |                        | ← High-w | Address $ ightarrow$                           | ← Low A   | ddress $\rightarrow$                           | ← F      | ligh Address         | $\rightarrow$                 |
|          |                        | ← \$add  | dr20 →                                         |           |                                                |          |                      |                               |
| вт       | saddr2. bit, \$addr20  | 0 1 1 1  | 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | ← Saddr2  | 2-offset $\rightarrow$                         | <b>←</b> | \$addr20             | $\rightarrow$                 |
|          | saddr1. bit, \$addr20  | 0 0 1 1  | 1 1 0 0                                        | 0 1 1 1   | 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | ← 5      | addr1-offset         | $\rightarrow$                 |
|          |                        | ← \$add  | dr20 →                                         |           |                                                |          |                      |                               |
|          | sfr. bit, \$addr20     | 0 0 0 0  | 1 0 0 0                                        | 1 0 1 1   | 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | <b>←</b> | Sfr-offset           | $\rightarrow$                 |
|          |                        | ← \$add  | dr20 →                                         |           |                                                |          |                      |                               |
|          | X. bit, \$addr20       | 0 0 0 0  | 0 0 1 1                                        | 1 0 1 1   | 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | <b>←</b> | \$addr20             | $\rightarrow$                 |
|          | A. bit, \$addr20       | 0 0 0 0  | 0 0 1 1                                        | 1 0 1 1   | 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | <b>←</b> | \$addr20             | $\rightarrow$                 |
|          | PSWL. bit, \$addr20    | 0 0 0 0  | 0 0 1 0                                        | 1 0 1 1   | 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | <b>←</b> | \$addr20             | $\rightarrow$                 |
|          | PSWH. bit, \$addr20    | 0 0 0 0  | 0 0 1 0                                        | 1 0 1 1   | 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | <b>←</b> | \$addr20             | $\rightarrow$                 |
|          | [TDE]. bit, \$addr20   | 0 0 1 1  | 1 1 0 1                                        | 1 0 1 1   | 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | <b>←</b> | \$addr20             | $\rightarrow$                 |
|          | [WHL]. bit, \$addr20   | 0 0 1 1  | 1 1 0 1                                        | 1 0 1 1   | 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | <b>←</b> | \$addr20             | $\rightarrow$                 |

| Mnemonic | Operands               |                                           | Operation Code                                         |                                                        |  |
|----------|------------------------|-------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--|
|          |                        | B1                                        | B2                                                     | В3                                                     |  |
|          |                        | B4                                        | B5                                                     | B6                                                     |  |
|          |                        | В7                                        |                                                        |                                                        |  |
| вт       | !addr16.bit, \$addr20  | 0000 1001                                 | 1101 0000                                              | 1 0 1 1 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |  |
|          |                        | $\leftarrow$ Low Address $\rightarrow$    | $\leftarrow$ High Address $\rightarrow$                | $\leftarrow$ \$addr20 $\rightarrow$                    |  |
|          | !!addr24.bit, \$addr20 | 0000 1001                                 | 1101 0000                                              | 1 0 1 1 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |  |
|          |                        | ← High-w Address →                        | $\leftarrow$ Low Address $\rightarrow$                 | ← High Address →                                       |  |
|          |                        | ← \$addr20 →                              |                                                        |                                                        |  |
| BTCLR    | saddr2, bit, \$addr20  | 0000 1000                                 | 1 1 0 1 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | $\leftarrow$ Saddr2-offset $\rightarrow$               |  |
|          |                        | ← \$addr20 →                              |                                                        |                                                        |  |
|          | saddr1. bit, \$addr20  | 0011 1100                                 | 0000 1000                                              | 1 1 0 1 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |  |
|          |                        | ← Saddr1-offset →                         | $\leftarrow$ \$addr20 $\rightarrow$                    |                                                        |  |
|          | sfr. bit, \$addr20     | 0000 1000                                 | 1 1 0 1 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | $\leftarrow$ Sfr-offset $\rightarrow$                  |  |
|          |                        | ← \$addr20 →                              |                                                        |                                                        |  |
|          | X. bit, \$addr20       | 0000 0011                                 | 1 1 0 1 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | $\leftarrow$ \$addr20 $\rightarrow$                    |  |
|          | A. bit, \$addr20       | 0000 0011                                 | 1 1 0 1 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | $\leftarrow$ \$addr20 $\rightarrow$                    |  |
|          | PSWL. bit, \$addr20    | 0000 0010                                 | 1 1 0 1 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | $\leftarrow$ \$addr20 $\rightarrow$                    |  |
|          | PSWH. bit, \$addr20    | 0000 0010                                 | 1 1 0 1 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | ← \$addr20 →                                           |  |
|          | [TDE]. bit, \$addr20   | 0 0 1 1 1 1 0 1                           | 1 1 0 1 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | ← \$addr20 →                                           |  |
|          | [WHL]. bit, \$addr20   | 0 0 1 1 1 1 0 1                           | 1 1 0 1 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | ← \$addr20 →                                           |  |
|          | !addr16.bit, \$addr20  | 0000 1001                                 | 1101 0000                                              | 1 1 0 1 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |  |
|          |                        | $\leftarrow$ Low Address $\rightarrow$    | $\leftarrow$ High Address $\rightarrow$                | ← \$addr20 →                                           |  |
|          | !!addr24.bit, \$addr20 | 0000 1001                                 | 1101 0000                                              | 1 1 0 1 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |  |
|          |                        | $\leftarrow$ High-w Address $\rightarrow$ | $\leftarrow$ Low Address $\rightarrow$                 | $\leftarrow$ High Address $\rightarrow$                |  |
|          |                        | ← \$addr20 →                              |                                                        |                                                        |  |
| BFSET    | saddr2. bit, \$addr20  | 0000 1000                                 | 1 1 0 0 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | $\leftarrow$ Saddr2-offset $\rightarrow$               |  |
|          |                        | ← \$addr20 →                              |                                                        |                                                        |  |
|          | saddr1. bit, \$addr20  | 0 0 1 1 1 1 0 0                           | 0000 1000                                              | 1 1 0 0 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |  |
|          |                        | $\leftarrow$ Saddr1-offset $\rightarrow$  | $\leftarrow$ \$addr20 $\rightarrow$                    |                                                        |  |
|          | sfr. bit, \$addr20     | 0000 1000                                 | 1 1 0 0 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | $\leftarrow$ Sfr-offset $\rightarrow$                  |  |
|          |                        | ← \$addr20 →                              |                                                        |                                                        |  |
|          | X. bit, \$addr20       | 0000 0011                                 | 1 1 0 0 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | $\leftarrow$ \$addr20 $\rightarrow$                    |  |
|          | A. bit, \$addr20       | 0000 0011                                 | 1 1 0 0 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | $\leftarrow$ \$addr20 $\rightarrow$                    |  |
|          | PSWL. bit, \$addr20    | 0 0 0 0 0 0 1 0                           | 1 1 0 0 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | $\leftarrow$ \$addr20 $\rightarrow$                    |  |
|          | PSWH. bit, \$addr20    | 0 0 0 0 0 0 1 0                           | 1 1 0 0 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | $\leftarrow$ \$addr20 $\rightarrow$                    |  |
|          | [TDE]. bit, \$addr20   | 0 0 1 1 1 1 0 1                           | 1 1 0 0 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | $\leftarrow$ \$addr20 $\rightarrow$                    |  |
|          | [WHL]. bit, \$addr20   | 0 0 1 1 1 1 0 1                           | 1 1 0 0 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | ← \$addr20 →                                           |  |

| Mnemonic | Operands               |                                        |                                          |                                                        |  |
|----------|------------------------|----------------------------------------|------------------------------------------|--------------------------------------------------------|--|
|          |                        | B1                                     | B2                                       | В3                                                     |  |
|          |                        | B4                                     | B5                                       | В6                                                     |  |
|          |                        | В7                                     |                                          |                                                        |  |
| BFSET    | !addr16.bit, \$addr20  | 0000 1001                              | 1 1 0 1 0 0 0 0                          | 1 1 0 0 0 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |  |
|          |                        | $\leftarrow$ Low Address $\rightarrow$ | $\leftarrow$ High Address $\rightarrow$  | ← \$addr20 →                                           |  |
|          | !!addr24.bit, \$addr20 | 0000 1001                              | 1 1 0 1 0 0 0 0                          | 1 1 0 0 1 B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> |  |
|          |                        | ← High-w Address →                     | $\leftarrow$ Low Address $\rightarrow$   | $\leftarrow$ High Address $ ightarrow$                 |  |
|          |                        | $\leftarrow$ \$addr20 $\rightarrow$    |                                          |                                                        |  |
| DBNZ     | B, \$addr20            | 0011 0011                              | ← \$addr20 →                             |                                                        |  |
|          | C, \$addr20            | 0011 0010                              | ← \$addr20 →                             |                                                        |  |
|          | saddr2, \$addr20       | 0011 1011                              | $\leftarrow$ Saddr2-offset $\rightarrow$ | ← \$addr20 →                                           |  |
|          | saddr1, \$addr20       | 0 0 1 1 1 1 0 0                        | 0 0 1 1 1 0 1 1                          | $\leftarrow$ Saddr1-offset $\rightarrow$               |  |
|          |                        | ← \$addr20 →                           |                                          |                                                        |  |

# (19) CPU control instructions: MOV, LOCATION, SEL, SWRS, NOP, EI, DI

| Mnemonic | Operands    |                 | Operation Code                                         |                                     |  |
|----------|-------------|-----------------|--------------------------------------------------------|-------------------------------------|--|
|          |             | B1              | B2                                                     | В3                                  |  |
|          |             | B4              | B5                                                     | B6                                  |  |
|          |             | B7              |                                                        |                                     |  |
| MOV      | STBC, #byte | 0 0 0 0 1 0 0 1 | 1 1 0 0 0 0 0 0                                        | ← #byte →                           |  |
|          |             | ← #byte →       |                                                        |                                     |  |
|          | WDM, #byte  | 0 0 0 0 1 0 0 1 | 1 1 0 0 0 0 1 0                                        | ← #byte →                           |  |
|          |             | ← #byte →       |                                                        |                                     |  |
| LOCATION | locaddr     | 0 0 0 0 1 0 0 1 | 1 1 0 0 0 0 0 1                                        | $\leftarrow$ locaddr1 $\rightarrow$ |  |
|          |             | ← locaddrh →    |                                                        |                                     |  |
| SEL      | RBn         | 0000 0101       | 1 0 1 0 1 E <sub>2</sub> E <sub>1</sub> E <sub>0</sub> |                                     |  |
|          | RBn. ALT    | 0 0 0 0 0 1 0 1 | 1 0 1 1 1 E <sub>2</sub> E <sub>1</sub> E <sub>0</sub> |                                     |  |
| SWRS     |             | 0000 0101       | 1 1 1 1 1 1 0 0                                        |                                     |  |
| NOP      |             | 0000 0000       |                                                        |                                     |  |
| El       |             | 0 1 0 0 1 0 1 1 |                                                        |                                     |  |
| DI       |             | 0 1 0 0 1 0 1 0 |                                                        |                                     |  |

#### (20) Special instructions: CHKL, CHKLA

| Mnemonic | Operands | Operation Code |                 |                                        |  |  |  |
|----------|----------|----------------|-----------------|----------------------------------------|--|--|--|
|          |          | B1             | В3              |                                        |  |  |  |
|          |          | B4             | B5              | B6                                     |  |  |  |
|          |          | В7             |                 |                                        |  |  |  |
| CHKL     | sfr      | 0000 0111      | 1100 1000       | $\leftarrow$ Sfr address $\rightarrow$ |  |  |  |
| CHKLA    | sfr      | 0000 0111      | 1 1 0 0 1 0 0 1 | $\leftarrow$ Sfr address $\rightarrow$ |  |  |  |

- Caution The CHKL and CHKLA instructions are not available in the μPD784216, 784216Y, 784218, 784218Y, 784225, 784225Y, 784937 Subseries. Do not execute these instructions. If these instructions are executed, the following operations will result.
  - CHKL instruction ...... After the pin levels of the output pins are read two times, they are
    exclusive-ORed. As a result, if the pins checked with this instruction are
    used in the port output mode, the exclusive-OR result is always 0 for all
    bits, and the Z flag is set to (1).
  - CHKLA instruction .... After the pin levels of output pins are read two times, they are exclusive-ORed. As a result, if the pins checked with this instruction are used in the port output mode, the exclusive-OR result is always 0 for all bits, and the Z flag is set to (1) along with that the result is stored in the A register.

# (21) String instructions: MOVTBLW, MOVM, MOVBK, XCHM, XCHBK, CMPME, CMPBKE, CMPMNE, CMPBKNC, CMPBKNC, CMPBKNC

| Mnemonic | Operands         |               |               | Operation | Code    |          |             |               |
|----------|------------------|---------------|---------------|-----------|---------|----------|-------------|---------------|
|          |                  | B1            |               | B2        |         | В3       |             |               |
|          |                  | B4            |               | B5        |         |          | В6          |               |
|          |                  | B7            |               |           |         |          |             |               |
| MOVTBLW  | !addr8, byte     | 0000 100      | ) 1           | 1 0 1 0   | 0 0 0 0 | <b>←</b> | Low Address | $\rightarrow$ |
|          |                  | ← byte        | $\rightarrow$ |           |         |          |             |               |
| MOVM     | [TDE +], A       | 0001 010      | ) 1           | 0 0 0 0   | 0 0 0 0 |          |             |               |
|          | [TDE –], A       | 0001 010      | ) 1           | 0 0 0 1   | 0 0 0 0 |          |             |               |
| MOVBK    | [TDE +], [WHL +] | 0001 010      | ) 1           | 0 0 1 0   | 0 0 0 0 |          |             |               |
|          | [TDE –], [WHL –] | 0001 010      | ) 1           | 0 0 1 1   | 0 0 0 0 |          |             |               |
| хснм     | [TDE +], A       | 0 0 0 1 0 1 0 | ) 1           | 0 0 0 0   | 0 0 0 1 |          |             |               |
|          | [TDE –], A       | 0 0 0 1 0 1 0 | ) 1           | 0 0 0 1   | 0 0 0 1 |          |             |               |
| хснвк    | [TDE +], [WHL +] | 0001 010      | ) 1           | 0 0 1 0   | 0 0 0 1 |          |             |               |
|          | [TDE –], [WHL –] | 0001 010      | ) 1           | 0 0 1 1   | 0 0 0 1 |          |             |               |
| СМРМЕ    | [TDE +], A       | 0 0 0 1 0 1 0 | ) 1           | 0 0 0 0   | 0 1 0 0 |          |             |               |
|          | [TDE –], A       | 0001 010      | ) 1           | 0 0 0 1   | 0 1 0 0 |          |             |               |
| СМРВКЕ   | [TDE +], [WHL +] | 0001 010      | ) 1           | 0 0 1 0   | 0 1 0 0 |          |             |               |
|          | [TDE –], [WHL –] | 0001 010      | ) 1           | 0 0 1 1   | 0 1 0 0 |          |             |               |
| CMPMNE   | [TDE +], A       | 0 0 0 1 0 1 0 | ) 1           | 0 0 0 0   | 0 1 0 1 |          |             |               |
|          | [TDE –], A       | 0001 010      | ) 1           | 0 0 0 1   | 0 1 0 1 |          |             |               |

| Mnemonic | Operands         |         |         | Operation | on Code |    |
|----------|------------------|---------|---------|-----------|---------|----|
|          |                  | В       | 1       | В         | 2       | В3 |
|          |                  | В       | 4       | В         | 5       | В6 |
|          |                  | В       | 7       |           |         |    |
| СМРВКИЕ  | [TDE +], [WHL +] | 0 0 0 1 | 0 1 0 1 | 0 0 1 0   | 0 1 0 1 |    |
|          | [TDE -], [WHL -] | 0 0 0 1 | 0 1 0 1 | 0 0 1 1   | 0 1 0 1 |    |
| СМРМС    | [TDE +], A       | 0 0 0 1 | 0 1 0 1 | 0 0 0 0   | 0 1 1 1 |    |
|          | [TDE –], A       | 0 0 0 1 | 0 1 0 1 | 0 0 0 1   | 0 1 1 1 |    |
| СМРВКС   | [TDE +], [WHL +] | 0 0 0 1 | 0 1 0 1 | 0 0 1 0   | 0 1 1 1 |    |
|          | [TDE –], [WHL –] | 0 0 0 1 | 0 1 0 1 | 0 0 1 1   | 0 1 1 1 |    |
| СМРМИС   | [TDE +], A       | 0 0 0 1 | 0 1 0 1 | 0 0 0 0   | 0 1 1 0 |    |
|          | [TDE –], A       | 0 0 0 1 | 0 1 0 1 | 0 0 0 1   | 0 1 1 0 |    |
| СМРВКИС  | [TDE +], [WHL +] | 0 0 0 1 | 0 1 0 1 | 0 0 1 0   | 0 1 1 0 |    |
|          | [TDE –], [WHL –] | 0 0 0 1 | 0 1 0 1 | 0 0 1 1   | 0 1 1 0 |    |

#### 6.5 Number of Instruction Clocks

#### 6.5.1 Execution time of instruction

The execution time for instructions is shown as the number of clocks of fclk.

The CPU in the 78K/IV Series has an instruction queue, so that another instruction can be prefetched in parallel while one instruction is executed. Consequently, the actual execution time of an instruction is dependent on the preceding instruction.

The execution time of an instruction also changes with the number of wait states used for memory access. Therefore, the accurate execution time of the program cannot be calculated by merely adding the number of execution clocks of instructions.

The minimum number of execution clocks is shown for instructions except those used for branch operation, such as BR, CALL, and RET instructions. For the branch instructions, the number of clocks slightly more than the minimum value is shown.

#### 6.5.2 Definitions for "Clocks" column

#### (1) Internal ROM

The number of clocks set to 1 if the data to be accessed by an instruction is stored in the internal ROM and if the IFCH bit, which is bit 7 of the memory mapping mode register (MM), is shown. If the IFCH bit is cleared to 0, refer to the column of PRAM, EMEM, or SFR.

#### (2) IRAM

The number of clocks if the data to be accessed by an instruction is stored in the internal high-speed RAM (the area of addresses FD00H through FEFFH when LOCATION 0 instruction is executed, and the area of FFD00H through FFEFFH when LOCATION 0FH instruction is executed) is shown.

The  $\mu$ PD784915 Subseries is fixed to the LOCATION instruction.

### (3) PRAM/EMEM/SFR

The number of clocks if the data to be accessed by an instruction is stored in an area of the internal RAM which is not IRAM, in the external memory (including the external SFR), or in the SFR area is shown.

### (4) Others

The number of clocks if no data is accessed by an instruction is shown.

#### 6.5.3 Explanation of "Clocks" column

#### (1) Number of clocks for accessing word data

- The number of clocks shown in the PRAM, EMEM, and SFR columns is when the bus width is 16 bits and when data is located at an even address. If the bus width is 8 bits, or if data is located at an odd address even though the bus width is 16 bits, add 4 to the number of clocks shown in the table. Note that the width of the internal RAM is 16 bits. Also, if word data of the internal ROM is located at an odd address, add 4 to the number of clocks.
- If word data is saved to or restored from an odd address by a stack manipulation instruction marked "n", add 4 to the coefficient of "n".

#### (2) Number of clocks for accessing 3-byte data

The number of clocks shown in the PRAM, EMEM, or SFR column is used when the bus width is 16 bits. If the bus width is 8 bits, and if data is located at an odd address even though the bus width is 16 bits, add 4 to the number of clocks shown in the table. Note that the bus width of the internal RAM is 16 bits.

#### (3) If two types of numbers of clocks are shown with each delimited by "/" from the other

If two types of numbers of clocks are shown with each delimited by "/" from the other, two types of numbers of bytes are shown for that instruction with each delimited by "/" from the other. The execution time of this kind of instruction is the number of clocks shown at the same side as the number of bytes.

#### (4) When "n" is shown in "Clocks" column

- When the MACW, MACSW, and MOVTBLW instructions are used, the number specified by operand byte substitutes for "n".
- In the case of the SACW, MOVM, XCHM, MOVBK, XCHBK, CMPME, CMPMNE, CMPMC, CMPMNC, CMPBKE, CMPBKNE, CMPBKC, and CMPBKNC instructions, the value set to the C register on starting execution of the instruction substitutes for "n". This number of clocks is the value when the instruction execution is not stopped by an interrupt or macro service.
- · When the shift or rotate instruction is used, the number of bits to be shifted or rotated substitutes for "n".
- When the stack manipulation instruction is used, the number of registers to be saved to the stack or restored from the stack substitutes for "n".

## 6.5.4 List of number of clocks

# (1) 8-bit data transfer instruction: MOV

(1/3)

| Mnemonic | Operands        | Bytes |              | Clocks |               |        |  |  |  |
|----------|-----------------|-------|--------------|--------|---------------|--------|--|--|--|
|          |                 |       | Internal ROM | IRAM   | PRAM/EMEM/SFR | Others |  |  |  |
| MOV      | r, #byte        | 2/3   | -            | 2/3    | _             | _      |  |  |  |
|          | saddr, #byte    | 3/4   |              | 3/4    | 7             |        |  |  |  |
|          | sfr, #byte      | 3     |              | _      | 7             |        |  |  |  |
|          | !addr16, #byte  | 5     | _            | 7      | 9             |        |  |  |  |
|          | !!addr24, #byte | 6     | _            | 8      | 10            |        |  |  |  |
|          | r, r'           | 2/3   | _            | 2/3    | _             |        |  |  |  |
|          | A, r            | 1/2   |              |        |               |        |  |  |  |
|          | A, saddr2       | 2     |              | 3      | 7             |        |  |  |  |
|          | r, saddr        | 3     |              | 4      | 8             |        |  |  |  |
|          | saddr2, A       | 2     |              | 2      | 6             |        |  |  |  |
|          | saddr, r        | 3     |              | 4      | 8             |        |  |  |  |
|          | A, sfr          | 2     |              | _      | 7             |        |  |  |  |
|          | r, sfr          | 3     |              |        | 8             |        |  |  |  |
|          | sfr, A          | 2     |              |        | 6             |        |  |  |  |
|          | sfr, r          | 3     |              |        | 8             |        |  |  |  |
|          | saddr, saddr'   | 4     |              | 6      | 14            |        |  |  |  |
|          | r, !addr16      | 4     | 9            | 7      | 9             |        |  |  |  |
|          | !addr16, r      | 4     | _            | 6      | 8             |        |  |  |  |
|          | r, !!addr24     | 5     | 10           | 8      | 10            |        |  |  |  |
|          | !!addr24, r     | 5     | _            | 7      | 9             |        |  |  |  |
|          | A, [saddrp]     | 2/3   | 9/10         | 7/8    | 9/10          |        |  |  |  |
|          | A, [%saddrg]    | 3/4   | 14/15        | 12/13  | 14/15         |        |  |  |  |
|          | A, [TDE +]      | 1     | 9            | 7      | 9             |        |  |  |  |
|          | A, [WHL +]      | 1     |              |        |               |        |  |  |  |
|          | A, [TDE –]      | 1     |              |        |               |        |  |  |  |
|          | A, [WHL –]      | 1     |              |        |               |        |  |  |  |
|          | A, [TDE]        | 1     | 8            | 6      | 8             |        |  |  |  |
|          | A, [WHL]        | 1     |              |        |               |        |  |  |  |
|          | A, [VVP]        | 2     | 9            | 7      | 9             |        |  |  |  |
|          | A, [UUP]        | 2     |              |        |               |        |  |  |  |
|          | A, [TDE + byte] | 3     | 10           | 8      | 10            |        |  |  |  |
|          | A, [SP + byte]  | 3     | 11           | 9      | 11            |        |  |  |  |

(2/3)

| Mnemonic | Operands        | Bytes |              | Clock | S             |        |
|----------|-----------------|-------|--------------|-------|---------------|--------|
|          |                 |       | Internal ROM | IRAM  | PRAM/EMEM/SFR | Others |
| MOV      | A, [WHL + byte] | 3     | 10           | 8     | 10            | -      |
|          | A, [UUP + byte] | 3     |              |       |               |        |
|          | A, [VVP + byte] | 3     |              |       |               |        |
|          | A, imm24[DE]    | 5     | 12           | 10    | 12            |        |
|          | A, imm24[A]     | 5     |              |       |               |        |
|          | A, imm24[HL]    | 5     |              |       |               |        |
|          | A, imm24[B]     | 5     |              |       |               |        |
|          | A, [TDE + A]    | 2     | 10           | 8     | 10            |        |
|          | A, [WHL + A]    | 2     |              |       |               |        |
|          | A, [TDE + B]    | 2     |              |       |               |        |
|          | A, [WHL + B]    | 2     |              |       |               |        |
|          | A, [VVP + DE]   | 2     |              |       |               |        |
|          | A, [VVP + HL]   | 2     |              |       |               |        |
|          | A, [TDE + C]    | 2     |              |       |               |        |
|          | A, [WHL + C]    | 2     |              |       |               |        |
|          | [saddrp], A     | 2/3   | -            | 6/7   | 8/9           |        |
|          | [%saddrg], A    | 3/4   |              | 12/13 | 14/15         |        |
|          | [TDE +], A      | 1     |              | 8     | 10            |        |
|          | [WHL +], A      | 1     |              |       |               |        |
|          | [TDE –], A      | 1     |              |       |               |        |
|          | [WHL –], A      | 1     |              |       |               |        |
|          | [TDE], A        | 1     |              | 5     | 7             |        |
|          | [WHL], A        | 1     |              |       |               |        |
|          | [VVP], A        | 2     |              | 7     | 9             |        |
|          | [UUP], A        | 2     |              |       |               |        |
|          | [TDE + byte], A | 3     |              | 8     | 10            |        |
|          | [SP + byte], A  | 3     |              | 9     | 11            |        |
|          | [WHL + byte], A | 3     |              | 8     | 10            |        |
|          | [UUP + byte], A | 3     |              |       |               |        |
|          | [VVP + byte], A | 3     |              |       |               |        |
|          | imm24[DE], A    | 5     |              | 10    | 12            |        |
|          | imm24[A], A     | 5     |              |       |               |        |
|          | imm24[HL], A    | 5     |              |       |               |        |
|          | imm24[B], A     | 5     |              |       |               |        |

(3/3)

| Mnemonic | Operands      | Bytes |              | Clocks |               |        |
|----------|---------------|-------|--------------|--------|---------------|--------|
|          |               |       | Internal ROM | IRAM   | PRAM/EMEM/SFR | Others |
| MOV      | [TDE + A], A  | 2     | _            | 8      | 10            | -      |
|          | [WHL + A], A  | 2     |              |        |               |        |
|          | [TDE + B], A  | 2     |              |        |               |        |
|          | [WHL + B], A  | 2     |              |        |               |        |
|          | [VVP + DE], A | 2     |              |        |               |        |
|          | [VVP + HL], A | 2     |              |        |               |        |
|          | [TDE + C], A  | 2     |              |        |               |        |
|          | [WHL + C], A  | 2     |              |        |               |        |
|          | PSWL, #byte   | 3     |              | -      | _             | 7      |
|          | PSWH, #byte   | 3     |              |        |               |        |
|          | PSWL, A       | 2     |              |        |               | 6      |
|          | PSWH, A       | 2     |              |        |               |        |
|          | A, PSWL       | 2     |              |        |               | 7      |
|          | A, PSWH       | 2     |              |        |               |        |
|          | r3, #byte     | 3     |              |        |               | 3      |
|          | A, r3         | 2     |              |        |               | 4      |
|          | r3, A         | 2     |              |        |               | 3      |

# (2) 16-bit data transfer instruction: MOVW

(1/3)

| Mnemonic | Operands         | Bytes |              | Clocks | i             |        |
|----------|------------------|-------|--------------|--------|---------------|--------|
|          |                  |       | Internal ROM | IRAM   | PRAM/EMEM/SFR | Others |
| MOVW     | rp, #word        | 3     | -            | 3      | _             | _      |
|          | saddrp, #word    | 4/5   |              | 4      | 8             |        |
|          | sfrp, #word      | 4     |              | _      |               |        |
|          | !addr16, #word   | 6     |              | 8      | 10            |        |
|          | !!addr24, #word  | 7     |              | 9      | 11            |        |
|          | rp, rp'          | 2     |              | 2      | _             |        |
|          | AX, saddrp2      | 2     |              | 3      | 7             |        |
|          | rp, saddrp       | 3     |              | 4      | 8             |        |
|          | saddrp2, AX      | 2     |              | 2      | 6             |        |
|          | saddrp, rp       | 3     |              | 3      | 7             |        |
|          | AX, sfrp         | 2     |              | _      | 7             |        |
|          | rp, sfrp         | 3     |              |        | 8             |        |
|          | sfrp, AX         | 2     |              |        | 6             |        |
|          | sfrp, rp         | 3     |              |        | 7             |        |
|          | saddrp, saddrp'  | 4     |              | 6      | 14            |        |
|          | rp, !addr16      | 4     | 9            | 7      | 9             |        |
|          | !addr16, rp      | 4     | -,           | 6      | 8             |        |
|          | rp, !!addr24     | 5     | 10           | 8      | 10            |        |
|          | !!addr24, rp     | 5     |              | 7      | 9             |        |
|          | AX, [saddrp]     | 3/4   | 10/11        | 8/9    | 10/11         |        |
|          | AX, [%saddrg]    | 3/4   | 14/15        | 12/13  | 14/15         |        |
|          | AX, [TDE +]      | 2     | 11           | 9      | 11            |        |
|          | AX, [WHL +]      | 2     |              |        |               |        |
|          | AX, [TDE –]      | 2     |              |        |               |        |
|          | AX, [WHL –]      | 2     |              |        |               |        |
|          | AX, [TDE]        | 2     | 9            | 7      | 9             |        |
|          | AX, [WHL]        | 2     |              |        |               |        |
|          | AX, [VVP]        | 2     |              |        |               |        |
|          | AX, [UUP]        | 2     |              |        |               |        |
|          | AX, [TDE + byte] | 3     | 10           | 8      | 10            |        |
|          | AX, [SP + byte]  | 3     | 11           | 9      | 11            |        |
|          | AX, [WHL + byte] | 3     | 10           | 8      | 10            |        |
|          | AX, [UUP + byte] | 3     |              |        |               |        |
|          | AX, [VVP + byte] | 3     |              |        |               |        |

(2/3)

| Mnemonic | Operands         | Bytes |              | Clock | S             |        |
|----------|------------------|-------|--------------|-------|---------------|--------|
|          |                  |       | Internal ROM | IRAM  | PRAM/EMEM/SFR | Others |
| MOVW     | AX, imm24[DE]    | 5     | 12           | 10    | 12            | -      |
|          | AX, imm24[A]     | 5     |              |       |               |        |
|          | AX, imm24[HL]    | 5     |              |       |               |        |
|          | AX, imm24[B]     | 5     |              |       |               |        |
|          | AX, [TDE + A]    | 2     | 10           | 8     | 10            |        |
|          | AX, [WHL + A]    | 2     |              |       |               |        |
|          | AX, [TDE + B]    | 2     |              |       |               |        |
|          | AX, [WHL + B]    | 2     |              |       |               |        |
|          | AX, [VVP + DE]   | 2     |              |       |               |        |
|          | AX, [VVP + HL]   | 2     |              |       |               |        |
|          | AX, [TDE + C]    | 2     |              |       |               |        |
|          | AX, [WHL + C]    | 2     |              |       |               |        |
|          | [saddrp], AX     | 3/4   | _            | 8/9   | 10/11         |        |
|          | [%saddrg], AX    | 3/4   |              | 12/13 | 14/15         |        |
|          | [TDE +], AX      | 2     | -            | 9     | 11            |        |
|          | [WHL +], AX      | 2     |              |       |               |        |
|          | [TDE –], AX      | 2     |              |       |               |        |
|          | [WHL –], AX      | 2     |              |       |               |        |
|          | [TDE], AX        | 2     |              | 7     | 9             |        |
|          | [WHL], AX        | 2     |              |       |               |        |
|          | [VVP], AX        | 2     |              |       |               |        |
|          | [UUP], AX        | 2     |              |       |               |        |
|          | [TDE + byte], AX | 3     |              | 8     | 10            |        |
|          | [SP + byte], AX  | 3     |              | 9     | 11            |        |
|          | [WHL + byte], AX | 3     |              | 8     | 10            |        |
|          | [UUP + byte], AX | 3     |              |       |               |        |
|          | [VVP + byte], AX | 3     |              |       |               |        |
|          | imm24[DE], AX    | 5     |              | 10    | 12            |        |
|          | imm24[A], AX     | 5     |              |       |               |        |
|          | imm24[HL], AX    | 5     |              |       |               |        |
|          | imm24[B], AX     | 5     |              |       |               |        |

(3/3)

| Mnemonic | Operands       | Bytes | Clocks       |      |               |        |  |
|----------|----------------|-------|--------------|------|---------------|--------|--|
|          |                |       | Internal ROM | IRAM | PRAM/EMEM/SFR | Others |  |
| MOVW     | [TDE + A], AX  | 2     | _            | 8    | 10            | 1      |  |
|          | [WHL + A], AX  | 2     |              |      |               |        |  |
|          | [TDE + B], AX  | 2     |              |      |               |        |  |
|          | [WHL + B], AX  | 2     |              |      |               |        |  |
|          | [VVP + DE], AX | 2     |              |      |               |        |  |
|          | [VVP + HL], AX | 2     |              |      |               |        |  |
|          | [TDE + C], AX  | 2     |              |      |               |        |  |
|          | [WHL + C], AX  | 2     |              |      |               |        |  |

# (3) 24-bit data transfer instruction: MOVG

(1/2)

| Mnemonic | Operands          | Bytes |              | Clock | s             |        |
|----------|-------------------|-------|--------------|-------|---------------|--------|
|          |                   | -     | Internal ROM | IRAM  | PRAM/EMEM/SFR | Others |
| MOVG     | rg, #imm24        | 5     | -            | 5     | -             | _      |
|          | rg, rg'           | 2     |              | 4     |               |        |
|          | rg, !!addr24      | 5     | 17           | 13    | 17            |        |
|          | !!addr24, rg      | 5     | -            | 12    | 16            |        |
|          | rg, saddrg        | 3     |              | 9     | 17            |        |
|          | saddrg, rg        | 3     |              | 7     | 15            |        |
|          | WHL, [%saddrg]    | 3/4   | 21/22        | 17/18 | 21/22         |        |
|          | [%saddrg], WHL    | 3/4   | -            |       |               |        |
|          | WHL, [TDE +]      | 2     | 19           | 15    | 19            |        |
|          | WHL, [TDE -]      | 2     |              |       |               |        |
|          | WHL, [TDE]        | 2     | 16           | 12    | 16            |        |
|          | WHL, [WHL]        | 2     |              |       |               |        |
|          | WHL, [VVP]        | 2     |              |       |               |        |
|          | WHL, [UUP]        | 2     |              |       |               |        |
|          | WHL, [TDE + byte] | 3     | 17           | 13    | 17            |        |
|          | WHL, [SP + byte]  | 3     | 18           | 14    | 18            |        |
|          | WHL, [WHL + byte] | 3     | 17           | 13    | 17            |        |
|          | WHL, [UUP + byte] | 3     |              |       |               |        |
|          | WHL, [VVP + byte] | 3     |              |       |               |        |
|          | WHL, imm24[DE]    | 5     | 19           | 15    | 19            |        |
|          | WHL, imm24[A]     | 5     |              |       |               |        |
|          | WHL, imm24[HL]    | 5     |              |       |               |        |
|          | WHL, imm24[B]     | 5     |              |       |               |        |
|          | WHL, [TDE + A]    | 2     | 17           | 13    | 17            |        |
|          | WHL, [WHL + A]    | 2     |              |       |               |        |
|          | WHL, [TDE + B]    | 2     |              |       |               |        |
|          | WHL, [WHL + B]    | 2     |              |       |               |        |
|          | WHL, [VVP + DE]   | 2     |              |       |               |        |
|          | WHL, [VVP + HL]   | 2     |              |       |               |        |
|          | WHL, [TDE + C]    | 2     |              |       |               |        |
|          | WHL, [WHL + C]    | 2     |              |       |               |        |

(2/2)

| Mnemonic | Operands          | Bytes |              | Clocks | 3             |        |
|----------|-------------------|-------|--------------|--------|---------------|--------|
|          |                   |       | Internal ROM | IRAM   | PRAM/EMEM/SFR | Others |
| MOVG     | [TDE +], WHL      | 2     | -            | 15     | 19            | -      |
|          | [TDE –], WHL      | 2     |              |        |               |        |
|          | [TDE], WHL        | 2     |              | 12     | 16            |        |
|          | [WHL], WHL        | 2     |              |        |               |        |
|          | [VVP], WHL        | 2     |              |        |               |        |
|          | [UUP], WHL        | 2     |              |        |               |        |
|          | [TDE + byte], WHL | 3     |              | 13     | 17            |        |
|          | [SP + byte], WHL  | 3     |              | 14     | 18            |        |
|          | [WHL + byte], WHL | 3     |              | 13     | 17            |        |
|          | [UUP + byte], WHL | 3     |              |        |               |        |
|          | [VVP + byte], WHL | 3     |              |        |               |        |
|          | imm24[DE], WHL    | 5     |              | 15     | 19            |        |
|          | imm24[A], WHL     | 5     |              |        |               |        |
|          | imm24[HL], WHL    | 5     |              |        |               |        |
|          | imm24[B], WHL     | 5     |              |        |               |        |
|          | [TDE + A], WHL    | 2     |              | 13     | 17            |        |
|          | [WHL + A], WHL    | 2     |              |        |               |        |
|          | [TDE + B], WHL    | 2     |              |        |               |        |
|          | [WHL + B], WHL    | 2     |              |        |               |        |
|          | [VVP + DE], WHL   | 2     |              |        |               |        |
|          | [VVP + HL], WHL   | 2     |              |        |               |        |
|          | [TDE + C], WHL    | 2     |              |        |               |        |
|          | [WHL + C], WHL    | 2     |              |        |               |        |

# (4) 8-bit data exchange instruction: XCH

| Mnemonic | Operands        | Bytes |              | Clocks | 5             |        |
|----------|-----------------|-------|--------------|--------|---------------|--------|
|          |                 |       | Internal ROM | IRAM   | PRAM/EMEM/SFR | Others |
| хсн      | r, r'           | 2/3   | -            | 4      | _             | -      |
|          | A, r            | 1/2   |              | 4/5    |               |        |
|          | A, saddr2       | 2     |              | 5      | 13            |        |
|          | r, saddr        | 3     |              | 6      | 14            |        |
|          | r, sfr          | 3     |              | ı      | 14            |        |
|          | saddr, saddr'   | 4     |              | 8      | 24            |        |
|          | r, !addr16      | 4     |              | 11     | 15            |        |
|          | r, !!addr24     | 5     |              |        |               |        |
|          | A, [saddrp]     | 2/3   |              | 8/9    | 10/11         |        |
|          | A, [%saddrg]    | 3/4   |              | 17/18  | 21/22         |        |
|          | A, [TDE +]      | 2     |              | 14     | 18            |        |
|          | A, [WHL +]      | 2     |              |        |               |        |
|          | A, [TDE –]      | 2     |              |        |               |        |
|          | A, [WHL –]      | 2     |              |        |               |        |
|          | A, [TDE]        | 2     |              | 12     | 16            |        |
|          | A, [WHL]        | 2     |              |        |               |        |
|          | A, [VVP]        | 2     |              |        |               |        |
|          | A, [UUP]        | 2     |              |        |               |        |
|          | A, [TDE + byte] | 3     |              | 13     | 17            |        |
|          | A, [SP + byte]  | 3     |              | 14     | 18            |        |
|          | A, [WHL + byte] | 3     |              | 13     | 17            |        |
|          | A, [UUP + byte] | 3     |              |        |               |        |
|          | A, [VVP + byte] | 3     |              |        |               |        |
|          | A, imm24[DE]    | 5     |              | 15     | 19            |        |
|          | A, imm24[A]     | 5     |              |        |               |        |
|          | A, imm24[HL]    | 5     |              |        |               |        |
|          | A, imm24[B]     | 5     |              |        |               |        |
|          | A, [TDE + A]    | 2     |              | 13     | 17            |        |
|          | A, [WHL + A]    | 2     |              |        |               |        |
|          | A, [TDE + B]    | 2     |              |        |               |        |
|          | A, [WHL + B]    | 2     |              |        |               |        |
|          | A, [VVP + DE]   | 2     |              |        |               |        |
|          | A, [VVP + HL]   | 2     |              |        |               |        |
|          | A, [TDE + C]    | 2     |              |        |               |        |
|          | A, [WHL + C]    | 2     |              |        |               |        |

# (5) 16-bit data exchange instruction: XCHW

| Mnemonic | Operands         | Bytes |              | Clock | S             |        |
|----------|------------------|-------|--------------|-------|---------------|--------|
|          |                  |       | Internal ROM | IRAM  | PRAM/EMEM/SFR | Others |
| XCHW     | rp, rp'          | 2     | -            | 4     | _             | _      |
|          | AX, saddrp2      | 2     |              | 5     | 13            |        |
|          | rp, saddrp       | 3     |              | 6     | 14            |        |
|          | rp, sfrp         | 3     |              | -     | 14            |        |
|          | AX, [saddrp]     | 3/4   |              | 13/14 | 17/18         |        |
|          | AX, [%saddrg]    | 3/4   |              | 17/18 | 21/22         |        |
|          | AX, !addr16      | 4     |              | 3     | 3             |        |
|          | AX, !!addr24     | 5     |              | 4     | 4             |        |
|          | saddrp, saddrp'  | 4     |              | 8     | 24            |        |
|          | AX, [TDE +]      | 2     |              | 14    | 18            |        |
|          | AX, [WHL +]      | 2     |              |       |               |        |
|          | AX, [TDE –]      | 2     |              |       |               |        |
|          | AX, [WHL –]      | 2     |              |       |               |        |
|          | AX, [TDE]        | 2     |              | 12    | 16            |        |
|          | AX, [WHL]        | 2     |              |       |               |        |
|          | AX, [VVP]        | 2     |              |       |               |        |
|          | AX, [UUP]        | 2     |              |       |               |        |
|          | AX, [TDE + byte] | 3     |              | 13    | 17            |        |
|          | AX, [SP + byte]  | 3     |              | 14    | 18            |        |
|          | AX, [WHL + byte] | 3     |              | 13    | 17            |        |
|          | AX, [UUP + byte] | 3     |              |       |               |        |
|          | AX, [VVP + byte] | 3     |              |       |               |        |
|          | AX, imm24[DE]    | 5     |              | 15    | 19            |        |
|          | AX, imm24[A]     | 5     |              |       |               |        |
|          | AX, imm24[HL]    | 5     |              |       |               |        |
|          | AX, imm24[B]     | 5     |              |       |               |        |
|          | AX, [TDE + A]    | 2     |              | 13    | 17            |        |
|          | AX, [WHL + A]    | 2     |              |       |               |        |
|          | AX, [TDE + B]    | 2     |              |       |               |        |
|          | AX, [WHL + B]    | 2     |              |       |               |        |
|          | AX, [VVP + DE]   | 2     |              |       |               |        |
|          | AX, [VVP + HL]   | 2     |              |       |               |        |
|          | AX, [TDE + C]    | 2     |              |       |               |        |
|          | AX, [WHL + C]    | 2     |              |       |               |        |

# (6) 8-bit operation instructions: ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP

(1/5)

| Mnemonic | Operands        | Bytes |              | Clock | s             |        |
|----------|-----------------|-------|--------------|-------|---------------|--------|
|          |                 |       | Internal ROM | IRAM  | PRAM/EMEM/SFR | Others |
| ADD      | A, #byte        | 2     | -            | 2     | -             | _      |
| ADDC     | r, #byte        | 3     |              | 4     |               |        |
| SUB      | saddr, #byte    | 3/4   |              | 6/7   | 12/13         |        |
| SUBC     | sfr, #byte      | 4     |              | -     | 13            |        |
| AND      | r, r'           | 2/3   |              | 3/4   | -             |        |
| OR       | A, saddr2       | 4     |              | 3     | 7             |        |
| XOR      | r, saddr        | 3     |              | 4     | 8             |        |
|          | saddr, r        | 3     |              | 8     | 14            |        |
|          | r, sfr          | 3     |              | _     | 8             |        |
|          | sfr, r          | 3     |              | -     | 14            |        |
|          | saddr, saddr'   | 4     |              | 8     | 18            |        |
|          | A, [saddrp]     | 3/4   | 11/12        | 9/10  | 11/12         |        |
|          | A, [%saddrg]    | 3/4   | 15/16        | 13/14 | 15/16         |        |
|          | [saddrp], A     | 3/4   | _            | 11/12 | 15/16         |        |
|          | [%saddrg], A    | 3/4   |              | 15/16 | 19/20         |        |
|          | A, !addr16      | 4     | 10           | 8     | 10            |        |
|          | A, !!addr24     | 5     | 11           | 9     | 11            |        |
|          | !addr16, A      | 4     | _            | 10    | 14            |        |
|          | !!addr24, A     | 5     |              | 11    | 15            |        |
|          | A, [TDE +]      | 1     | 11           | 9     | 11            |        |
|          | A, [WHL +]      | 1     |              |       |               |        |
|          | A, [TDE –]      | 1     |              |       |               |        |
|          | A, [WHL –]      | 1     |              |       |               |        |
|          | A, [TDE]        | 1     | 10           | 8     | 10            |        |
|          | A, [WHL]        | 1     |              |       |               |        |
|          | A, [VVP]        | 2     |              |       |               |        |
|          | A, [UUP]        | 2     |              |       |               |        |
|          | A, [TDE + byte] | 3     | 12           | 10    | 12            |        |
|          | A, [SP + byte]  | 3     |              |       |               |        |
|          | A, [WHL + byte] | 3     |              |       |               |        |
| <b>⊢</b> | A, [UUP + byte] | 3     |              |       |               |        |
|          | A, [VVP + byte] | 3     |              |       |               |        |

(2/5)

| Mnemonic | Operands        | Bytes |              | Clocks |               |        |
|----------|-----------------|-------|--------------|--------|---------------|--------|
|          |                 |       | Internal ROM | IRAM   | PRAM/EMEM/SFR | Others |
| ADD      | A, imm24[DE]    | 5     | 13           | 11     | 13            | -      |
| ADDC     | A, imm24[A]     | 5     |              |        |               |        |
| SUB      | A, imm24[HL]    | 5     |              |        |               |        |
| SUBC     | A, imm24[B]     | 5     |              |        |               |        |
| AND      | A, [TDE + A]    | 2     | 11           | 9      | 11            |        |
| OR       | A, [WHL + A]    | 2     |              |        |               |        |
| XOR      | A, [TDE + B]    | 2     |              |        |               |        |
|          | A, [WHL + B]    | 2     |              |        |               |        |
|          | A, [VVP + DE]   | 2     |              |        |               |        |
|          | A, [VVP + HL]   | 2     |              |        |               |        |
|          | A, [TDE + C]    | 2     |              |        |               |        |
|          | A, [WHL + C]    | 2     |              |        |               |        |
|          | [TDE +], A      | 1     | _            | 10     | 14            |        |
|          | [WHL +], A      | 1     |              |        |               |        |
|          | [TDE -], A      | 1     |              |        |               |        |
|          | [WHL –], A      | 1     |              |        |               |        |
|          | [TDE], A        | 1     |              |        |               |        |
|          | [WHL], A        | 1     |              |        |               |        |
|          | [VVP], A        | 2     |              |        |               |        |
|          | [UUP], A        | 2     |              |        |               |        |
|          | [TDE + byte], A | 3     |              | 13     | 17            |        |
|          | [SP + byte], A  | 3     |              |        |               |        |
|          | [WHL + byte], A | 3     |              |        |               |        |
|          | [UUP + byte], A | 3     |              |        |               |        |
|          | [VVP + byte], A | 3     |              |        |               |        |
|          | imm24[DE], A    | 5     |              | 14     | 18            |        |
|          | imm24[A], A     | 5     |              |        |               |        |
|          | imm24[HL], A    | 5     |              |        |               |        |
|          | imm24[B], A     | 5     |              |        |               |        |

(3/5)

| Mnemonic | Operands      | Bytes |              | Clocks |               |        |
|----------|---------------|-------|--------------|--------|---------------|--------|
|          |               |       | Internal ROM | IRAM   | PRAM/EMEM/SFR | Others |
| ADD      | [TDE + A], A  | 2     | _            | 12     | 16            | -      |
| ADDC     | [WHL + A], A  | 2     |              |        |               |        |
| SUB      | [TDE + B], A  | 2     |              |        |               |        |
| SUBC     | [WHL + B], A  | 2     |              |        |               |        |
| AND      | [VVP + DE], A | 2     |              |        |               |        |
| OR       | [VVP + HL], A | 2     |              |        |               |        |
| XOR      | [TDE + C], A  | 2     |              |        |               |        |
|          | [WHL + C], A  | 2     |              |        |               |        |

(4/5)

| Mnemonic | Operands        | Bytes | Clocks       |       |               |        |  |  |
|----------|-----------------|-------|--------------|-------|---------------|--------|--|--|
|          |                 |       | Internal ROM | IRAM  | PRAM/EMEM/SFR | Others |  |  |
| СМР      | A, #byte        | 2     | _            | 2     | _             | _      |  |  |
|          | r, #byte        | 3     |              | 4     |               |        |  |  |
|          | saddr, #byte    | 3/4   |              | 4/5   | 8/9           |        |  |  |
|          | sfr, #byte      | 4     |              | _     | 9             |        |  |  |
|          | r, r'           | 2/3   |              | 3/4   | _             |        |  |  |
|          | A, saddr2       | 4     |              | 3     | 7             |        |  |  |
|          | r, saddr        | 3     |              | 4     | 8             |        |  |  |
|          | saddr, r        | 3     |              | 6     | 10            |        |  |  |
|          | r, sfr          | 3     |              | _     | 9             |        |  |  |
|          | sfr, r          | 3     |              |       | 10            |        |  |  |
|          | saddr, saddr'   | 4     |              | 6     | 14            |        |  |  |
|          | A, [saddrp]     | 3/4   | 11/12        | 9/10  | 11/12         |        |  |  |
|          | A, [%saddrg]    | 3/4   | 15/16        | 13/14 | 15/16         |        |  |  |
|          | [saddrp], A     | 3/4   | 11/12        | 9/10  | 11/12         |        |  |  |
|          | [%saddrg], A    | 3/4   | 15/16        | 13/14 | 15/16         |        |  |  |
|          | A, !addr16      | 4     | 10           | 8     | 10            |        |  |  |
|          | A, !!addr24     | 5     | 11           | 9     | 11            |        |  |  |
|          | !addr16, A      | 4     | 10           | 8     | 10            |        |  |  |
|          | !!addr24, A     | 5     | 11           | 9     | 11            |        |  |  |
|          | A, [TDE +]      | 1     | 11           | 9     | 11            |        |  |  |
|          | A, [WHL +]      | 1     |              |       |               |        |  |  |
|          | A, [TDE –]      | 1     |              |       |               |        |  |  |
|          | A, [WHL –]      | 1     |              |       |               |        |  |  |
|          | A, [TDE]        | 1     | 10           | 8     | 10            |        |  |  |
|          | A, [WHL]        | 1     |              |       |               |        |  |  |
|          | A, [VVP]        | 2     |              |       |               |        |  |  |
|          | A, [UUP]        | 2     |              |       |               |        |  |  |
|          | A, [TDE + byte] | 3     | 12           | 10    | 12            |        |  |  |
|          | A, [SP + byte]  | 3     |              |       |               |        |  |  |
|          | A, [WHL + byte] | 3     |              |       |               |        |  |  |
|          | A, [UUP + byte] | 3     |              |       |               |        |  |  |
|          | A, [VVP + byte] | 3     |              |       |               |        |  |  |
|          | A, imm24[DE]    | 5     | 13           | 11    | 13            |        |  |  |
|          | A, imm24[A]     | 5     |              |       |               |        |  |  |
|          | A, imm24[HL]    | 5     |              |       |               |        |  |  |
|          | A, imm24[B]     | 5     |              |       |               |        |  |  |

(5/5)

| Mnemonic | Operands        | Bytes |              | Clock | S             |        |
|----------|-----------------|-------|--------------|-------|---------------|--------|
|          |                 |       | Internal ROM | IRAM  | PRAM/EMEM/SFR | Others |
| СМР      | A, [TDE + A]    | 2     | 11           | 9     | 11            | _      |
|          | A, [WHL + A]    | 2     |              |       |               |        |
|          | A, [TDE + B]    | 2     |              |       |               |        |
|          | A, [WHL + B]    | 2     |              |       |               |        |
|          | A, [VVP + DE]   | 2     |              |       |               |        |
|          | A, [VVP + HL]   | 2     |              |       |               |        |
|          | A, [TDE + C]    | 2     |              |       |               |        |
|          | A, [WHL + C]    | 2     |              |       |               |        |
|          | [TDE +], A      | 1     | 10           | 8     | 10            |        |
|          | [WHL +], A      | 1     |              |       |               |        |
|          | [TDE –], A      | 1     |              |       |               |        |
|          | [WHL –], A      | 1     |              |       |               |        |
|          | [TDE], A        | 1     |              |       |               |        |
|          | [WHL], A        | 1     |              |       |               |        |
|          | [VVP], A        | 2     | -            |       |               |        |
|          | [UUP], A        | 2     |              |       |               |        |
|          | [TDE + byte], A | 3     | 13           | 11    | 13            |        |
|          | [SP + byte], A  | 3     |              |       |               |        |
|          | [WHL + byte], A | 3     |              |       |               |        |
|          | [UUP + byte], A | 3     |              |       |               |        |
|          | [VVP + byte], A | 3     |              |       |               |        |
|          | imm24[DE], A    | 5     | 14           | 12    | 14            |        |
|          | imm24[A], A     | 5     |              |       |               |        |
|          | imm24[HL], A    | 5     |              |       |               |        |
|          | imm24[B], A     | 5     |              |       |               |        |
|          | [TDE + A], A    | 2     | 12           | 10    | 12            |        |
|          | [WHL + A], A    | 2     |              |       |               |        |
|          | [TDE + B], A    | 2     |              |       |               |        |
|          | [WHL + B], A    | 2     |              |       |               |        |
|          | [VVP + DE], A   | 2     |              |       |               |        |
|          | [VVP + HL], A   | 2     |              |       |               |        |
|          | [TDE + C], A    | 2     |              |       |               |        |
|          | [WHL + C], A    | 2     |              |       |               |        |

# (7) 16-bit operation instructions: ADDW, SUBW, CMPW

| Mnemonic | Operands        | Bytes |              | Clock | S             |        |
|----------|-----------------|-------|--------------|-------|---------------|--------|
|          |                 |       | Internal ROM | IRAM  | PRAM/EMEM/SFR | Others |
| ADDW     | AX, #word       | 3     |              | 3     |               | -      |
| SUBW     | rp, #word       | 4     |              | 5     |               |        |
|          | rp, rp'         | 2     |              | 3     |               |        |
|          | AX, saddrp2     | 2     |              |       | 7             |        |
|          | rp, saddrp      | 3     |              | 5     | 9             |        |
|          | saddrp, rp      | 3     |              | 8     | 14            |        |
|          | rp, sfrp        | 3     |              | _     | 9             |        |
|          | sfrp, rp        | 3     |              | _     | 13            |        |
|          | saddrp, #word   | 4/5   |              | 7/8   |               |        |
|          | sfrp, #word     | 5     |              | _     | 14            |        |
|          | saddrp, saddrp' | 4     |              | 8     | 20            |        |
| CMPW     | AX, #word       | 3     | -            | 3     | -             | _      |
|          | rp, #word       | 4     |              | 5     |               |        |
|          | rp, rp'         | 2     |              | 3     |               |        |
|          | AX, saddrp2     | 2     |              |       | 7             |        |
|          | rp, saddrp      | 3     |              | 5     | 9             |        |
|          | saddrp, rp      | 3     |              |       |               |        |
|          | rp, sfrp        | 3     |              | _     |               |        |
|          | sfrp, rp        | 3     |              |       |               |        |
|          | saddrp, #word   | 4/5   |              | 5/6   | 9             |        |
|          | sfrp, #word     | 5     |              | _     | 10            |        |
|          | saddrp, saddrp' | 4     |              | 6     |               |        |

## (8) 24-bit operation instructions: ADDG, SUBG

| Mnemonic | Operands    | Bytes | Clocks       |      |               |        |
|----------|-------------|-------|--------------|------|---------------|--------|
|          |             |       | Internal ROM | IRAM | PRAM/EMEM/SFR | Others |
| ADDG     | rg, rg'     | 2     | -            | 6    | _             | -      |
| SUBG     | rg, #imm24  | 5     |              | 8    |               |        |
|          | WHL, saddrg | 3     |              | 13   | 19            |        |

# (9) Multiplication instructions: MULU, MULUW, MULW, DIVUW, DIVUX

| Mnemonic | Operands | Bytes | Clocks       |       |               |        |
|----------|----------|-------|--------------|-------|---------------|--------|
|          |          |       | Internal ROM | IRAM  | PRAM/EMEM/SFR | Others |
| MULU     | r        | 2/3   | _            | 11/12 | _             | -      |
| MULUW    | rp       | 2     | -            | 15    | _             | -      |
| MULW     | rp       | 2     | _            | 14    | _             | -      |
| DIVUW    | r        | 2/3   | -            | 23/24 | _             | _      |
| DIVUX    | rp       | 2     | -            | 43    | -             | _      |

## (10) Special operation instructions: MACW, MACSW, SACW

| Mnemonic | Operands         | Bytes | Clocks       |         |               |        |
|----------|------------------|-------|--------------|---------|---------------|--------|
|          |                  |       | Internal ROM | IRAM    | PRAM/EMEM/SFR | Others |
| MACW     | byte             | 3     | _            | 5 + 21n | _             | -      |
| MACSW    | byte             | 3     | _            | 5 + 21n | _             | _      |
| SACW     | [TDE +], [WHL +] | 4     | _            | 4 + 19n | 4 + 23n       | _      |

# (11) Increment/decrement instructions: INC, DEC, INCW, DECW, INCG, DECG

| Mnemonic | Operands | Bytes | Clocks       |      |               |        |
|----------|----------|-------|--------------|------|---------------|--------|
|          |          |       | Internal ROM | IRAM | PRAM/EMEM/SFR | Others |
| INC      | r        | 1/2   | _            | 2/3  | _             | -      |
| DEC      | saddr    | 2/3   |              | 5/6  | 11/12         |        |
| INCW     | rp       | 2/1   | _            | 3/2  | -             | -      |
| DECW     | saddrp   | 3/4   |              | 6/7  | 12/13         |        |
| INCG     | rg       | 2     | _            | 4    | _             | _      |
| DECG     |          |       |              |      |               |        |

## (12) Adjustment instructions: ADJBA, ADJBS, CVTBW

| Mnemonic | Operands | Bytes | Clocks       |      |               |        |
|----------|----------|-------|--------------|------|---------------|--------|
|          |          |       | Internal ROM | IRAM | PRAM/EMEM/SFR | Others |
| ADJBA    |          | 2     | _            | 5    | _             | -      |
| ADJBS    |          | 2     | _            | 5    | _             | -      |
| CVTBW    |          | 1     | _            | 3    | -             | _      |

## (13) Shift/rotate instructions: ROR, ROL, RORC, ROLC, SHR, SHL, SHRW, SHLW, ROR4, ROL4

| Mnemonic | Operands | Bytes |              | Clocks      |               |        |
|----------|----------|-------|--------------|-------------|---------------|--------|
|          |          |       | Internal ROM | IRAM        | PRAM/EMEM/SFR | Others |
| ROR      | r, n     | 2/3   | _            | 5 + n/6 + n | _             | -      |
| ROL      |          |       |              |             |               |        |
| RORC     |          |       |              |             |               |        |
| ROLC     |          |       |              |             |               |        |
| SHR      |          |       |              |             |               |        |
| SHL      |          |       |              |             |               |        |
| SHRW     | rp, n    | 2     | _            | 5 + n       | _             | -      |
| SHLW     |          |       |              |             |               |        |
| ROR4     | mem3     | 2     | _            | 11          | 15            | 1      |
| ROL4     |          |       |              |             |               |        |

# (14) Bit manipulation instructions: MOV1, AND1, OR1, XOR1, NOT1, SET1, CLR1

(1/3)

| Mnemonic | Operands         | Bytes |              | Clocks |               |        |
|----------|------------------|-------|--------------|--------|---------------|--------|
|          |                  |       | Internal ROM | IRAM   | PRAM/EMEM/SFR | Others |
| MOV1     | CY, saddr.bit    | 3/4   | -            | 6/7    | 10/11         | -      |
|          | CY, sfr.bit      | 3     |              | -      | 10            |        |
|          | CY, X.bit        | 2     |              | 5      | -             |        |
|          | CY, A.bit        | 2     |              |        |               |        |
|          | CY, PSWL.bit     | 2     |              | _      | 5             |        |
|          | CY, PSWH.bit     | 2     |              |        |               |        |
|          | CY, [TDE].bit    | 2     | 11           | 9      | 11            |        |
|          | CY, [WHL].bit    | 2     |              |        |               |        |
|          | CY, !addr16.bit  | 5     | 16           | 14     | 16            |        |
|          | CY, !!addr24.bit | 6     |              |        |               |        |
|          | saddr.bit, CY    | 3/4   | -            | 5/6    | 13/14         |        |
|          | sfr.bit, CY      | 3     |              | -      | 13            | ı      |
|          | X.bit, CY        | 2     |              | 6      | -             |        |
|          | A.bit, CY        | 2     |              |        |               |        |
|          | PSWL.bit, CY     | 2     |              | _      | 8             |        |
|          | PSWH.bit, CY     | 2     |              |        | 7             |        |
|          | [TDE].bit, CY    | 2     |              | 10     | 14            |        |
|          | [WHL].bit, CY    | 2     |              |        |               |        |
|          | !addr16.bit, CY  | 5     |              | 13     | 15            |        |
|          | !!addr24.bit, CY | 6     |              |        |               |        |

(2/3)

| Mnemonic | Operands          | Bytes |              | Clocks |               |        |
|----------|-------------------|-------|--------------|--------|---------------|--------|
|          |                   |       | Internal ROM | IRAM   | PRAM/EMEM/SFR | Others |
| AND1     | CY, saddr.bit     | 3/4   |              | 6/7    | 10/11         | _      |
| OR1      | CY, /saddr.bit    | 3/4   |              |        |               |        |
|          | CY, sfr.bit       | 3     |              | _      | 10            |        |
|          | CY, /sfr.bit      | 3     |              |        |               |        |
|          | CY, X.bit         | 2     |              | 5      | _             |        |
|          | CY, /X.bit        | 2     |              |        |               |        |
|          | CY, A.bit         | 2     |              |        |               |        |
|          | CY, /A.bit        | 2     |              |        |               |        |
|          | CY, PSWL.bit      | 2     |              |        |               |        |
|          | CY, /PSWL.bit     | 2     |              |        |               |        |
|          | CY, PSWH.bit      | 2     |              |        |               |        |
|          | CY, /PSWH.bit     | 2     |              |        |               |        |
|          | CY, [TDE].bit     | 2     | 11           | 9      | 11            |        |
|          | CY, /[TDE].bit    | 2     |              |        |               |        |
|          | CY, [WHL].bit     | 2     |              |        |               |        |
|          | CY, /[WHL].bit    | 2     |              |        |               |        |
|          | CY, !addr16.bit   | 5     | 16           | 14     | 16            |        |
|          | CY, /!addr16.bit  | 5     |              |        |               |        |
|          | CY, !!addr24.bit  | 6     |              |        |               |        |
|          | CY, /!!addr24.bit | 6     |              |        |               |        |
| XOR1     | CY, saddr.bit     | 3/4   | _            | 6/7    | 10/11         |        |
|          | CY, /sfr.bit      | 3     |              | _      | 10            |        |
|          | CY, X.bit         | 2     |              | 5      | _             |        |
|          | CY, A.bit         | 2     |              |        |               |        |
|          | CY, PSWL.bit      | 2     |              | _      | 5             |        |
|          | CY, PSWH.bit      | 2     |              |        |               |        |
|          | CY, [TDE].bit     | 2     | 11           | 9      | 11            |        |
|          | CY, [WHL].bit     | 2     |              |        |               |        |
|          | CY, !addr16.bit   | 5     | 16           | 14     | 16            |        |
|          | CY, !!addr24.bit  | 6     |              |        |               |        |
|          |                   |       |              |        |               |        |

(3/3)

| Mnemonic | Operands     | Bytes |              | Clocks |               |        |
|----------|--------------|-------|--------------|--------|---------------|--------|
|          |              |       | Internal ROM | IRAM   | PRAM/EMEM/SFR | Others |
| NOT1     | saddr.bit    | 3/4   | -            | 5/6    | 13/14         | -      |
|          | sfr.bit      | 3     |              | _      | 13            |        |
|          | X.bit        | 2     |              | 5      | -             |        |
|          | A.bit        | 2     |              |        |               |        |
|          | PSWL.bit     | 2     |              | _      | 7             |        |
|          | PSWH.bit     | 2     |              |        | 6             |        |
|          | [TDE].bit    | 2     |              | 10     | 14            |        |
|          | [WHL].bit    | 2     |              |        |               |        |
|          | !addr16.bit  | 5     |              | 13     | 15            |        |
|          | !!addr24.bit | 6     |              |        |               |        |
|          | CY           | 1     |              | _      | 2             |        |
| SET1     | saddr.bit    | 2/3   |              | 4/5    | 12/13         |        |
| CLR1     | sfr.bit      | 3     |              | _      | 13            |        |
|          | X.bit        | 2     |              | 5      | -             |        |
|          | A.bit        | 2     |              |        |               |        |
|          | PSWL.bit     | 2     |              | _      | 7             |        |
|          | PSWH.bit     | 2     |              |        | 6             |        |
|          | [TDE].bit    | 2     |              | 10     | 14            |        |
|          | [WHL].bit    | 2     |              |        |               |        |
|          | !addr16.bit  | 5     |              | 13     | 15            |        |
|          | !!addr24.bit | 6     |              |        |               |        |
|          | CY           | 1     |              | _      | 2             |        |

# (15) Stack manipulation instructions: PUSH, PUSHU, POP, POPU, MOVG, ADDWG, SUBWG, INCG, DECG

| Mnemonic | Operands   | Bytes |              | Clocks | 3             |        |
|----------|------------|-------|--------------|--------|---------------|--------|
|          |            |       | Internal ROM | IRAM   | PRAM/EMEM/SFR | Others |
| PUSH     | PSW        | 1     | -            | 5      | 7             | -      |
|          | sfrp       | 3     |              | 10     | 14            |        |
|          | sfr        | 3     |              |        |               |        |
|          | post       | 2     |              | 4 + 5n | 4 + 7n        |        |
|          | rg         | 2     |              | 12     | 16            |        |
| PUSHU    | post       | 2     | -            | 6 + 5n | 6 + 7n        | _      |
| POP      | PSW        | 1     | 8            | 7      | 9             | _      |
|          | sfrp       | 3     | 15           | 14     | 16            |        |
|          | sfr        | 3     |              |        |               |        |
|          | post       | 2     | 4 + 8n       | 4 + 6n | 4 + 8n        |        |
|          | rg         | 2     | 17           | 13     | 17            |        |
| POPU     | post       | 2     | 7 + 8n       | 7 + 6n | 7 + 8n        | _      |
| MOVG     | SP, #imm24 | 5     | -            | _      | -             | 5      |
|          | SP, WHL    | 2     |              |        |               |        |
|          | WHL, SP    | 2     |              |        |               |        |
| ADDWG    | SP, #word  | 4     | -            | -      | -             | 5      |
| SUBWG    |            |       |              |        |               |        |
| INCG     | SP         | 2     | _            | -      | _             | 5      |
| DECG     |            |       |              |        |               |        |

# (16) Call/return instructions: CALL, CALLF, CALLT, BRK, BRKCS, RET, RETI, RETB, RETCS, RETCSB

| Mnemonic | Operands  | Bytes |              | Clocks |               |        |
|----------|-----------|-------|--------------|--------|---------------|--------|
|          |           |       | Internal ROM | IRAM   | PRAM/EMEM/SFR | Others |
| CALL     | !addr16   | 3     | _            | 19     | 23            | -      |
|          | !!addr20  | 4     | _            | 22     | 26            |        |
|          | rp        | 2     | _            | 20     | 24            |        |
|          | rg        | 2     | _            | 22     | 26            |        |
|          | [rp]      | 2     | 30 Note      | 24     | 30            |        |
|          | [rg]      | 2     | 37 Note      | 29     | 37            |        |
|          | \$!addr20 | 3     | _            | 19     | 23            |        |
| CALLF    | !addr11   | 2     | _            | 19     | 23            | -      |
| CALLT    | [addr5]   | 1     | 28 Note      | 22     | 28            | _      |
| BRK      |           | 1     | _            | 23     | 29            | -      |
| BRKCS    | RBn       | 2     | _            | -      | -             | 13     |
| RET      |           | 1     | 21           | 17     | 21            | -      |
| RETI     |           | 1     | 22           | 18     | 22            | -      |
| RETB     |           | 1     | 21           | 17     | 21            | -      |
| RETCS    | !addr16   | 3     | -            | -      | -             | 14     |
| RETCSB   | !addr16   | 4     | -            | -      | -             | 14     |

Note When the stack is PRAM or EMEM

# (17) Unconditional branch instruction: BR

| Mnemonic | Operands  | Bytes | Clocks       |      |               |        |  |
|----------|-----------|-------|--------------|------|---------------|--------|--|
|          |           |       | Internal ROM | IRAM | PRAM/EMEM/SFR | Others |  |
| BR       | !addr16   | 3     | _            | _    | _             | 11     |  |
|          | !!addr20  | 4     | _            | _    | _             | 12     |  |
|          | rp        | 2     | _            | _    | _             | 11     |  |
|          | rg        | 2     | _            | _    | _             | 12     |  |
|          | [rp]      | 2     | 16           | 14   | 16            | -      |  |
|          | [rg]      | 2     | 22           | 18   | 22            | _      |  |
|          | \$addr20  | 2     | -            | _    | _             | 10     |  |
|          | \$!addr20 | 3     | _            | _    | -             | 11     |  |

(18) Conditional branch instructions: BNZ, BNE, BZ, BE, BNC, BNL, BC, BL, BNV, BPO, BV, BPE, BP, BN, BLT, BGE, BLE, BGT, BNH, BH, BF, BT, BTCLR, BFSET, DBNZ

(1/4)

| Mnemonic | Operands | Bytes | Clocks |              |      |               |        |  |
|----------|----------|-------|--------|--------------|------|---------------|--------|--|
|          |          |       | Not    | Branches     |      |               |        |  |
|          |          |       | Branch | Internal ROM | IRAM | PRAM/EMEM/SFR | Others |  |
| BNZ      | \$addr20 | 2     | 3      | _            | _    | _             | 10     |  |
| BNE      |          |       |        |              |      |               |        |  |
| BZ       | \$addr20 | 2     | 3      | _            | _    | _             | 10     |  |
| BE       |          |       |        |              |      |               |        |  |
| BNC      | \$addr20 | 2     | 3      | _            | _    | _             | 10     |  |
| BNL      |          |       |        |              |      |               |        |  |
| ВС       | \$addr20 | 2     | 3      | _            | _    | _             | 10     |  |
| BL       |          |       |        |              |      |               |        |  |
| BNV      | \$addr20 | 2     | 3      | _            | _    | _             | 10     |  |
| ВРО      |          |       |        |              |      |               |        |  |
| BV       | \$addr20 | 2     | 3      | _            | _    | _             | 10     |  |
| BPE      |          |       |        |              |      |               |        |  |
| ВР       | \$addr20 | 2     | 3      | _            | _    | _             | 10     |  |
| BN       |          |       |        |              |      |               |        |  |
| BLT      | \$addr20 | 3     | 4      | _            | _    | _             | 11     |  |
| BGE      | \$addr20 | 3     | 4      | -            | _    | _             | 11     |  |
| BLE      | \$addr20 | 3     | 4      | _            | _    | _             | 11     |  |
| BGT      | \$addr20 | 3     | 4      | -            | _    | _             | 11     |  |
| BNH      | \$addr20 | 3     | 4      | -            | _    | _             | 11     |  |
| ВН       | \$addr20 | 3     | 4      | _            | _    | _             | 11     |  |

(2/4)

| Mnemonic | Operands               | Bytes | Clocks       |       |               |        |  |
|----------|------------------------|-------|--------------|-------|---------------|--------|--|
|          |                        |       | Internal ROM | IRAM  | PRAM/EMEM/SFR | Others |  |
| BF       | saddr.bit, \$addr20    | 4/5   | _            | 14/15 | 18            | _      |  |
|          |                        |       | _            | 7/8   | 11            | _      |  |
|          | sfr.bit, \$addr20      | 4     | _            | _     | 18            | _      |  |
|          |                        |       | _            | _     | 11            | -      |  |
|          | X.bit, \$addr20        | 3     | _            | 13    | _             | _      |  |
|          |                        |       | -            | 6     | -             | _      |  |
|          | A.bit, \$addr20        | 3     | _            | 13    | _             | _      |  |
|          |                        |       | 1            | 6     | -             | _      |  |
|          | PSWL.bit, \$addr20     | 3     | _            | _     | 13            | _      |  |
|          |                        |       | ı            | _     | 6             | -      |  |
|          | PSWH.bit, \$addr20     | 3     | -            | _     | 13            | _      |  |
|          |                        |       | _            | _     | 6             | _      |  |
|          | mem2.bit, \$addr20     | 3     | 19           | 17    | 19            | -      |  |
|          |                        |       | 12           | 10    | 12            | _      |  |
|          | !addr16.bit, \$addr20  | 6     |              | 22    | 24            | -      |  |
|          |                        |       |              | 15    | 17            | _      |  |
|          | !!addr24.bit, \$addr20 | 7     |              | 22    | 24            | _      |  |
|          |                        |       | _            | 15    | 17            | _      |  |

**Remark** The number of clocks differs depending on the following cases. Therefore, two types of numbers of clocks are shown for each operand with one type shown at the top and the other at the bottom.

Top : Branches (internal ROM high-speed fetch, etc.)

Bottom: Does not branch

(3/4)

| Mnemonic | Operands               | Bytes | Clocks       |       |               |        |  |
|----------|------------------------|-------|--------------|-------|---------------|--------|--|
|          |                        |       | Internal ROM | IRAM  | PRAM/EMEM/SFR | Others |  |
| вт       | saddr.bit, \$addr20    | 3/4   | _            | 13/14 | 17            | -      |  |
|          |                        |       | _            | 6/7   | 10            | ı      |  |
|          | sfr.bit, \$addr20      | 4     | _            | _     | 18            | -      |  |
|          |                        |       | _            | _     | 11            | ı      |  |
|          | X.bit, \$addr20        | 3     | _            | 13    | _             | ı      |  |
|          |                        |       | _            | 6     | _             | -      |  |
|          | A.bit, \$addr20        | 3     | _            | 13    | _             | -      |  |
|          |                        |       | _            | 6     | -             | ı      |  |
|          | PSWL.bit, \$addr20     | 3     | _            | _     | 13            | ı      |  |
|          |                        |       | _            | _     | 6             | ı      |  |
|          | PSWH.bit, \$addr20     | 3     | _            | _     | 13            | -      |  |
|          |                        |       | _            | _     | 6             | ı      |  |
|          | mem2.bit, \$addr20     | 3     | 19           | 17    | 19            | -      |  |
|          |                        |       | 12           | 10    | 12            | ı      |  |
|          | !addr16.bit, \$addr20  | 6     | _            | 22    | 24            | ı      |  |
|          |                        |       | _            | 15    | 17            | _      |  |
|          | !!addr24.bit, \$addr20 | 7     | -            | 22    | 24            | _      |  |
|          |                        |       |              | 15    | 17            | _      |  |

**Remark** The number of clocks differs depending on the following cases. Therefore, two types of numbers of clocks are shown for each operand with one type shown at the top and the other at the bottom.

Top : Branches (internal ROM high-speed fetch, etc.)

Bottom: Does not branch

(4/4)

| Mnemonic | Operands               | Bytes | Clocks       |       |               |        |  |
|----------|------------------------|-------|--------------|-------|---------------|--------|--|
|          |                        |       | Internal ROM | IRAM  | PRAM/EMEM/SFR | Others |  |
| BTCLR    | saddr.bit, \$addr20    | 4/5   | _            | 16/17 | 24            | _      |  |
| BFSET    |                        |       | -            | 7/8   | 15            | _      |  |
|          | sfr.bit, \$addr20      | 4     | -            | _     | 24            | _      |  |
|          |                        |       | -            | _     | 15            | _      |  |
|          | X.bit, \$addr20        | 3     | -            | 15    | _             | _      |  |
|          |                        |       | -            | 6     | _             | _      |  |
|          | A.bit, \$addr20        | 3     | _            | 15    | _             | _      |  |
|          |                        |       | -            | 6     | _             | _      |  |
|          | PSWL.bit, \$addr20     | 3     | -            | _     | 15            | _      |  |
|          |                        |       | _            | _     | 6             | _      |  |
|          | PSWH.bit, \$addr20     | 3     | -            | _     | 16            | -      |  |
|          |                        |       | _            | _     | 6             | _      |  |
|          | mem2.bit, \$addr20     | 3     | -            | 21    | 25            | -      |  |
|          |                        |       | -            | 12    | 16            | -      |  |
|          | !addr16.bit, \$addr20  | 6     | -            | 24    | 26            | -      |  |
|          |                        |       | -            | 15    | 17            | _      |  |
|          | !!addr24.bit, \$addr20 | 7     | -            | 24    | 26            | -      |  |
|          |                        |       | -            | 15    | 17            | -      |  |
| DBNZ     | B, \$addr20            | 2     | 12           | _     | _             | _      |  |
|          |                        |       | 4            | _     | _             | _      |  |
|          | C, \$addr20            | 2     | 12           | _     | _             | ı      |  |
|          |                        |       | 4            | _     | _             | -      |  |
|          | saddr, \$addr20        | 3     | 21           | 17    | 21            | _      |  |
|          |                        |       | 5            | 5     | 5             | -      |  |
|          |                        | 4     | 22           | 18    | 22            | -      |  |
|          |                        |       | 6            | 6     | 6             | _      |  |

**Remark** The number of clocks differs depending on the following cases. Therefore, two types of numbers of clocks are shown for each operand with one type shown at the top and the other at the bottom.

Top : Branches (internal ROM high-speed fetch, etc.)

Bottom: Does not branch

#### (19) CPU control instructions: MOV, LOCATION, SEL, SWRS, NOP, EI, DI

| Mnemonic | Operands    | Bytes | Clocks       |      |               |        |
|----------|-------------|-------|--------------|------|---------------|--------|
|          |             |       | Internal ROM | IRAM | PRAM/EMEM/SFR | Others |
| MOV      | STBC, #byte | 4     | _            | _    | _             | 13     |
|          | WDM, #byte  | 4     |              |      |               |        |
| LOCATION | locaddr     | 4     | _            | _    | -             | 13     |
| SEL      | RBn         | 2     | _            | _    | -             | 3      |
|          | RBn, ALT    | 2     |              |      |               |        |
| SWRS     |             | 2     | _            | _    | -             | 4      |
| NOP      |             | 1     | _            | _    | -             | 2      |
| El       |             | 1     | _            | _    | -             | 2      |
| DI       |             | 1     | _            | _    | _             | 2      |

#### (20) Special instructions: CHKL, CHKLA

| Mnemonic | Operands | Bytes | Clocks       |      |               |        |
|----------|----------|-------|--------------|------|---------------|--------|
|          |          |       | Internal ROM | IRAM | PRAM/EMEM/SFR | Others |
| CHKL     | sfr      | 3     | -            | -    | 14            | -      |
| CHKLA    | sfr      | 3     | -            | -    | 14            | _      |

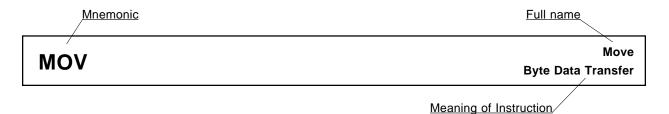
- Caution The CHKL and CHKLA instructions are not available in the μPD784216, 784216Y, 784218, 784218Y, 784225, 784225Y, 784937 Subseries. Do not execute these instructions. If these instructions are executed, the following operations will result.
  - CHKL instruction ...... After the pin levels of the output pins are read two times, they are
    exclusive-ORed. As a result, if the pins checked with this instruction are
    used in the port output mode, the exclusive-OR result is always 0 for all
    bits, and the Z flag is set to (1).
  - CHKLA instruction .... After the pin levels of output pins are read two times, they are exclusive-ORed. As a result, if the pins checked with this instruction are used in the port output mode, the exclusive-OR result is always 0 for all bits, and the Z flag is set to (1) along with that the result is stored in the A register.

# (21) String instructions: MOVTBLW, MOVM, XCHM, MOVBK, XCHBK, CMPME, CMPMNE, CMPMC, CMPBKNE, CMPBKNE, CMPBKNC

| Mnemonic | Mnemonic Operands Bytes Clocks |   |                |                |                |        |
|----------|--------------------------------|---|----------------|----------------|----------------|--------|
|          |                                |   | Internal ROM   | IRAM           | PRAM/EMEM/SFR  | Others |
| MOVTBLW  | !addr16, byte                  | 4 | -              | 7 + 5n         | -              | -      |
| MOVM     | [TDE +], A                     | 2 | -              | 3 + 8n         | 3 + 10n        | -      |
|          | [TDE –], A                     | 2 |                |                |                |        |
| хснм     | [TDE +], A                     | 2 | -              | 3 + 14n        | 3 + 20n        | _      |
|          | [TDE –], A                     | 2 |                |                |                |        |
| MOVBK    | [TDE +], [WHL +]               | 2 | 3 + 17n Note 1 | 3 + 13n Note 2 | 3 + 17n Note 3 | _      |
|          | [TDE –], [WHL –]               | 2 |                |                |                |        |
| хснвк    | [TDE +], [WHL +]               | 2 | -              | 3 + 21n Note 2 | 3 + 29n Note 3 | _      |
|          | [TDE -], [WHL -]               | 2 |                |                |                |        |
| СМРМЕ    | [TDE +], A                     | 2 | 3 + 12n        | 3 + 10n        | 3 + 12n        | -      |
|          | [TDE –], A                     | 2 |                |                |                |        |
| CMPMNE   | [TDE +], A                     | 2 | 3 + 12n        | 3 + 10n        | 3 + 12n        | _      |
|          | [TDE –], A                     | 2 |                |                |                |        |
| СМРМС    | [TDE +], A                     | 2 | 3 + 12n        | 3 + 10n        | 3 + 12n        | -      |
|          | [TDE –], A                     | 2 |                |                |                |        |
| CMPMNC   | [TDE +], A                     | 2 | 3 + 12n        | 3 + 10n        | 3 + 12n        | _      |
|          | [TDE –], A                     | 2 |                |                |                |        |
| СМРВКЕ   | [TDE +], [WHL +]               | 2 | 3 + 19n Note 1 | 3 + 15n Note 2 | 3 + 19n Note 3 | -      |
|          | [TDE –], [WHL –]               | 2 |                |                |                |        |
| CMPBKNE  | [TDE +], [WHL +]               | 2 | 3 + 19n Note 1 | 3 + 15n Note 2 | 3 + 19n Note 3 | _      |
|          | [TDE –], [WHL –]               | 2 |                |                |                |        |
| СМРВКС   | [TDE +], [WHL +]               | 2 | 3 + 19n Note 1 | 3 + 15n Note 2 | 3 + 19n Note 3 | _      |
|          | [TDE –], [WHL –]               | 2 |                |                |                |        |
| СМРВКИС  | [TDE +], [WHL +]               | 2 | 3 + 19n Note 1 | 3 + 15n Note 2 | 3 + 19n Note 3 | _      |
|          | [TDE -], [WHL -]               | 2 |                |                |                |        |

**Notes 1.** When the memory specified by the WHL register is the internal ROM and the memory specified by the TDE register is PRAM or EMEM

- 2. If both the transfer source and destination memories are IRAM
- 3. If both the transfer source and destination memories are PRAM or EMEM


#### **CHAPTER 7 DESCRIPTION OF INSTRUCTIONS**

This chapter describes the instructions of 78K/IV Series products. Each instruction is described on a mnemonic basis, with a number of operands covered together.

The basic organization of the instruction descriptions is shown on the following page.

Refer to **CHAPTER 6 INSTRUCTION SET** for the number of bytes in the instructions, and the operation codes.

# **Description Example**



[Instruction format] MOV dst, src: Shows the basic description format of the instruction.

[Operands] : Shows the operands that can be specified in this instruction. See CHAPTER 6

**INSTRUCTION SET** for an explanation of the operand symbols.

| Mnemonic | Operands       |
|----------|----------------|
| MOV      | r, #byte       |
|          | ≈ saddr, #byte |
|          | A, saddr2      |
|          | ≈ saddr2, A    |
|          | A, mem         |

| Mnemonic | Operands       |
|----------|----------------|
| MOV      | [saddrp], A    |
|          | ≈ [%saddrg], A |
|          | mem, A         |
|          | ≈ A, r3        |
|          | r3, A          |

[Flags] : Shows the operation of flags changed by execution of the instruction.

The operation symbols for each flag are shown in the legend below.

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

#### Legend

| Symbol | Meaning                            |  |
|--------|------------------------------------|--|
| Blank  | No change                          |  |
| 0      | Cleared to 0                       |  |
| 1      | Set to 1                           |  |
| ×      | Set or cleared depending on result |  |
| Р      | P/V flag operates as parity flag   |  |
| V      | P/V flag operates as overflow flag |  |
| R      | Previously saved value is restored |  |

[Description] : Explains the detailed operation of the instruction.

• Transfers the contents of the source operand (src) specified by the 2nd operand to the destination operand (dst) specified by the 1st operand.

[Coding example] MOV A, #4DH; Transfers 4DH to A register

# 7.1 8-bit Data Transfer Instruction

There is one 8-bit data transfer instruction, a follows:

MOV ... 294

# MOV

Move Byte Data Transfer

[Instruction format] MOV dst, src

 $\textbf{[Operation]} \qquad \qquad \mathsf{dst} \leftarrow \mathsf{src}$ 

# [Operands]

| Mnemonic | Operands (dst, src) |
|----------|---------------------|
| MOV      | r, #byte            |
|          | saddr, #byte        |
|          | sfr, #byte          |
|          | !addr16, #byte      |
|          | !!addr24, #byte     |
|          | r, r'               |
|          | A, r                |
|          | A, saddr2           |
|          | r, saddr            |
|          | saddr2, A           |
|          | saddr, r            |
|          | A, sfr              |
|          | r, sfr              |
|          | sfr, A              |
|          | sfr, r              |
|          | saddr, saddr'       |
|          | r, !addr16          |
|          | !addr16, r          |

| Mnemonic | Operands (dst, src) |
|----------|---------------------|
| MOV      | r, !!addr24         |
|          | !!addr24, r         |
|          | A, [saddrp]         |
|          | A, [%saddrg]        |
|          | A, mem              |
|          | [saddrp], A         |
|          | [%saddrg], A        |
|          | mem, A              |
|          | PSWL, #byte         |
|          | PSWH, #byte         |
|          | PSWL, A             |
|          | PSWH, A             |
|          | A, PSWL             |
|          | A, PSWH             |
|          | r3, #byte           |
|          | A, r3               |
|          | r3, A               |

# [Flags]

In case of PSWL, #byte and PSWL, A operands

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| × | × | ×  | ×   | ×  |

# In other cases

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

#### [Description]

- The contents of the source operand (src) specified by the 2nd operand are transferred to the destination operand (dst) specified by the 1st operand.
- No interrupts or macro service requests are acknowledged between a MOV PSWL, #byte instruction or MOV PSWL, A instruction and the following instruction.
- Instructions with r3 (T, U, V, or W register) as an operand should only be used when the high-order 8-bit of the address are set when a 78K/0, 78K/II, or 78K/III Series program is used. Also, if possible, the program should be amended so that r3 need not be specified directly.

#### [Coding example]

MOV A, #4DH; Transfers 4DH to A register

# 7.2 16-bit Data Transfer Instruction

There is one 16-bit data transfer instruction, as follows:

MOVW ... 297

**MOVW** 

Move Word Word Data Transfer

[Instruction format] MOVW dst, src

 $\textbf{[Operation]} \qquad \qquad \mathsf{dst} \leftarrow \mathsf{src}$ 

# [Operands]

| Mnemonic | Operands (dst, src) |
|----------|---------------------|
| MOVW     | rp, #word           |
|          | saddrp, #word       |
|          | sfrp, #word         |
|          | !addr16, #word      |
|          | !!addr24, #word     |
|          | rp, rp'             |
|          | AX, saddrp2         |
|          | rp, saddrp          |
|          | saddr2, AX          |
|          | saddrp, rp          |
|          | AX, sfrp            |
|          | rp, sfrp            |
|          | sfrp, AX            |

| Mnemonic | Operands (dst, src) |
|----------|---------------------|
| MOVW     | sfrp, rp            |
|          | saddrp, saddrp'     |
|          | rp, !addr16         |
|          | !addr16, rp         |
|          | rp, !!addr24        |
|          | !!addr24, rp        |
|          | AX, [saddrp]        |
|          | AX, [%saddrg]       |
|          | AX, mem             |
|          | [saddrp], AX        |
|          | [%saddrg], AX       |
|          | mem, AX             |

### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

#### [Description]

- The contents of the source operand (src) specified by the 2nd operand are transferred to the destination operand (dst) specified by the 1st operand.
- The following caution should be noted if all the following conditions apply when a 78K/0, 78K/I, 78K/II, or 78K/III Series program is used.

#### [Conditions]

- An instruction in which rp is specified as an operand is used .
- DE, HL, VP, or UP is actually written for rp .
- DE, HL, VP, or UP is used as an address pointer

#### [Caution]

Ensure that the contents of the T, W, V, or U register that indicates the high-order 8 bits of the address pointer are coordinated with DE, HL, VP, or UP that indicates the low-order 16 bits, and if program amendment is possible, change the program so that a 24-bit manipulation instruction is used.

### [Coding example]

MOVW AX, [WHL]; Transfers the contents of memory indicated by the WHL register to the AX register

# 7.3 24-bit Data Transfer Instruction

There is one 24-bit data transfer instruction, as follows:

MOVG ... 300

**MOVG** 

Move G Note 24-Bit Data Transfer

[Instruction format] MOVG dst, src

**Note** G is a character that indicates that 24-bit data is to be manipulated.

[Operation]

 $dst \leftarrow src$ 

### [Operands]

| Mnemonic | Operands (dst, src) |
|----------|---------------------|
| MOVG     | rp, #imm24          |
|          | rg, rg'             |
|          | rg, !!addr24        |
|          | !!addr24, rg        |
|          | rg, saddrg          |
|          | saddrg, rg          |
|          | WHL, [%saddrg]      |
|          | [%saddrg], WHL      |
|          | WHL, mem1           |
|          | mem1, WHL           |

# [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

#### [Description]

• The contents of the source operand (src) specified by the 2nd operand are transferred to the destination operand (dst) specified by the 1st operand.

# [Coding example]

MOVG VVP, SADG; Transfers the 24-bit data in address SADG that can be accessed by short direct addressing to the VVP register.

# 7.4 8-bit Data Exchange Instruction

There is one 8-bit data exchange instruction, as follows:

XCH ... 302

XCH Exchange
Byte Data Exchange

[Instruction format] XCH dst, src

 $\textbf{[Operation]} \hspace{1cm} \mathsf{dst} \leftrightarrow \mathsf{src}$ 

# [Operands]

| Mnemonic | Operands (dst, src) |
|----------|---------------------|
| хсн      | r, r'               |
|          | A, r                |
|          | A, saddr2           |
|          | r, saddr            |
|          | r, sfr              |
|          | saddr, saddr'       |
|          | r, !addr16          |
|          | r, !!addr24         |
|          | A, [saddrp]         |
|          | A, [%saddrg]        |
|          | A, mem              |

# [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

# [Description]

• Exchanges the contents of the 1st operand and 2nd operand.

# [Coding example]

XCH B, D; Exchanges the contents of the B register with the contents of the D register

# 7.5 16-bit Data Exchange Instruction

There is one 16-bit data exchange instruction, as follows:

XCHW ... 304

XCHW Exchange Word Data Exchange

[Instruction format] XCHW dst, src

[Operation]  $dst \leftrightarrow src$ 

#### [Operands]

| Mnemonic | Operands (dst, src) |
|----------|---------------------|
| XCHW     | rp, rp'             |
|          | AX, saddrp2         |
|          | rp, saddrp          |
|          | rp, sfrp            |
|          | AX, [saddrp]        |
|          | AX, [%saddrg]       |
|          | AX, !addr16         |
|          | AX, !!addr24        |
|          | saddrp, saddrp'     |
|          | AX, mem             |

#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

#### [Description]

- Exchanges the contents of the 1st operand and 2nd operand.
- The following caution should be noted if all the following conditions apply when a 78K/0, 78K/I, 78K/II, or 78K/III Series program is used.

#### [Conditions]

- · An instruction in which rp is specified as an operand is used
- . DE, HL, VP, or UP is actually written for rp
- . DE, HL, VP, or UP is used as an address pointer

#### [Caution]

Ensure that the contents of the T, W, V, or U register that indicates the high-order 8 bits of the address pointer are coordinated with DE, HL, VP, or UP that indicates the low-order 16 bits, and if program amendment is possible, change the program so that a 24-bit manipulation instruction is used.

#### [Coding example]

XCHW AX, mem; Exchanges the contents of the AX register with the memory contents addressed by memory addressing

# 7.6 8-bit Operation Instructions

8-bit operation instructions are as follows:

ADD ... 306 ADDC ... 307 SUB ... 308 SUBC ... 309 CMP ... 310 AND ... 312

OR ... 313

XOR ... 314

ADD Byte Data Addition

[Instruction format] ADD dst, src

[Operation]  $dst, CY \leftarrow dst + src$ 

#### [Operands]

| Mnemonic | Operands (dst, src) |
|----------|---------------------|
| ADD      | A, #byte            |
|          | r, #byte            |
|          | saddr, #byte        |
|          | sfr, #byte          |
|          | r, r'               |
|          | A, saddr2           |
|          | r, saddr            |
|          | saddr, r            |
|          | r, sfr              |
|          | sfr, r              |
|          | saddr, saddr'       |

| Mnemonic | Operands (dst, src) |
|----------|---------------------|
| ADD      | A, [saddrp]         |
|          | A, [%saddrg]        |
|          | [saddrp], A         |
|          | [%saddrg], A        |
|          | A, !addr16          |
|          | A, !!addr24         |
|          | !addr16, A          |
|          | !!addr24, A         |
|          | A, mem              |
|          | mem, A              |

#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| × | × | ×  | V   | ×  |

#### [Description]

- The source operand (src) specified by the 2nd operand is added to the destination operand (dst) specified by the 1st operand, and the result is stored in the CY flag and destination operand (dst).
- The S flag is set (1) if bit 7 of dst is set (1) as a result of the addition, and cleared (0) otherwise.
- The Z flag is set (1) if dst is 0 as a result of the addition, and cleared (0) otherwise.
- The AC flag is set (1) if a carry is generated out of bit 3 into bit 4 as a result of the addition, and cleared (0) otherwise.
- The P/V flag is set (1) if a carry is generated out of bit 6 into bit 7 and a carry is not generated out of bit 7 as a result of the addition (when overflow is generated by a two's complement type operation), or if a carry is not generated out of bit 6 into bit 7 and a carry is generated out of bit 7 (when underflow is generated by a two's complement type operation), and is cleared (0) otherwise.
- The CY flag is set (1) if a carry is generated out of bit 7 as a result of the addition, and cleared (0) otherwise.

#### [Coding example]

ADD CR11, #56H; Adds 56H to the value in register CR11, and stores the result in register CR11

# **ADDC**

Add with Carry Byte Data Addition including Carry

[Instruction format] ADDC dst, src

[Operation]  $dst, CY \leftarrow dst + src + CY$ 

#### [Operands]

| Mnemonic | Operands (dst, src) |
|----------|---------------------|
| ADDC     | A, #byte            |
|          | r, #byte            |
|          | saddr, #byte        |
|          | sfr, #byte          |
|          | r, r'               |
|          | A, saddr2           |
|          | r, saddr            |
|          | saddr, r            |
|          | r, sfr              |
|          | sfr, r              |
|          | saddr, saddr'       |

| Mnemonic | Operands (dst, src) |
|----------|---------------------|
| ADDC     | A, [saddrp]         |
|          | A, [%saddrg]        |
|          | [saddrp], A         |
|          | [%saddrg], A        |
|          | A, !addr16          |
|          | A, !!addr24         |
|          | !addr16, A          |
|          | !!addr24, A         |
|          | A, mem              |
|          | mem, A              |

#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| × | × | ×  | V   | ×  |

#### [Description]

- The source operand (src) specified by the 2nd operand and the CY flag are added to the destination operand (dst) specified by the 1st operand, and the result is stored in the destination operand (dst) and the CY flag. This instruction is mainly used when performing multiple byte addition.
- The S flag is set (1) if bit 7 of dst is set (1) as a result of the addition, and cleared (0) otherwise.
- The Z flag is set (1) if dst is 0 as a result of the addition, and cleared (0) otherwise.
- The AC flag is set (1) if a carry is generated out of bit 3 into bit 4 as a result of the addition, and cleared (0) otherwise.
- The P/V flag is set (1) if a carry is generated out of bit 6 into bit 7 and a carry is not generated out of bit 7 as a result of the addition (when overflow is generated by a two's complement type operation), or if a carry is not generated out of bit 6 into bit 7 and a carry is generated out of bit 7 (when underflow is generated by a two's complement type operation), and is cleared (0) otherwise.
- The CY flag is set (1) if a carry is generated out of bit 7 as a result of the addition, and cleared (0) otherwise.

### [Coding example]

ADDC A, 12345H [B]; Adds the contents of address (12345H + (B register)) and the CY flag to the A register, and stores the result in the A register

**SUB** 

Subtract Byte Data Subtraction

[Instruction format] SUB dst, src

[Operation]  $dst, CY \leftarrow dst - src$ 

#### [Operands]

| Mnemonic | Operands (dst, src) |
|----------|---------------------|
| SUB      | A, #byte            |
|          | r, #byte            |
|          | saddr, #byte        |
|          | sfr, #byte          |
|          | r, r'               |
|          | A, saddr2           |
|          | r, saddr            |
|          | saddr, r            |
|          | r, sfr              |
|          | sfr, r              |
|          | saddr, saddr'       |

| Mnemonic | Operands (dst, src) |
|----------|---------------------|
| SUB      | A, [saddrp]         |
|          | A, [%saddrg]        |
|          | [saddrp], A         |
|          | [%saddrg], A        |
|          | A, !addr16          |
|          | A, !!addr24         |
|          | !addr16, A          |
|          | !!addr24, A         |
|          | A, mem              |
|          | mem, A              |

#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| × | × | ×  | V   | ×  |

#### [Description]

- The source operand (src) specified by the 2nd operand is subtracted from the destination operand (dst) specified by the 1st operand, and the result is stored in the destination operand (dst) and the CY flag.
- The destination operand (dst) can be cleared to 0 by making the source operand (src) and destination operand (dst) the same.
- The S flag is set (1) if bit 7 of dst is set (1) as a result of the subtraction, and cleared (0) otherwise.
- The Z flag is set (1) if dst is 0 as a result of the subtraction, and cleared (0) otherwise.
- The AC flag is set (1) if a borrow is generated out of bit 4 into bit 3 as a result of the subtraction, and cleared (0) otherwise.
- The P/V flag is set (1) if a borrow is generated out of bit 6 into bit 7 and a borrow is not generated in bit 7 as a result of the subtraction (when underflow is generated by a two's complement type operation), or if a borrow is not generated out of bit 6 into bit 7 and a borrow is generated in bit 7 (when overflow is generated by a two's complement type operation), and is cleared (0) otherwise.
- The CY flag is set (1) if a borrow is generated in bit 7 as a result of the subtraction, and cleared (0) otherwise.

#### [Coding example]

SUB D, L; Subtracts the L register from the D register and stores the result in the D register

# **SUBC**

Subtract with Carry Byte Data Subtraction including Carry

[Instruction format] SUBC dst, src

[Operation]  $dst, CY \leftarrow dst - src - CY$ 

#### [Operands]

| Mnemonic | Operands (dst, src) |
|----------|---------------------|
| SUBC     | A, #byte            |
|          | r, #byte            |
|          | saddr, #byte        |
|          | sfr, #byte          |
|          | r, r'               |
|          | A, saddr2           |
|          | r, saddr            |
|          | saddr, r            |
|          | r, sfr              |
|          | sfr, r              |
|          | saddr, saddr'       |

| Mnemonic | Operands (dst, src) |
|----------|---------------------|
| SUBC     | A, [saddrp]         |
|          | A, [%saddrg]        |
|          | [saddrp], A         |
|          | [%saddrg], A        |
|          | A, !addr16          |
|          | A, !!addr24         |
|          | !addr16, A          |
|          | !!addr24, A         |
|          | A, mem              |
|          | mem, A              |

#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| × | × | ×  | V   | ×  |

#### [Description]

- The source operand (src) specified by the 2nd operand and the CY flag are subtracted from the destination operand (dst) specified by the 1st operand, and the result is stored in the destination operand (dst) and the CY flag. The CY flag is subtracted from the LSB. This instruction is mainly used when performing multiple byte subtraction.
- The S flag is set (1) if bit 7 of dst is set (1) as a result of the subtraction, and cleared (0) otherwise.
- The Z flag is set (1) if dst is 0 as a result of the subtraction, and cleared (0) otherwise.
- The AC flag is set (1) if a borrow is generated out of bit 4 into bit 3 as a result of the subtraction, and cleared (0) otherwise.
- The P/V flag is set (1) if a borrow is generated out of bit 6 into bit 7 and a borrow is not generated in bit 7 as a result of the subtraction (when underflow is generated by a two's complement type operation), or if a borrow is not generated out of bit 6 into bit 7 and a borrow is generated in bit 7 (when overflow is generated by a two's complement type operation), and is cleared (0) otherwise.
- The CY flag is set (1) if a borrow is generated in bit 7 as a result of the subtraction, and cleared (0) otherwise.

#### [Coding example]

SUBC A, [TDE+]; Subtracts the contents of the TDE register address and the CY flag from the A register, and stores the result in the A register (the TDE register is incremented after the subtraction)

**CMP** 

Compare Byte Data Comparison

[Instruction format] CMP dst, src

[Operation] dst - src

#### [Operands]

| Mnemonic | Operands (dst, src) |
|----------|---------------------|
| СМР      | A, #byte            |
|          | r, #byte            |
|          | saddr, #byte        |
|          | sfr, #byte          |
|          | r, r'               |
|          | A, saddr2           |
|          | r, saddr            |
|          | saddr, r            |
|          | r, sfr              |
|          | sfr, r              |
|          | saddr, saddr'       |

| Mnemonic | Operands (dst, src) |
|----------|---------------------|
| СМР      | A, [saddrp]         |
|          | A, [%saddrg]        |
|          | [saddrp], A         |
|          | [%saddrg], A        |
|          | A, !addr16          |
|          | A, !!addr24         |
|          | !addr16, A          |
|          | !!addr24, A         |
|          | A, mem              |
|          | mem, A              |

#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| × | × | ×  | V   | ×  |

#### [Description]

• The source operand (src) specified by the 2nd operand is subtracted from the destination operand (dst) specified by the 1st operand.

The result of the subtraction is not stored anywhere, and only the S, Z, AC, P/V, and CY flags are changed.

- The S flag is set (1) if bit 7 is set (1) as a result of the subtraction, and cleared (0) otherwise.
- The Z flag is set (1) if dst is 0 as a result of the subtraction, and cleared (0) otherwise.
- The AC flag is set (1) if a borrow is generated out of bit 4 into bit 3 as a result of the subtraction, and cleared (0) otherwise.
- The P/V flag is set (1) if a borrow is generated in bit 7 and a borrow is not generated in bit 6 as a result of the subtraction (when underflow is generated by a two's complement type operation), or if a borrow is not generated in bit 7 and a borrow is generated in bit 6 (when overflow is generated by a two's complement type operation), and is cleared (0) otherwise.
- The CY flag is set (1) if a borrow is generated in bit 7 as a result of the subtraction, and cleared (0) otherwise.

# [Coding example]

CMP SADG1, SADG2; Subtracts the contents of address SADG2 that can be accessed by short direct addressing from the contents of address SADG1 that can be accessed by short direct addressing, and changes the flags only (comparison of the contents of address SADG1 and the contents of address SADG2)

# **AND**

And Byte Data Logical Product

[Instruction format] AND dst, src

[Operation]  $dst \leftarrow dst \wedge src$ 

#### [Operands]

| Mnemonic | Operands (dst, src) |
|----------|---------------------|
| AND      | A, #byte            |
|          | r, #byte            |
|          | saddr, #byte        |
|          | sfr, #byte          |
|          | r, r'               |
|          | A, saddr2           |
|          | r, saddr            |
|          | saddr, r            |
|          | r, sfr              |
|          | sfr, r              |
|          | saddr, saddr'       |

| Mnemonic | Operands (dst, src) |
|----------|---------------------|
| AND      | A, [saddrp]         |
|          | A, [%saddrg]        |
|          | [saddrp], A         |
|          | [%saddrg], A        |
|          | A, !addr16          |
|          | A, !!addr24         |
|          | !addr16, A          |
|          | !!addr24, A         |
|          | A, mem              |
|          | mem, A              |

#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| × | × |    | Р   |    |

#### [Description]

- The bit-wise logical sum of the destination operand (dst) specified by the 1st operand and the source operand (src) specified by the 2nd operand is found, and the result is stored in the destination operand (dst).
- The S flag is set (1) if bit 7 of dst is set (1) as a result of the logical product operation, and cleared (0) otherwise.
- The Z flag is set (1) if all bits are 0 as a result of the logical product operation, and cleared (0) otherwise.
- The P/V flag is set (1) if the number of bits set (1) in dst as a result of the logical product operation is even, and cleared (0) otherwise.

#### [Coding example]

AND SADG, #11011100B; Finds the bit-wise logical product of the contents of address SADG that can be accessed by short direct addressing and 11011100B, and stores the result in SADG

**OR** 

Or Byte Data Logical Sum

[Instruction format] OR dst, src

[Operation]  $dst \leftarrow dst \lor src$ 

#### [Operands]

| Mnemonic | Operands (dst, src) |
|----------|---------------------|
| OR       | A, #byte            |
|          | r, #byte            |
|          | saddr, #byte        |
|          | sfr, #byte          |
|          | r, r'               |
|          | A, saddr2           |
|          | r, saddr            |
|          | saddr, r            |
|          | r, sfr              |
|          | sfr, r              |
|          | saddr, saddr'       |

| Mnemonic | Operands (dst, src) |
|----------|---------------------|
| OR       | A, [saddrp]         |
|          | A, [%saddrg]        |
|          | [saddrp], A         |
|          | [%saddrg], A        |
|          | A, !addr16          |
|          | A, !!addr24         |
|          | !addr16, A          |
|          | !!addr24, A         |
|          | A, mem              |
|          | mem, A              |

#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| × | × |    | Р   |    |

#### [Description]

- The bit-wise logical sum of the destination operand (dst) specified by the 1st operand and the source operand (src) specified by the 2nd operand is found, and the result is stored in the destination operand (dst).
- The S flag is set (1) if bit 7 of dst is set (1) as a result of the logical sum operation, and cleared (0) otherwise.
- The Z flag is set (1) if all bits are 0 as a result of the logical sum operation, and cleared (0) otherwise.
- The P/V flag is set (1) if the number of bits set (1) in dst as a result of the logical sum operation is even, and cleared (0) otherwise.

#### [Coding example]

OR A, !!12345H; Finds the bit-wise logical sum of the contents of the A register and address 12345H, and stores the result in the A register

# **XOR**

Exclusive Or Byte Data Exclusive Logical Sum

[Instruction format] XOR dst, src

[Operation]  $dst \leftarrow dst \forall src$ 

#### [Operands]

| Mnemonic | Operands (dst, src) |
|----------|---------------------|
| XOR      | A, #byte            |
|          | r, #byte            |
|          | saddr, #byte        |
|          | sfr, #byte          |
|          | r, r'               |
|          | A, saddr2           |
|          | r, saddr            |
|          | saddr, r            |
|          | r, sfr              |
|          | sfr, r              |
|          | saddr, saddr'       |

| Mnemonic | Operands (dst, src) |
|----------|---------------------|
| XOR      | A, [saddrp]         |
|          | A, [%saddrg]        |
|          | [saddrp], A         |
|          | [%saddrg], A        |
|          | A, !addr16          |
|          | A, !!addr24         |
|          | !addr16, A          |
|          | !!addr24, A         |
|          | A, mem              |
|          | mem, A              |

#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| × | × |    | Р   |    |

#### [Description]

- The bit-wise exclusive logical sum of the destination operand (dst) specified by the 1st operand and the source operand (src) specified by the 2nd operand is found, and the result is stored in the destination operand (dst).
- Selecting #0FFH as the source operand (src) in this instruction results in logical negation of all the bits of the destination operand (dst).
- The S flag is set (1) if bit 7 of dst is set (1) as a result of the exclusive logical sum operation, and cleared (0) otherwise.
- The Z flag is set (1) if all bits are 0 as a result of the exclusive logical sum operation, and cleared (0) otherwise.
- The P/V flag is set (1) if the number of bits set (1) in dst as a result of the exclusive logical sum operation is even, and cleared (0) otherwise.

#### [Coding example]

XOR C, P2; Finds the bit-wise exclusive logical sum of the C register and P2 register, and stores the result in the C register

# 7.7 16-bit Operation Instructions

16-bit operation instructions are as follows:

ADDW ... 316 SUBW ... 318

CMPW ... 320

**ADDW** 

Add Word Word Data Addition

[Instruction format] ADDW dst, src

[Operation]  $dst, CY \leftarrow dst + src$ 

#### [Operands]

| Mnemonic | Operands (dst, src) |
|----------|---------------------|
| ADDW     | AX, #word           |
|          | rp, #word           |
|          | rp, rp'             |
|          | AX, saddrp2         |
|          | rp, saddrp          |
|          | saddrp, rp          |
|          | rp, sfrp            |
|          | sfrp, rp            |
|          | saddrp, #word       |
|          | sfrp, #word         |
|          | saddrp, saddrp'     |

#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| × | × | ×  | V   | ×  |

#### [Description]

- The source operand (src) specified by the 2nd operand is added to the destination operand (dst) specified by the 1st operand, and the result is stored in the destination operand (dst).
- The S flag is set (1) if bit 15 of dst is set (1) as a result of the addition, and cleared (0) otherwise.
- The Z flag is set (1) if dst is 0 as a result of the addition, and cleared (0) otherwise.
- The AC flag is undefined as a result of the addition.
- The P/V flag is set (1) if a carry is generated out of bit 14 into bit 15 and a carry is not generated out of bit 15 as a result of the addition (when overflow is generated by a two's complement type operation), or if a carry is not generated out of bit 14 into bit 15 and a carry is generated out of bit 15 (when underflow is generated by a two's complement type operation), and is cleared (0) otherwise.
- The CY flag is set (1) if a carry is generated out of bit 15 as a result of the addition, and cleared (0) otherwise.
- The following caution should be noted if all the following conditions apply when a 78K/0, 78K/I, 78K/II, or 78K/III Series program is used.

#### [Conditions]

- An instruction in which rp is specified as an operand is used
- DE, HL, VP, or UP is actually written for rp
- DE, HL, VP, or UP is used as an address pointer

#### [Caution]

Ensure that the contents of the T, W, V, or U register that indicates the high-order 8 bits of the address pointer are coordinated with DE, HL, VP, or UP that indicates the low-order 16 bits, and if program amendment is possible, change the program so that a 24-bit manipulation instruction is used.

### [Coding example]

ADDW BC, #0ABCDH; Adds 0ABCDH to the BC register, and stores the result in the BC register

**SUBW** 

Subtract Word Word Data Subtraction

[Instruction format] SUBW dst, src

[Operation]  $dst, CY \leftarrow dst - src$ 

#### [Operands]

| Mnemonic | Operands (dst, src) |
|----------|---------------------|
| SUBW     | AX, #word           |
|          | rp, #word           |
|          | rp, rp'             |
|          | AX, saddrp2         |
|          | rp, saddrp          |
|          | saddrp, rp          |
|          | rp, sfrp            |
|          | sfrp, rp            |
|          | saddrp, #word       |
|          | sfrp, #word         |
|          | saddrp, saddrp'     |

#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| × | × | ×  | V   | ×  |

#### [Description]

- The source operand (src) specified by the 2nd operand is subtracted from the destination operand (dst) specified by the 1st operand, and the result is stored in the destination operand (dst) and the CY flag.
- The destination operand (dst) can be cleared to 0 by making the source operand (src) and destination operand (dst) the same.
- The S flag is set (1) if bit 15 of dst is set (1) as a result of the subtraction, and cleared (0) otherwise.
- The Z flag is set (1) if dst is 0 as a result of the subtraction, and cleared (0) otherwise.
- The AC flag is undefined as a result of the subtraction.
- The P/V flag is set (1) if a borrow is generated out of bit 14 into bit 15 and a borrow is not generated in bit 15 as a result of the subtraction (when underflow is generated by a two's complement type operation), or if a borrow is not generated out of bit 14 into bit 15 and a borrow is generated in bit 15 (when overflow is generated by a two's complement type operation), and is cleared (0) otherwise.
- The CY flag is set (1) if a borrow is generated in bit 15 as a result of the subtraction, and cleared (0) otherwise.
- The following caution should be noted if all the following conditions apply when a 78K/0, 78K/I, 78K/II, or 78K/III Series program is used.

#### [Conditions]

- An instruction in which rp is specified as an operand is used
- DE, HL, VP, or UP is actually written for rp
- DE, HL, VP, or UP is used as an address pointer

#### [Caution]

Ensure that the contents of the T, W, V, or U register that indicates the high-order 8 bits of the address pointer are coordinated with DE, HL, VP, or UP that indicates the low-order 16 bits, and if program amendment is possible, change the program so that a 24-bit manipulation instruction is used.

#### [Coding example]

SUBW CR01, AX; Subtracts the contents of the AX register from the contents of the CR01 register and stores the result in the CR01 register

# **CMPW**

Compare Word Word Data Comparison

[Instruction format] CMPW dst, src

[Operation] dst - src

#### [Operands]

| Mnemonic | Operands (dst, src) |  |
|----------|---------------------|--|
| CMPW     | AX, #word           |  |
|          | rp, #word           |  |
|          | rp, rp'             |  |
|          | AX, saddrp2         |  |
|          | rp, saddrp          |  |
|          | saddrp, rp          |  |
|          | rp, sfrp            |  |
|          | sfrp, rp            |  |
|          | saddrp, #word       |  |
|          | sfrp, #word         |  |
|          | saddrp, saddrp'     |  |

#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| × | × | ×  | V   | ×  |

#### [Description]

- The source operand (src) specified by the 2nd operand is subtracted from the destination operand (dst) specified by the 1st operand. The result of the subtraction is not stored anywhere, and only the Z, AC, and CY flags are changed.
- The S flag is set (1) if bit 15 is set (1) as a result of the subtraction, and cleared (0) otherwise.
- The Z flag is set (1) if dst is 0 as a result of the subtraction, and cleared (0) otherwise.
- The AC flag is undefined as a result of the subtraction.
- The P/V flag is set (1) if a borrow is generated out of bit 14 into bit 15 and a borrow is not generated in bit 15 as a result of the subtraction (when underflow is generated by a two's complement type operation), or if a borrow is not generated out of bit 14 into bit 15 and a borrow is generated in bit 15 (when overflow is generated by a two's complement type operation), and is cleared (0) otherwise.
- The CY flag is set (1) if a borrow is generated in bit 15 as a result of the subtraction, and cleared (0) otherwise.
- The following caution should be noted if all the following conditions apply when a 78K/0, 78K/I, 78K/II, or 78K/III Series program is used.

#### [Conditions]

- An instruction in which rp is specified as an operand is used
- DE, HL, VP, or UP is actually written for rp
- . DE, HL, VP, or UP is used as an address pointer

#### [Caution]

Ensure that the contents of the T, W, V, or U register that indicates the high-order 8 bits of the address pointer are coordinated with DE, HL, VP, or UP that indicates the low-order 16 bits, and if program amendment is possible, change the program so that a 24-bit manipulation instruction is used.

#### [Coding example]

CMPW AX, SADG; Subtracts the word data in address SADG that can be accessed by short direct addressing from the AX register, and changes the flags only (comparison of AX register and address SADG word data)

# 7.8 24-bit Operation Instructions

24-bit operation instructions are as follows:

ADDG ... 323 SUBG ... 324 **ADDG** 

Add G Note 24-Bit Data Addition

[Instruction format] ADDG dst, src

**Note** G is a character that indicates that 24-bit data is to be manipulated.

[Operation]  $dst \leftarrow dst + src$ 

#### [Operands]

| Mnemonic | Operands (dst, src) |  |
|----------|---------------------|--|
| ADDG     | rg, rg'             |  |
|          | rg, #imm24          |  |
|          | WHL, saddrg         |  |

#### [Flags]

| S | Z | AC | P/V      | CY |
|---|---|----|----------|----|
| × | × | ×  | <b>V</b> | ×  |

#### [Description]

- The source operand (src) specified by the 2nd operand is added to the destination operand (dst) specified by the 1st operand. The result of the addition is stored in dst, and the S, Z, AC, P/V, and CY flags are changed.
- The S flag is set (1) if bit 23 of dst is set (1) as a result of the addition, and cleared (0) otherwise.
- The Z flag is set (1) if the result of the addition is 0, and cleared (0) otherwise.
- The AC flag is undefined as a result of the addition.
- The P/V flag is set (1) if a carry is generated out of bit 22 into bit 23 and a carry is not generated out of bit 23 as a result of the addition (when overflow is generated by a two's complement type operation), or if a carry is not generated out of bit 22 into bit 23 and a carry is generated out of bit 23 (when underflow is generated by a two's complement type operation), and is cleared (0) otherwise.
- The CY flag is set (1) if a carry is generated out of bit 23 as a result of the addition, and cleared (0) otherwise.

#### [Coding example]

ADDG TDE, VVP; Adds the VVP register to the TDE register, and stores the result in the TDE register

**SUBG** 

Subtract G Note
24-Bit Data Subtraction

[Instruction format] SUBG dst, src

**Note** G is a character that indicates that 24-bit data is to be manipulated.

[Operation]  $dst \leftarrow dst - src$ 

#### [Operands]

| Mnemonic | Operands (dst, src) |  |  |
|----------|---------------------|--|--|
| SUBG     | rg, rg'             |  |  |
|          | rg, #imm24          |  |  |
|          | WHL, saddrg         |  |  |

#### [Flags]

|   | S | Z | AC | P/V | CY |
|---|---|---|----|-----|----|
| ſ | × | × | ×  | V   | ×  |

#### [Description]

- The source operand (src) specified by the 2nd operand is subtracted from the destination operand (dst) specified by the 1st operand. The result of the subtraction is stored in dst, and the S, Z, AC, P/V, and CY flags are changed.
- The S flag is set (1) if bit 23 of dst is set (1) as a result of the subtraction, and cleared (0) otherwise.
- The Z flag is set (1) if the result of the subtraction is 0, and cleared (0) otherwise.
- The AC flag is undefined as a result of the subtraction.
- The P/V flag is set (1) if a borrow is generated out of bit 23 into bit 22 and a borrow is not generated in bit 23 as a result of the subtraction (when underflow is generated by a two's complement type operation), or if a borrow is not generated out of bit 23 into bit 22 and a borrow is generated in bit 23 (when overflow is generated by a two's complement type operation), and is cleared (0) otherwise.
- The CY flag is set (1) if a borrow is generated in bit 23 as a result of the subtraction, and cleared (0) otherwise.

#### [Coding example]

SUBG UUP, #543210H; Subtracts 543210H from the contents of the UUP register and stores the result in the UUP register

## 7.9 Multiplication/Division Instructions

Multiplication/division instructions are as follows:

MULU ... 326 MULUW ... 327 MULW ... 328 DIVUW ... 329 DIVUX ... 330

# **MULU**

Multiply Unsigned Unsigned Data Multiplication

[Instruction format] MULU src

[Operation]  $AX \leftarrow A \times src$ 

## [Operands]

| Mnemonic | Operands (src) |
|----------|----------------|
| MULU     | r              |

## [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

## [Description]

• The contents of the A register and the source operand (src) data are multiplied as unsigned data, and the result is stored in the AX register.

## [Coding example]

MULU H; Multiplies the contents of the A register by the contents of the H register, and stores the result in the AX register

# **MULUW**

Multiply Unsigned Word Unsigned Word Data Multiplication

[Instruction format] MULUW src

**[Operation]** AX (upper half), src (lower half)  $\leftarrow$  AX  $\times$  src

## [Operands]

| Mnemonic | Operands (src) |
|----------|----------------|
| MULUW    | rp             |

## [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

### [Description]

- The contents of the AX register and the source operand (src) data are multiplied as unsigned data, and the highorder 16 bits of the result are stored in the AX register, and the low-order 16 bits in the source operand.
- When the AX register is specified as the source operand (src), the high-order 16 bits of the multiplied result are stored in the AX register, and the low-order 16 bits are not stored anywhere.

## [Coding example]

MULUW HL; Multiplies the contents of the AX register by the contents of the HL register, and stores the result in the AX register and HL register

# **MULW**

Multiply Signed Word Signed Word Data Multiplication

[Instruction format] MULW src

**[Operation]** AX (upper half), src (lower half)  $\leftarrow$  AX  $\times$  src

## [Operands]

| Mnemonic | Operands (src) |
|----------|----------------|
| MULW     | rp             |

## [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

## [Description]

- The contents of the AX register and the source operand (src) data are multiplied as signed data, and the highorder 16 bits of the result are stored in the AX register, and the low-order 16 bits in the source operand.
- When the AX register is specified as the source operand (src), the high-order 16 bits of the multiplied result are stored in the AX register, and the low-order 16 bits are not stored anywhere.

## [Coding example]

MULW HL; Multiplies the contents of the AX register by the contents of the HL register, and stores the result in the AX register and HL register

## **DIVUW**

Divide Unsigned Word Unsigned Word Data Division

[Instruction format] DIVUW dst

**[Operation]** AX (quotient), dst (remainder)  $\leftarrow$  AX  $\div$  dst

## [Operands]

| Mnemonic | Operands (dst) |
|----------|----------------|
| DIVUW    | r              |

## [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

### [Description]

• The contents of the AX register are divided by the contents of the destination operand (dst), and the quotient is stored in the AX register, and the remainder in the destination operand (dst).

The division is performed with the AX register and destination operand (dst) contents as unsigned data.

- If division by 0 is performed, the following will result:
  - AX (quotient) = FFFFH
  - dst (remainder) = Original X register value
- When the A register is specified as the destination operand (dst), the remainder is stored in the A register, and the low-order 8 bits of the quotient are stored in the X register.
- When the X register is specified as the destination operand (dst), the high-order 8 bits of the quotient are stored in the A register, and the remainder is stored in the X register.

## [Coding example]

DIVUW E; Divides the contents of the AX register by the contents of the E register, and stores the quotient in the AX register and the remainder in the E register

## **DIVUX**

Divide Unsigned Word Expansion Word Unsigned Doubleword Data Division

[Instruction format] DIVUX dst

**[Operation]** AXDE (quotient), dst (remainder)  $\leftarrow$  AXDE  $\div$  dst

## [Operands]

| Mnemonic | Operands (dst) |
|----------|----------------|
| DIVUX    | rp             |

## [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

#### [Description]

• 32-bit data with the contents of the AX register as the high-order 16 bits and the contents of the DE register as the low-order 16 bits is divided by the contents of the destination operand (dst), the high-order 16 bits of the quotient are stored in the AX register, the low-order 16 bits in the DE register, and the remainder in the destination operand (dst).

The division is performed with the contents of the 32-bit data indicated by the AX register and DE register and the contents of the destination operand (dst) as unsigned data.

- If division by 0 is performed, the following will result:
  - AXDE (quotient) = FFFFFFFH
  - dst (remainder) = Original DE register value
- When the AX register is specified as the destination operand (dst), the remainder is stored in the AX register, and the low-order 16 bits of the quotient are stored in the DE register.
- When the DE register is specified as the destination operand (dst), the high-order 8 bits of the quotient is stored in the AX register, and the remainder is stored in the DE register.

### [Coding example]

DIVUX BC; Divides the contents of the AXDE register by the contents of the BC register, and stores the highorder 16 bits of the quotient in the AX register, the low-order 16 bits in the DE register, and the remainder in the BC register

## 7.10 Special Operation Instructions

Special operation instructions are as follows:

MACW ... 332 MACSW ... 335 SACW ... 338

## **MACW**

Multiply and Accumulate Word Word Data Sum of Products Operation

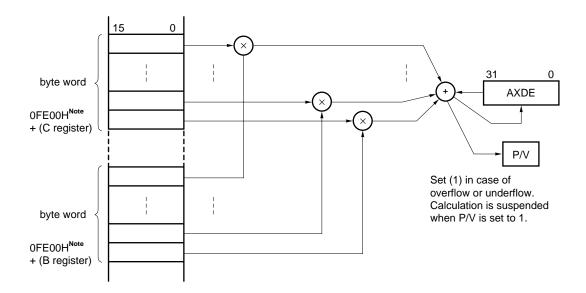
[Instruction format] MACW dst

**[Operation]** AXDE  $\leftarrow$  (B)  $\times$  (C) + AXDE, B  $\leftarrow$  B + 2, C  $\leftarrow$  C + 2, byte  $\leftarrow$  byte - 1

End if (byte = 0 or P/V = 1)

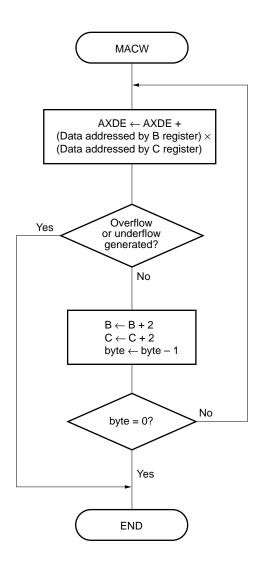
### [Operands]

| Mnemonic | Operands (dst, src) |
|----------|---------------------|
| MACW     | byte                |


#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| × | × | ×  | V   | ×  |

### [Description]


- Signed multiplication is performed of the contents of the 2-byte area addressed by the B register and the contents
  of the 2-byte area addressed by the C register, and binary addition is performed of the result and the contents
  of the AXDE register.
- After the result of the addition is stored in the AXDE register, the contents of the B register and C register are incremented by 2.
- The above operations are repeated the number of times equal to the 8-bit immediate data written in the operand.
- If overflow or underflow is generated as a result of the addition, the value of the AXDE register is undefined.

  Also, the B register and C register keep their values prior to overflow.
- The area addressed by the MACW instruction is limited to addresses 0FE00H to 0FEFFH when the LOCATION
   0 instruction is executed, or addresses 0FFE00H to 0FFEFFH when the LOCATION 0FH instruction is executed.
   The lower byte of the address is specified by the B register and C register. Addresses FE80H to FEFFH (FFE80H
   to FFEFFH when the LOCATION 0FH instruction is executed) are also used as general registers.
- · Interrupts and macro service requests are not acknowledged during execution of the MACW instruction.
- The MACW instruction does not clear the value of the AXDE register pair automatically, and therefore this should be cleared by the program if necessary.
- The S, Z, AC, and CY flags are undefined as a result of the operation.
- The P/V flag is set (1) if overflow or underflow occurs, and cleared (0) otherwise.



**Note** When a LOCATION 0 instruction is executed. 0FFE00H when a LOCATION 0FH instruction is executed.

The  $\mu\text{PD784915}$  Subseries is fixed to the LOCATION 0 instruction.



## [Coding example]

MACW 5; Executes sum of products operation 5 times

## **MACSW**

Multiply and Accumulate with Saturation Word Sum of Products Operation with Saturation Function

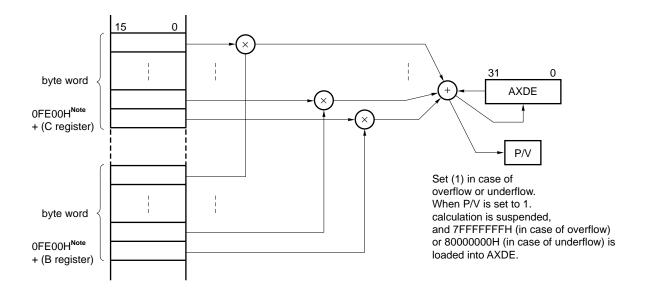
[Instruction format] MACSW byte

**[Operation]** AXDE  $\leftarrow$  (B)  $\times$  (C) + AXDE, B  $\leftarrow$  B + 2, C  $\leftarrow$  C + 2, byte  $\leftarrow$  byte - 1 if byte = 0 then End,

if P/V = 1, then if overflow AXDE  $\leftarrow$  7FFFFFFH, end, if underflow AXDE  $\leftarrow$  80000000H,

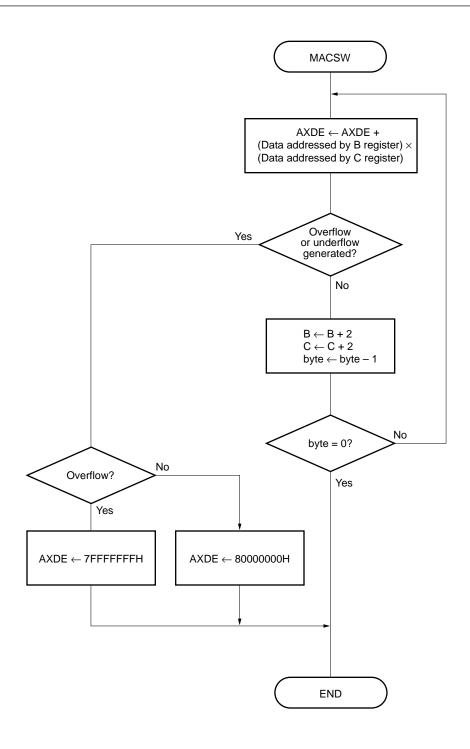
end

### [Operands]


| Mnemonic | Operands (\$addr16) |
|----------|---------------------|
| MACSW    | byte                |

### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| × | × | ×  | V   | ×  |


### [Description]

- Signed multiplication is performed of the contents of the 2-byte area addressed by the B register and the contents
  of the 2-byte area addressed by the C register, and binary addition is performed of the result and the contents
  of the AXDE register.
- After the result of the addition is stored in the AXDE register, the contents of the B register and C register are incremented by 2.
- The above operations are repeated the number of times equal to the 8-bit immediate data written in the operand.
- If overflow is generated as a result of the addition, the P/V flag is set (1) and the value of the AXDE register is 7FFFFFFH. If underflow is generated, the P/V flag is set (1) and the AXDE register value is 80000000H. The B register and C register keep their values prior to overflow or underflow.
- The area addressed by the MACSW instruction is limited to addresses 0FE00H to 0FEFFH when the LOCATION
   0 instruction is executed, or addresses 0FFE00H to 0FFEFFH when the LOCATION 0FH instruction is executed.
   The lower byte of the address is specified by the B register and C register. Addresses FE80H to FEFFH (FFE80H to FFEFFH when the LOCATION 0FH instruction is executed) are also used as general registers.
- Interrupts and macro service requests are not acknowledged during execution of the MACSW instruction.
- The MACSW instruction does not clear the value of the AXDE register pair automatically, and therefore this should be cleared by the program if necessary.
- The S, Z, AC, and CY flags are undefined as a result of the operation.
- The P/V flag is set (1) if overflow or underflow occurs, and cleared (0) otherwise.



**Note** When a LOCATION 0 instruction is executed. 0FFE00H when a LOCATION 0FH instruction is executed.

The  $\mu PD784915$  Subseries is fixed to the LOCATION 0 instruction.



## [Coding example]

MACSW 6; Executes sum of products operation 6 times

## **SACW**

Subtract, Absolute and Accumulate Word

Correlation Instruction

[Instruction format] SACW [TDE +], [WHL +]

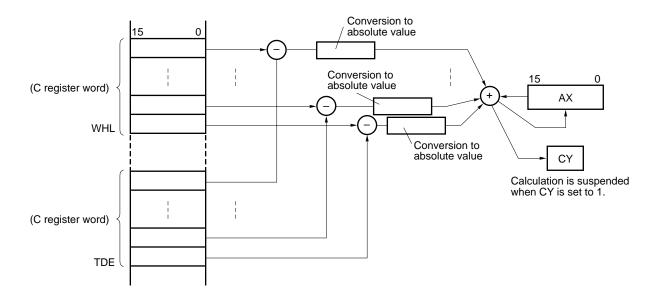
**[Operation]** AX  $\leftarrow$  | (TDE) – (WHL) | + AX, TDE  $\leftarrow$  TDE + 2, WHL  $\leftarrow$  WHL + 2, C  $\leftarrow$  C – 1, end if

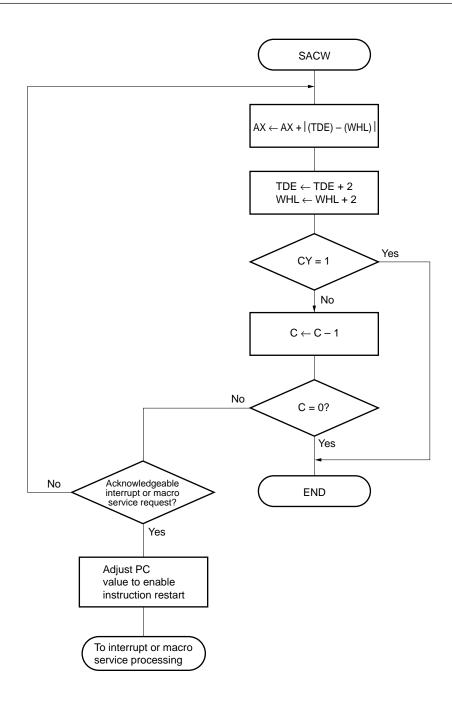
(C = 0 or CY = 1)

### [Operands]

| Mnemonic | Operands (\$addr16) |
|----------|---------------------|
| SACW     | [TDE +], [WHL +]    |

#### [Flags]


| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| × | × | ×  | ×   | ×  |


### [Description]

- Subtraction is performed on the 16-bit data items addressed by the TDE register and WHL register, the absolute value of the result is added to the contents of the AX register, and the result is stored in the AX register.
- Each time the above operation is performed, the contents of the TDE and WHL registers are incremented by 2, and the contents of the C register are decremented by 1.
- The above operations are repeated until the C register value is 0 or a carry is generated out of bit 15 as a result of the addition.
- If a carry occurs from bit 15 as a result of addition, therefore stopping repetition, the TDE and WHL registers retain the values immediately before the carry has occurred plus 2. The C register retains the value immediately before the carry has occurred.
- If an interrupt or macro service request that can be acknowledged during execution of the SACW instruction
  is generated, the interrupt or macro service processing is performed before the series of operation processing.
  When an interrupt is acknowledged, the program counter (PC) value saved to the stack is the SACW instruction
  start address.

Therefore, after returning from the interrupt, continuation of the interrupted SACW instruction is executed.

- The CY flag is set (1) if a carry is generated out of bit 15 as a result of the final addition, and cleared (0) otherwise.
- The contents of the S, Z, AC, and P/V flags are undefined.
- The SACW instruction does not clear the contents of the AX register pair automatically, and therefore this should be done by the program if necessary.





## [Coding example]

SACW [TDE+], [WHL+]; Executes a correlation instruction

## 7.11 Increment/Decrement Instructions

Increment/decrement instructions are as follows:

INC ... 342 DEC ... 343 INCW ... 344 DECW ... 345 INCG ... 346

DECG ... 347

INC Increment
Byte Data Increment

[Instruction format] INC dst

[Operation]  $dst \leftarrow dst + 1$ 

## [Operands]

| Mnemonic | Operands (dst) |
|----------|----------------|
| INC      | r              |
|          | saddr          |

### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| × | × | ×  | V   |    |

### [Description]

- The contents of the destination operand (dst) are incremented by 1.
- The Z flag is set (1) if the result of the increment is 0, and cleared (0) otherwise.
- The AC flag is set (1) if a carry is generated out of bit 3 into bit 4 as a result of the increment, and cleared (0) otherwise.
- The CY flag value does not change since this is often used for repeat processing counter or indexed address offset register incrementing (as the CY flag value is retained in a multiple-byte operation).
- The S flag is set (1) if bit 7 of dst is set (1) as a result of the increment, and cleared (0) otherwise.
- The P/V flag is set (1) if a carry is generated out of bit 6 into bit 7 and a carry is not generated out of bit 7 as a result of the increment (when overflow is generated by a two's complement type operation), and is cleared (0) otherwise.

### [Coding example]

INC B ; Increments the B register

DEC Decrement

Byte Data Decrement

[Instruction format] DEC dst

[Operation]  $dst \leftarrow dst - 1$ 

## [Operands]

| Mnemonic | Operands (dst) |
|----------|----------------|
| DEC      | r              |
|          | saddr          |

### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| × | × | ×  | V   |    |

### [Description]

- The contents of the destination operand (dst) are decremented by 1.
- The Z flag is set (1) if the result of the decrement is 0, and cleared (0) otherwise.
- The AC flag is set (1) if a carry is generated out of bit 4 into bit 3 as a result of the decrement, and cleared (0) otherwise.
- The CY flag value does not change since this is often used for repeat processing counter or indexed address offset register decrementing (as the CY flag value is retained in a multiple-byte operation).
- The S flag is set (1) if bit 7 of dst is set (1) as a result of the decrement, and cleared (0) otherwise.
- The P/V flag is set (1) if a borrow is generated out of bit 6 into bit 7 and a borrow is not generated in bit 7 as a result of the decrement (when underflow is generated by a two's complement type operation), and is cleared (0) otherwise.
- If dst is the B register, C register or saddr, and you do not want to change the S, Z, AC, or P/V flag, the DBNZ instruction can be used.

#### [Coding example]

DEC SAD1; Decrements the contents of address SAD1 that can be accessed by short direct addressing

**INCW** 

Increment Word Word Data Increment

[Instruction format] INCW dst

[Operation]  $dst \leftarrow dst + 1$ 

## [Operands]

| Mnemonic | Operands (dst) |
|----------|----------------|
| INCW     | rp             |
|          | saddrp         |

### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

## [Description]

- The contents of the destination operand (dst) are incremented by 1.
- The S, Z, AC, P/V, and CY flags are not changed since this is often used for incrementing the register used in addressing that uses a register.
- If the HL, DE, VP, or UP register (VP and UP: 78K/III Series only) is used as the base register in register indirect addressing, base addressing or based index addressing (78K/0 and 78K/III Series only) when rp is specified as the operand and a 78K/0, 78K/I, 78K/II, or 78K/III Series program is used, ensure that the contents of the T, W, V, or U register that indicates the high-order 8 bits of the address are coordinated with the DE, HL, VP, or UP register that indicates the low-order 16 bits. Also, if program amendment is possible, the program should be changed so that a 24-bit manipulation instruction (INCG instruction) is used.

## [Coding example]

INCW HL; Increments the HL register

## **DECW**

Decrement Word Word Data Decrement

[Instruction format] DECW dst

[Operation]  $dst \leftarrow dst - 1$ 

## [Operands]

| Mnemonic | Operands (dst) |
|----------|----------------|
| DECW     | rp             |
|          | saddrp         |

### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

## [Description]

- The contents of the destination operand (dst) are decremented by 1.
- The S, Z, AC, P/V, and CY flags are not changed since this is often used for decrementing the register used in addressing that uses a register.
- If the HL, DE, VP, or UP register (VP and UP: 78K/III Series only) is used as the base register in register indirect addressing, base addressing or based index addressing (78K/0 and 78K/III Series only) when rp is specified as the operand and a 78K/0, 78K/I, 78K/II, or 78K/III Series program is used, ensure that the contents of the T, W, V, or U register that indicates the high-order 8 bits of the address are coordinated with the DE, HL, VP, or UP register that indicates the low-order 16 bits. Also, if program amendment is possible, the program should be changed so that a 24-bit manipulation instruction (INCG instruction) is used.

## [Coding example]

DECW DE; Decrements the DE register

**INCG** 

Increment G Note
24-Bit Data Increment

[Instruction format] INCG dst

**Note** G is a character that indicates that 24-bit data is to be manipulated.

[Operation]

 $dst \leftarrow dst + 1$ 

## [Operands]

| Mnemonic | Operands (dst) |
|----------|----------------|
| INCG     | rg             |

## [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

## [Description]

- The contents of the destination operand (dst) are incremented by 1.
- The S, Z, AC, P/V, and CY flags are not changed since this is often used to decrement the register (pointer) used in addressing that uses a register.

## [Coding example]

INCG UUP; Increments the UUP register

## **DECG**

Decrement G Note 24-Bit Data Decrement

[Instruction format] DECG dst

**Note** G is a character that indicates that 24-bit data is to be manipulated.

[Operation]  $dst \leftarrow dst - 1$ 

## [Operands]

| Mnemonic | Operands (dst) |
|----------|----------------|
| DECG     | rg             |
|          | SP             |

## [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

## [Description]

- The contents of the destination operand (dst) are decremented by 1.
- The S, Z, AC, P/V, and CY flags are not changed since this is often used to decrement the register (pointer) used in addressing that uses a register.

## [Coding example]

DECG VVP; Decrements the VVP register

## 7.12 Adjustment Instructions

Adjustment instructions are as follows.

ADJBA ... 349 ADJBS ... 350

CVTBW ... 351

## **ADJBA**

Decimal Adjust Register for Addition

Decimal Adjustment of Addition Result

[Instruction format] ADJBA

[Operation] Decimal Adjust Accumulator for Addition

[Operands]

None

### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| × | × | ×  | Р   | ×  |

## [Description]

• Decimal adjustment of the A register, CY flag and AC flag is performed from the A register, CY flag and AC flag contents. This instruction only performs a meaningful operation when the addition result is stored in the A register after BCD (binary-code decimal) data has been added (in other cases, a meaningless operation is performed). The adjustment method is shown in the table below.

|                       | Condition                       | Operation                                                      |
|-----------------------|---------------------------------|----------------------------------------------------------------|
| A <sub>3-0</sub> ≤ 9  | A <sub>7-4</sub> ≤ 9 and CY = 0 | $A \leftarrow A, CY \leftarrow 0, AC \leftarrow 0$             |
| AC = 0                | A <sub>7-4</sub> ≥ 10 or CY = 1 | $A \leftarrow A + 01100000B, CY \leftarrow 1, AC \leftarrow 0$ |
| A <sub>3-0</sub> ≥ 10 | A <sub>7-4</sub> < 9 and CY = 0 | $A \leftarrow A + 00000110B, CY \leftarrow 0, AC \leftarrow 1$ |
| AC = 0                | A <sub>7-4</sub> ≥ 9 or CY = 1  | A ← A + 01100110B, CY ← 1, AC ← 1                              |
| AC = 1                | A <sub>7-4</sub> ≤ 9 and CY = 0 | $A \leftarrow A + 00000110B, CY \leftarrow 0, AC \leftarrow 1$ |
|                       | A <sub>7-4</sub> ≥ 10 or CY = 1 | A ← A + 01100110B, CY ← 1, AC ← 1                              |

- The Z flag is set (1) if the contents of the A register are 0 as a result of the adjustment, and cleared (0) otherwise.
- The S flag is set (1) if bit 7 of the A register is 1 as a result of the adjustment, and cleared (0) otherwise.
- The P/V flag is set (1) if the number of bits set (1) in the A register as a result of the adjustment is even, and cleared (0) otherwise.

### [Coding example]

ADJBA; Performs decimal adjustment of the contents of the A register

## **ADJBS**

Decimal Adjust Register for Subtraction Decimal Adjustment of Subtraction Result

[Instruction format] ADJBS

[Operation] Decimal Adjust Accumulator for Subtraction

[Operands]

None

### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| × | × | ×  | Р   | ×  |

### [Description]

• Decimal adjustment of the A register, CY flag and AC flag is performed from the A register, CY flag and AC flag contents. This instruction only performs a meaningful operation when the subtraction result is stored in the A register after BCD (binary-code decimal) data has been subtracted (in other cases, a meaningless operation is performed). The adjustment method is shown in the table below.

|        | Condition | Operation                                                      |
|--------|-----------|----------------------------------------------------------------|
| AC = 0 | CY = 0    | $A \leftarrow A, CY \leftarrow 0, AC \leftarrow 0$             |
|        | CY = 1    | $A \leftarrow A - 01100000B, CY \leftarrow 1, AC \leftarrow 0$ |
| AC = 1 | CY = 0    | A ← A − 00000110B, CY ← 0, AC ← 1                              |
|        | CY = 1    | A ← A − 01100110B, CY ← 1, AC ← 1                              |

- The Z flag is set (1) if the contents of the A register are 0 as a result of the adjustment, and cleared (0) otherwise.
- The S flag is set (1) if bit 7 of the A register is 1 as a result of the adjustment, and cleared (0) otherwise.
- The P/V flag is set (1) if the number of bits set (1) in the A register as a result of the adjustment is even, and cleared (0) otherwise.

## [Coding example]

ADJBS; Performs decimal adjustment of the contents of the A register

# **CVTBW**

Convert Byte to Word Conversion from Byte Data to Word Data

[Instruction format] CVTBW

[Operation] When  $A_7 = 0$ ,  $X \leftarrow A$ ,  $A \leftarrow 00H$ 

When  $A_7 = 1$ ,  $X \leftarrow A$ ,  $A \leftarrow FFH$ 

## [Operands]

None

## [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

## [Description]

- The signed 8-bit data in the A register is extended to signed 16-bit data in the AX register.
- The S, Z, AC, P/V, and CY flags are not changed by this instruction.

## [Coding example]

CVTBW; Extends the signed 8-bit data in the A register to signed 16-bit data and stores it in the AX register

## 7.13 Shift/Rotate Instructions

Shift/rotate instructions are as follows:

ROR ... 353

ROL ... 354

RORC ... 355

ROLC ... 356

SHR ... 357

SHL ... 358

SHRW ... 359

SHLW ... 360

ROR4 ... 361

ROL4 ... 362

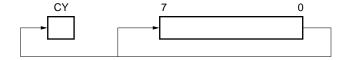
**ROR** 

Rotate Right Right Rotation of Byte Data

[Instruction format] ROR dst, cnt

**[Operation]**  $(CY, dst_7 \leftarrow dst_0, dst_{m-1} \leftarrow dst_m) \times cnt times cnt = 0 to 7$ 

## [Operands]


| Mnemonic | Operands (dst, cnt) |
|----------|---------------------|
| ROR      | r, n                |

## [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    | Р   | ×  |

### [Description]

- The contents of the destination operand (dst) specified by the 1st operand are rotated to the right cnt times specified by the 2nd operand.
- The contents of the LSB (bit 0) are rotated into the MSB (bit 7) and are also transferred to the CY flag.
- If the 2nd operand (cnt) is 0, no processing is performed (and the S, Z, AC, P/V, and CY flags do not change).
- The P/V flag is set (1) if the number of bits set (1) in dst as a result of the right rotation is even, and cleared (0) otherwise.
- The S, Z, and AC flags do not change irrespective of the result of the rotate operation.



## [Coding example]

ROR R5, 4; Rotates the contents of the R5 register 4 bits to the right

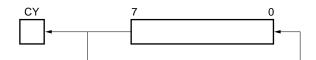
**ROL** 

Rotate Left Left Rotation of Byte Data

[Instruction format] ROL dst, cnt

**[Operation]** (CY,  $dst_0 \leftarrow dst_7$ ,  $dst_{m+1} \leftarrow dst_m$ ) × cnt times cnt = 0 to 7

## [Operands]


| Mnemonic | Operands (dst, cnt) |
|----------|---------------------|
| ROL      | r, n                |

## [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    | Р   | ×  |

### [Description]

- The contents of the destination operand (dst) specified by the 1st operand are rotated to the left cnt times specified by the 2nd operand.
- The contents of the MSB (bit 7) are rotated into the LSB (bit 0) and are also transferred to the CY flag.
- If the 2nd operand (cnt) is 0, no processing is performed (and the S, Z, AC, P/V, and CY flags do not change).
- The P/V flag is set (1) if the number of bits set (1) in dst as a result of the left rotation is even, and cleared (0) otherwise.
- The S, Z, and AC flags do not change irrespective of the result of the rotate operation.



## [Coding example]

ROL L, 2; Rotates the contents of the L register 2 bits to the left

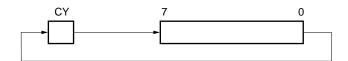
## **RORC**

Rotate Right with Carry Right Rotation of Byte Data including Carry

[Instruction format] RORC dst, cnt

[Operation]  $(CY \leftarrow dst_0, \, dst_7 \leftarrow CY, \, dst_{m-1} \leftarrow dst_m) \times cnt \, times \quad cnt = 0 \, to \, 7$ 

## [Operands]


| Mnemonic | Operands (dst, cnt) |
|----------|---------------------|
| RORC     | r, n                |

## [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    | Р   | ×  |

## [Description]

- The contents of the destination operand (dst) specified by the 1st operand, and the CY flag, are rotated to the right cnt times specified by the 2nd operand.
- If the 2nd operand (cnt) is 0, no processing is performed (and the S, Z, AC, P/V, and CY flags do not change).
- The P/V flag is set (1) if the number of bits set (1) in dst as a result of the right rotation is even, and cleared (0) otherwise.
- The S, Z, and AC flags do not change irrespective of the result of the rotate operation.



## [Coding example]

RORC B, 1; Rotates the contents of the B register and the CY flag 1 bit to the right

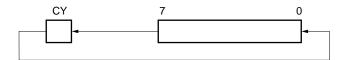
## **ROLC**

Rotate Left with Carry Left Rotation of Byte Data including Carry

[Instruction format] ROLC dst, cnt

**[Operation]**  $(CY \leftarrow dst_7, dst_0 \leftarrow CY, dst_{m+1} \leftarrow dst_m) \times cnt times cnt = 0 to 7$ 

## [Operands]


| Mnemonic | Operands (dst, cnt) |
|----------|---------------------|
| ROLC     | r, n                |

## [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    | Р   | ×  |

### [Description]

- The contents of the destination operand (dst) specified by the 1st operand, and the CY flag, are rotated to the left cnt times specified by the 2nd operand.
- If the 2nd operand (cnt) is 0, no processing is performed (and the S, Z, AC, P/V, and CY flags do not change).
- If you wish to perform a left rotation of 1 bit only, the execution time can be reduced by using ADDC r, r.
- The P/V flag is set (1) if the number of bits set (1) in dst as a result of the left rotation is even, and cleared (0) otherwise.
- The S, Z, and AC flags do not change irrespective of the result of the rotate operation.



## [Coding example]

ROLC R7, 3; Rotates the contents of the R7 register and the CY flag 3 bits to the left

SHR

Shift Right (Logical)
Logical Right Shift of Byte Data

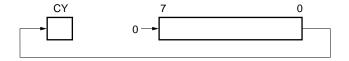
[Instruction format] SHR dst, cnt

**[Operation]**  $(CY \leftarrow dst_0, dst_7 \leftarrow 0, dst_{m-1} \leftarrow dst_m) \times cnt times cnt = 0 to 7$ 

### [Operands]

| Mnemonic | Operands (dst, cnt) |
|----------|---------------------|
| SHR      | r, n                |

### [Flags]


| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| × | × | 0  | Р   | ×  |

### [Description]

• The contents of the destination operand (dst) specified by the 1st operand are shifted to the right cnt times specified by the 2nd operand.

0 is shifted into the MSB (bit 7) each time a 1-bit shift is performed.

- The S flag is cleared (0) if cnt is 1 or more.
- The Z flag is set (1) if the result of the shift operation is 0, and cleared (0) otherwise.
- The AC flag is always 0 irrespective of the result of the shift operation.
- The P/V flag is set (1) if the number of bits set (1) in dst as a result of the shift operation is even, and cleared (0) otherwise.
- The last data shifted out of the LSB (bit 0) as a result of the shift operation is set in the CY flag.
- If cnt is 0, no processing is performed (and the S, Z, AC, P/V, and CY flags do not change).
- This instruction gives the same result as division of the destination operand (dst) as unsigned data by 2<sup>cnt</sup>.



## [Coding example]

SHR H, 2; Shifts the contents of the H register 2 bits to the right

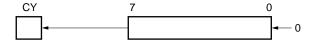
SHL

Shift Left (Logical) Logical Left Shift of Byte Data

[Instruction format] SHL dst, cnt

**[Operation]**  $(CY \leftarrow dst_7, dst_0 \leftarrow 0, dst_{m+1} \leftarrow dst_m) \times cnt times cnt = 0 to 7$ 

### [Operands]


| Mnemonic | Operands (dst, cnt) |
|----------|---------------------|
| SHL      | r, n                |

### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| × | × | 0  | Р   | ×  |

#### [Description]

- The contents of the destination operand (dst) specified by the 1st operand are shifted to the left cnt times specified by the 2nd operand.
- 0 is shifted into the LSB (bit 0) each time a 1-bit shift is performed.
- The S flag is set (1) if bit 7 of dst is 1 as a result of the shift operation, and cleared (0) if 0.
- The Z flag is set (1) if the result of the shift operation is 0, and cleared (0) otherwise.
- The AC flag is always 0 irrespective of the result of the shift operation.
- The P/V flag is set (1) if the number of bits set (1) in dst as a result of the shift operation is even, and cleared (0) otherwise.
- The last data shifted out of the LSB (bit 0) as a result of the shift operation is set in the CY flag.
- If cnt is 0, no processing is performed (and the S, Z, AC, P/V, and CY flags do not change).
- If you wish to perform a left shift of 1 bit only, the execution time can be reduced by using ADD r, r.
- This instruction gives the same result as multiplication of the destination operand (dst) by 2<sup>cnt</sup> (if the multiplication result is 8 bits or less).



### [Coding example]

SHL E, 1; Shifts the contents of the E register 1 bit to the left

## **SHRW**

Shift Right (Logical) Word Logical Right Shift of Word Data

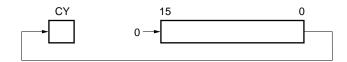
[Instruction format] SHRW dst, cnt

[Operation] (CY  $\leftarrow$  dst<sub>0</sub>, dst<sub>15</sub>  $\leftarrow$  0, dst<sub>m-1</sub>  $\leftarrow$  dst<sub>m</sub>)  $\times$  cnt times cnt = 0 to 7

## [Operands]

| Mnemonic | Operands (dst, cnt) |
|----------|---------------------|
| SHRW     | rp, n               |

### [Flags]


| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| × | × | 0  | Р   | ×  |

### [Description]

• The contents of the destination operand (dst) specified by the 1st operand are shifted to the right cnt times specified by the 2nd operand.

0 is shifted into the MSB (bit 15) each time a 1-bit shift is performed.

- The S flag is cleared (0) if cnt is 1 or more.
- The Z flag is set (1) if the result of the shift operation is 0, and cleared (0) otherwise.
- The AC flag is always 0 irrespective of the result of the shift operation.
- The P/V flag is set (1) if the number of bits set (1) in the low-order 8 bits of dst as a result of the shift operation is even, and cleared (0) otherwise.
- The last data shifted out of the LSB (bit 0) as a result of the shift operation is set in the CY flag.
- If cnt is 0, no processing is performed (and the S, Z, AC, P/V, and CY flags do not change).
- This instruction gives the same result as division of the destination operand (dst) as unsigned data by 2<sup>cnt</sup>.



### [Coding example]

SHRW AX, 3; Shifts the contents of the AX register 3 bits to the right (divides the contents of the AX register by 8)

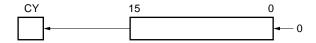
## **SHLW**

Shift Left (Logical) Word Logical Left Shift of Word Data

[Instruction format] SHLW dst, cnt

[Operation] (CY  $\leftarrow$  dst<sub>15</sub>, dst<sub>0</sub>  $\leftarrow$  0, dst<sub>m+1</sub>  $\leftarrow$  dst<sub>m</sub>)  $\times$  cnt times cnt = 0 to 7

## [Operands]


| Mnemonic | Operands (dst, cnt) |
|----------|---------------------|
| SHLW     | rp, n               |

### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| × | × | 0  | Р   | ×  |

## [Description]

- The contents of the destination operand (dst) specified by the 1st operand are shifted to the right cnt times specified by the 2nd operand.
- 0 is shifted into the LSB (bit 0) each time a 1-bit shift is performed.
- The S flag is set (1) if bit 15 of dst is 1 as a result of the shift operation, and cleared (0) if 0.
- The Z flag is set (1) if the result of the shift operation is 0, and cleared (0) otherwise.
- The AC flag is always 0 irrespective of the result of the shift operation.
- The P/V flag is set (1) if the number of bits set (1) in the low-order 8 bits of dst as a result of the shift operation is even, and cleared (0) otherwise.
- The last data shifted out of the LSB (bit 0) as a result of the shift operation is set in the CY flag.
- If cnt is 0, no processing is performed (and the S, Z, AC, P/V, and CY flags do not change).



## [Coding example]

SHLW E, 1; Shifts the contents of the E register 1 bit to the left

ROR4

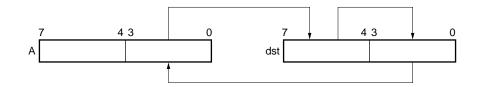
Rotate Right Digit Right Digit Rotation

[Instruction format] ROR4 dst

[Operation] A<sub>3-0</sub>  $\leftarrow$  (dst)<sub>3-0</sub>, (dst)<sub>7-4</sub>  $\leftarrow$  A<sub>3-0</sub>, (dst)<sub>3-0</sub>  $\leftarrow$  dst<sub>7-4</sub>

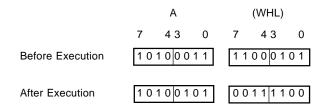
#### [Operands]

| Mnemonic | Operands (dst) |
|----------|----------------|
| ROR4     | mem3           |


#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

#### [Description]


• The low-order 4 bits of the A register and the two items of digit data (4-bit data) of the destination operand (dst) are rotated to the right.

The high-order 4 bits of the A register are not changed.



#### [Coding example]

ROR4 [WHL]; Performs digit rotation to the right of the A register and memory contents specified by the WHL register.



ROL4

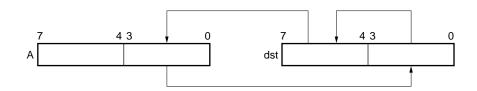
Rotate Left Digit Left Digit Rotation

[Instruction format] ROL4 dst

[Operation]  $A_{3-0} \leftarrow (dst)_{7-4}, (dst)_{3-0} \leftarrow A_{3-0}, (dst)_{7-4} \leftarrow dst_{3-0}$ 

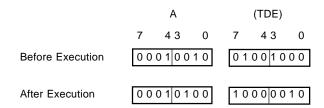
# [Operands]

| Mnemonic | Operands (dst) |
|----------|----------------|
| ROL4     | mem3           |


#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

#### [Description]


• The low-order 4 bits of the A register and the two items of digit data (4-bit data) of the destination operand (dst) are rotated to the left.

The high-order 4 bits of the A register are not changed.



# [Coding example]

ROL4 [TDE]; Performs digit rotation to the left of the A register and memory contents specified by the TDE register.



# 7.14 Bit Manipulation Instructions

Bit manipulation instructions are as follows:

MOV1 ... 364 AND1 ... 366 OR1 ... 368 XOR1 ... 370 NOT1 ... 371 SET1 ... 372 CLR1 ... 373

# MOV1

Move Single Bit 1-Bit Data Transfer

[Instruction format] MOV1 dst, src

 $\textbf{[Operation]} \qquad \qquad \mathsf{dst} \leftarrow \mathsf{src}$ 

# [Operands]

| Mnemonic | Operands (dst, src) |
|----------|---------------------|
| MOV1     | CY, saddr.bit       |
|          | CY, sfr.bit         |
|          | CY, X.bit           |
|          | CY, A.bit           |
|          | CY, PSWL.bit        |
|          | CY, PSWH.bit        |
|          | CY, mem2.bit        |
|          | CY, !addr16.bit     |
|          | CY, !!addr24.bit    |
|          | saddr.bit, CY       |
|          | sfr.bit, CY         |
|          | X.bit, CY           |
|          | A.bit, CY           |
|          | PSWL.bit, CY        |
|          | PSWH.bit, CY        |
|          | mem2.bit, CY        |
|          | !addr16.bit, CY     |
|          | !!addr24.bit, CY    |

# [Flags]

# dst is PSWL.bit

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| × | × | ×  | ×   | ×  |

# Other cases

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

# dst is CY

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     | ×  |

# [Description]

- The source operand (src) bit data specified by the 2nd operand is transferred to the destination operand (dst) specified by the 1st operand.
- If the destination operand (dst) is CY or PSW.bit, only the relevant flag changes.

# [Coding example]

MOV1 P3.4, CY; Transfers the contents of the CY flag to bit 4 of port 3

AND1

And Single Bit 1-Bit Data Logical Product

[Instruction format] AND1 dst, src AND1 dst, /src

# [Operands]

| Mnemonic | Operands (dst, src) |
|----------|---------------------|
| AND1     | CY, saddr.bit       |
|          | CY, /saddr.bit      |
|          | CY, sfr.bit         |
|          | CY, /sfr.bit        |
|          | CY, X.bit           |
|          | CY, /X.bit          |
|          | CY, A.bit           |
|          | CY, /A.bit          |
|          | CY, PSWL.bit        |
|          | CY, /PSWL.bit       |
|          | CY, PSWH.bit        |
|          | CY, /PSWH.bit       |
|          | CY, mem2.bit        |
|          | CY, /mem2.bit       |
|          | CY, !addr16.bit     |
|          | CY, /!addr16.bit    |
|          | CY, !!addr24.bit    |
|          | CY, /!!addr24.bit   |

# [Flags]

| Ø | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     | ×  |

#### [Description]

- The logical product of the destination operand (dst) specified by the 1st operand and the source operand (src) bit data specified by the 2nd operand is found, and the result is stored in the destination operand (dst).
- If the 2nd operand is immediately preceded by "/", the logical product operation is performed on the logical NOT of the source operand (src).
- The CY flag stores the operation result (as it is the destination operand (dst)).

#### [Coding examples]

- AND1 CY, SADR.3; Finds the logical product of bit 3 of address SADR which can be accessed by short direct addressing and the CY flag, and stores the result in the CY flag
- AND1 CY, /PSW.6; Finds the logical product of the logical NOT of bit 6 of the PSW (Z flag) and the CY flag, and stores the result in the CY flag

OR1

Or Single Bit 1-Bit Data Logical Sum

[Instruction format] OR1 dst, src OR1 dst, /src

# [Operands]

| Mnemonic | Operands (dst, src) |
|----------|---------------------|
| OR1      | CY, saddr.bit       |
|          | CY, /saddr.bit      |
|          | CY, sfr.bit         |
|          | CY, /sfr.bit        |
|          | CY, X.bit           |
|          | CY, /X.bit          |
|          | CY, A.bit           |
|          | CY, /A.bit          |
|          | CY, PSWL.bit        |
|          | CY, /PSWL.bit       |
|          | CY, PSWH.bit        |
|          | CY, /PSWH.bit       |
|          | CY, mem2.bit        |
|          | CY, /mem2.bit       |
|          | CY, !addr16.bit     |
|          | CY, /!addr16.bit    |
|          | CY, !!addr24.bit    |
|          | CY, /!!addr24.bit   |

# [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     | ×  |

#### [Description]

- The logical sum of the destination operand (dst) specified by the 1st operand and the source operand (src) bit data specified by the 2nd operand is found, and the result is stored in the destination operand (dst).
- If the 2nd operand is immediately preceded by "/", the logical sum operation is performed on the logical NOT of the source operand (src).
- The CY flag stores the operation result (as it is the destination operand (dst)).

#### [Coding examples]

OR1 CY, P2.5; Finds the logical sum of bit 5 of port 2 and the CY flag, and stores the result in the CY flag
OR1 CY, /X.0; Finds the logical sum of the logical NOT of bit 0 of the X register and the CY flag, and stores the
result in the CY flag

# XOR1

Exclusive Or Single Bit 1-Bit Data Exclusive Logical Sum

[Instruction format] XOR1 dst, src

[Operation]  $dst \leftarrow dst \forall src$ 

# [Operands]

| Mnemonic | Operands (dst, src) |
|----------|---------------------|
| XOR1     | CY, saddr.bit       |
|          | CY, sfr.bit         |
|          | CY, X.bit           |
|          | CY, A.bit           |
|          | CY, PSWL.bit        |
|          | CY, PSWH.bit        |
|          | CY, mem2.bit        |
|          | CY, !addr16.bit     |
|          | CY, !!addr24.bit    |

#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     | ×  |

#### [Description]

- The exclusive logical sum of the destination operand (dst) specified by the 1st operand and the source operand (src) bit data specified by the 2nd operand is found, and the result is stored in the destination operand (dst).
- The CY flag stores the operation result (as it is the destination operand (dst)).

# [Coding example]

XOR1 CY, A.7; Finds the exclusive logical sum of bit 7 of the A register and the CY flag, and stores the result in the CY flag

# NOT1

Not Single Bit (Carry Flag)
1-Bit Data Logical NOT

[Instruction format] NOT1 dst

[Operation]  $dst \leftarrow \overline{dst}$ 

#### [Operands]

| Mnemonic | Operands (dst) |
|----------|----------------|
| NOT1     | saddr.bit      |
|          | sfr.bit        |
|          | X.bit          |
|          | A.bit          |
|          | PSWL.bit       |
|          | PSWH.bit       |
|          | mem2.bit       |
|          | !addr16.bit    |
|          | !!addr24.bit   |
|          | CY             |

# [Flags]

#### dst is PSWL.bit

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| × | × | ×  | ×   | ×  |

#### dst is CY

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     | ×  |

# Other cases

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

# [Description]

- The logical NOT of the bit specified by the destination operand (dst) is found, and the result is stored in the destination operand (dst).
- If the destination operand (dst) is CY or PSW.bit, only the relevant flag changes.

#### [Coding examples]

NOT1 A.2; Inverts bit 2 of the A register

SET1

Set Single Bit (Carry Flag) 1-Bit Data Setting

[Instruction format] SET1 dst

[Operation]  $dst \leftarrow 1$ 

# [Operands]

| Mnemonic | Operands (dst) |
|----------|----------------|
| SET1     | saddr.bit      |
|          | sfr.bit        |
|          | X.bit          |
|          | A.bit          |
|          | PSWL.bit       |
|          | PSWH.bit       |
|          | mem2.bit       |
|          | !addr16.bit    |
|          | !!addr24.bit   |
|          | CY             |

# [Flags]

# dst is PSWL.bit

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| × | × | ×  | ×   | ×  |

#### dst is CY

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     | 1  |

#### Other cases

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

### [Description]

- The destination operand (dst) is set (1).
- If the destination operand (dst) is CY or PSW.bit, only the relevant flag is set (1).

# [Coding example]

SET1 BITSYM; Sets (1) the contents of a bit located in an area that can be accessed by short direct addressing

CLR1

Clear Single Bit (Carry Flag)
1-Bit Data Clear

[Instruction format] CLR1 dst

[Operation]  $dst \leftarrow 0$ 

# [Operands]

| Mnemonic | Operands (dst) |
|----------|----------------|
| CLR1     | saddr.bit      |
|          | sfr.bit        |
|          | X.bit          |
|          | A.bit          |
|          | PSWL.bit       |
|          | PSWH.bit       |
|          | mem2.bit       |
|          | !addr16.bit    |
|          | !!addr24.bit   |
|          | CY             |

# [Flags]

# dst is PSWL.bit

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| × | × | ×  | ×   | ×  |

# dst is CY

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     | 0  |

# Other cases

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

# [Description]

- The destination operand (dst) is cleared (0).
- If the destination operand (dst) is CY or PSW.bit, only the relevant flag is cleared (0).

# [Coding example]

CLR1 P3.7; Clears (0) bit 7 of port 3

# 7.15 Stack Manipulation Instructions

Stack manipulation instructions are as follows:

PUSH ... 375
PUSHU ... 377
POP ... 378
POPU ... 380
MOVG ... 381
ADDWG ... 382
SUBWG ... 383
INCG SP ... 384
DECG SP ... 385

PUSH

[Instruction format] PUSH src

[Operation] Note

(1) When src is PSW, sfrp

$$(SP - 2) \leftarrow src,$$

$$\mathsf{SP} \leftarrow \mathsf{SP} - \mathsf{2}$$

(2) When src is sfr

$$(SP - 1) \leftarrow src,$$

$$\mathsf{SP} \leftarrow \mathsf{SP} - \mathsf{1}$$

(3) When src is rg

$$(SP - 3) \leftarrow src,$$

$$\mathsf{SP} \leftarrow \mathsf{SP} - 3$$

(4) When src is post

$$\{(SP-2) \leftarrow post, SP \leftarrow SP-2\} \times n \text{ times}$$

Note For details, refer to CHAPTER 3, Figure 3-4 Data Saved to Stack Area, and Figure 3-5 Data Restored from Stack Area.

# [Operands]

| Mnemonic | Operands (src) |
|----------|----------------|
| PUSH     | PSW            |
|          | sfrp           |
|          | sfr            |
|          | post           |
|          | rg             |

### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

**Push** 

**Push** 

#### [Description]

- The data in the registers specified by the source operand (src) is saved to the stack.
- If post is specified as the source operand, any combination of the following registers can be saved to the stack by the instruction.

AX (RP0), BC (RP1), RP2, RP3, UP, VP, DE, HL

The save order at this time is from the rightmost of the above registers.

The VP, UP, DE, and HL registers should only be used when a 78K/0, 78K/I, 78K/II, or 78K/III Series program
is used. In other cases, saving to the stack should be specified individually as the UUP, VVP, TDE, and WHL
registers.

Moreover, saving to the stack should also be specified individually as the UUP, VVP, TDE, and WHL registers when a 78K/0, 78K/I, 78K/II, or 78K/III Series program is used.

• After the source operand (src) save, the stack pointer (SP) is decremented by the number of bytes of data saved.

#### [Coding example]

PUSH AX, BC, RP2, RP3; Saves the contents of the AX, BC, RP2, and RP3 registers to the stack

# **PUSHU**

Push to User Stack Register Push to User Stack

[Instruction format] PUSHU src

**[Operation]** Note  $\{(UUP - 1) \leftarrow post, UUP \leftarrow UUP - 2\} \times n \text{ times}$ 

(n = number of register pairs written as post)

Note For details, refer to CHAPTER 3, Figure 3-4 Data Saved to Stack Area, and Figure 3-5 Data Restored from Stack Area.

#### [Operands]

| Mnemonic | Operands (src) |
|----------|----------------|
| PUSHU    | post           |

#### [Flags]

|   | S | Z | AC | P/V | CY |
|---|---|---|----|-----|----|
| Ī |   |   |    |     |    |

#### [Description]

- The contents of the 16-bit register pair specified by the source operand (src) are saved to the memory addressed by the user stack pointer (UUP), and then the UUP is decremented.
- Any combination of the following registers can be written in post as the source operand (src).

AX (RP0), BC (RP1), RP2, RP3, VP, PSW, DE, HL

The save order at this time is from the rightmost of the above registers.

# [Coding example]

PUSHU BC, PSW; Saves the contents of the BC register and PSW to the stack

**POP** 

Pop Pop

[Instruction format] POP dst

[Operation] Note

- (1) When dst is PSW, sfrp  $dst \leftarrow (SP)$ 
  - $SP \leftarrow SP + 2$
- (2) When dst is sfr

$$\mathsf{dst} \leftarrow (\mathsf{SP}),$$

$$\mathsf{SP} \leftarrow \mathsf{SP} + \mathsf{1}$$

(3) When dst is rg

$$\text{dst} \leftarrow (\text{SP}),$$

$$\mathsf{SP} \leftarrow \mathsf{SP} + 3$$

(4) When dst is post

$$\{post \leftarrow (SP), SP \leftarrow SP+2\} \times n \text{ times}$$

Note For details, refer to CHAPTER 3, Figure 3-4 Data Saved to Stack Area, and Figure 3-5 Data Restored from Stack Area.

# [Operands]

| Mnemonic | Operands (dst) |
|----------|----------------|
| POP      | PSW            |
|          | sfrp           |
|          | sfr            |
|          | post           |
|          | rg             |

[Flags]

dst is PSW

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| R | R | R  | R   | R  |

In other cases

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

#### [Description]

- · Data is restored from the stack to the registers specified by the destination operand (dst).
- If the destination operand (dst) is the PSW, each flag is replaced with stack data.
- If post is specified as the destination operand (dst), data can be restored to any combination of the following registers by one instruction.

AX (RP0), BC (RP1), RP2, RP3, VP (RP4), UP (RP5), DE (RP6), HL (RP7)

The restoration order at this time is from the leftmost of the above registers.

- The UP, VP, DE, and HL registers should only be used when a 78K/0, 78K/I, 78K/II, or 78K/III Series program
  is used. In other cases, restoration from the stack should be specified individually as the UUP, VVP, TDE, and
  WHL registers.
  - Moreover, saving to the stack should also be specified individually as the UUP, VVP, TDE, and WHL registers when a 78K/0, 78K/I, 78K/II, or 78K/III Series program is used.
- After data has been restored from the stack, the stack pointer (SP) is incremented by the number of bytes of data restored.

#### [Coding example]

POP IMK0L; Restores stack data to the IMK0L register

# **POPU**

Pop from User Stack Register Pop from User Stack

[Instruction format] POPU dst

[Operation] Note  $\{post \leftarrow (UUP), UUP \leftarrow UUP + 2\} \times n \text{ times}$ 

(n = number of register pairs written as post)

Note For details, refer to CHAPTER 3, Figure 3-4 Data Saved to Stack Area, and Figure 3-5 Data Restored from Stack Area.

#### [Operands]

| Mnemonic | Operands (dst) |
|----------|----------------|
| POPU     | post           |

# [Flags]

| s | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

#### [Description]

- The contents of the memory (stack) addressed by the user stack pointer (UUP) are restored to the registers specified by the destination operand (dst), and then the UUP is incremented.
- · Any combination of the following registers can be written in post as the destination operand (dst).

AX (RP0), BC (RP1), RP2, RP3, VP (RP4), PSW, DE (RP6), HL (RP7)

The restoration order at this time is from the leftmost of the above registers.

# [Coding example]

POPU AX, BC; Restores stack data to the AX and BC registers

**MOVG** 

Move G Note

24-Bit Data Transfer

[Instruction format] MOVG dst, src Note G is a character that indicates that 24-bit

data is to be manipulated.

[Operation] When dst is SP When dst is WHL

 $SP \leftarrow src$   $WHL \leftarrow SP$ 

# [Operands]

| Mnemonic | Operands (dst, src) |
|----------|---------------------|
| MOVG     | SP, #imm24          |
|          | SP, WHL             |
|          | WHL, SP             |

# [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

# [Description]

- The contents of the source operand (src) specified by the 2nd operand are transferred to the destination operand (dst) specified by the 1st operand.
- After reset release, SP initialization must always be performed with an MOVG SP, #imm24 instruction after executing the LOCATION instruction.

#### [Coding example]

MOVG SP, #0FFD20H; Sets 0FFD20H in the SP

# **ADDWG**

Add Word to G Note
24-Bit Word Data Addition

[Instruction format] ADDWG dst, src

**Note** G is a character that indicates that 24-bit data is to be manipulated.

[Operation]  $SP \leftarrow SP + word$ 

#### [Operands]

| Mnemonic | Operands (dst, src) |
|----------|---------------------|
| ADDWG    | SP, #word           |

#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

# [Description]

- Unsigned 16-bit immediate data is added to the contents of the stack pointer (SP), and the result is stored in the stack pointer (SP).
- This instruction is used to release a memory area reserved as a temporary variable storage location in a high-level language, etc.

# [Coding example]

ADDWG SP, #30H; Adds 30H to the SP and stores the result in the SP

**SUBWG** 

Subtract Word from G Note 24-Bit Word Data Subtraction

[Instruction format] SUBWG dst, src

**Note** G is a character that indicates that 24-bit data is to be manipulated.

[Operation] SUBWG SP  $\leftarrow$  SP - 1

# [Operands]

| Mnemonic | Operands (dst, src) |
|----------|---------------------|
| SUBWG    | SP, #word           |

# [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

#### [Description]

- Unsigned 16-bit immediate data is subtracted from the contents of the stack pointer (SP), and the result is stored in the SP.
- This instruction is used to reserve a temporary variable area in a high-level language, etc.

#### [Coding example]

SUBWG SP, #50H; Subtracts 50H from the SP and stores the result in the SP. This reserves a 50H-byte temporary variable area.

# **INCG SP**

Increment G Note

Stack Pointer 24-Bit Data Increment

[Instruction format] INCG SP

 $\textbf{Note} \quad \textbf{G} \text{ is a character that indicates that 24-bit}$ 

data is to be manipulated.

[Operation]  $SP \leftarrow SP + 1$ 

[Operands]

None

# [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

# [Description]

• Increments the SP (stack pointer) contents by 1.

# [Coding example]

INCG SP

# **DECG SP**

Decrement G Note
Stack Pointer 24-Bit Data Decrement

[Instruction format] DECG SP

**Note** G is a character that indicates that 24-bit data is to be manipulated.

[Operation]  $SP \leftarrow SP - 1$ 

[Operands]

None

# [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

# [Description]

• Decrements the SP (stack pointer) contents by 1.

# [Coding example]

**DECG SP** 

# 7.16 Call/Return Instructions

Call/return instructions are as follows:

CALL ... 387
CALLF ... 388
CALLT ... 389
BRK ... 390
BRKCS ... 391
RET ... 393
RETI ... 394
RETB ... 395
RETCS ... 396
RETCSB ... 398

**CALL** 

Call

Subroutine Call

[Instruction format] CALL target

[Operation] Note

 $(SP - 3) \leftarrow (PC + n),$ 

 $SP \leftarrow SP - 3$  $PC \leftarrow target$ 

n: Number of instruction bytes

Note For details, refer to CHAPTER 3, Figure 3-4 Data Saved to Stack Area, and Figure 3-5 Data Restored from Stack Area.

#### [Operands]

| Mnemonic | Operands (target) |
|----------|-------------------|
| CALL     | !addr16           |
|          | !!addr20          |
|          | rp                |
|          | rg                |
|          | [rp]              |
|          | [rg]              |
|          | \$!addr20         |

#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

#### [Description]

- This is a subroutine call using a 16-bit or 20-bit absolute address, 16-bit relative address, register direct address, or register indirect address.
- The start address of the next instruction (PC + n) is saved to the stack, and the program branches to the address specified by the target operand (target).
- If !addr16, rp or [rp] is specified as the operand, the branch destination address is limited to the base area (0 to FFFFH) (in the case of [rp], the branch destination table is also limited to the base area). This should only be used when it is absolutely essential to reduce the execution time or object size, and when 78K/0, 78K/I, 78K/II, or 78K/III Series software is used and program amendment is difficult.
  - Amendments may be necessary in order to make further use of a program that uses these instructions.
- With the NEC assembler (RA78K4), if CALL addr is written, the object code that can be assumed to be most appropriate can be selected and generated automatically from CALL !addr16, CALL !laddr20, and CALL \$laddr20.

#### [Coding example]

CALL !!13059H; Subroutine call to 013059H

**CALLF** 

Call Flag

**Subroutine Call (11-Bit Direct Specification)** 

[Instruction format] CALLF target

[Operation] Note  $(SP - 3) \leftarrow (PC + 2)$ ,

 $SP \leftarrow SP - 3$  $PC \leftarrow target$ 

Note For details, refer to CHAPTER 3, Figure 3-4 Data Saved to Stack Area, and Figure 3-5 Data Restored from Stack Area.

#### [Operands]

| Mnemonic | Operands (target) |
|----------|-------------------|
| CALLF    | !addr11           |

### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

#### [Description]

- This is a subroutine call that can branch to addresses 00800H to 00FFFH.
- The start address of the next instruction (PC + 2) is saved to the stack, and the program branches to an address in the range 00800H to 00FFFH.
- Only the low-order 11 bits of the address are specified (the high-order 5 bits are fixed at 00001B).
- Locating the subroutine in the area from 00800H to 00FFFH and using this instruction enables the program size to be reduced.

#### [Coding example]

CALLF !0C2AH; Subroutine call to 00C2AH

**CALLT** 

Call Table

**Subroutine Call (Call Table Reference)** 

[Instruction format] CALLT [addr5]

[Operation] Note  $(SP - 3) \leftarrow (PC + 1)$ ,

 $\text{SP} \leftarrow \text{SP} - 3,$ 

 $\mathsf{PC}\mathsf{HW} \leftarrow 0$ 

 $PCH \leftarrow (addr5 + 1)$ 

 $PC \llcorner \leftarrow (addr5)$ 

Note For details, refer to CHAPTER 3, Figure 3-4 Data Saved to Stack Area, and Figure 3-5 Data Restored from Stack Area.

#### [Operands]

| Mnemonic | Operands ([addr5]) |
|----------|--------------------|
| CALLT    | [addr5]            |

# [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

#### [Description]

- This is a call table reference subroutine call.
- The start address of the next instruction (PC + 1) is saved to the stack, and the program branches to the address indicated by call table (high-order bits of the address fixed at 000000001B, next 5 bit specified by addr5, LSB fixed at 0) word data.
- Subroutine start addresses that can be branched to by this instruction are limited to the base area (0 to FFFFH).

#### [Coding Example]

CALLT [60H]; Uses the word data in addresses 00060H and 00061H as the address, and makes a subroutine call to that address

**BRK** 

Break Software Vectored Interrupt

[Instruction format] BRK

[Operation]  $(SP - 2) \leftarrow PSW$ ,

$$(SP - 4) \leftarrow PC + 1$$
,

$$\mathsf{IE} \leftarrow \mathsf{0}$$

$$SP \leftarrow SP - 4$$
,

$$\mathsf{PC}\mathsf{HW} \leftarrow \mathsf{0},$$

$$PCLW \leftarrow (003EH)$$

#### [Operands]

None

#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

#### [Description]

- This is a software interrupt instruction.
- The PSW and the address of the next instruction (PC + 1) are saved to the stack, then the IE flag is cleared (0), and a branch is made to the address specified by the vector address (0003EH) word data (the branch destination address is limited to the base area (0 to FFFFH)).
- The RETB instruction is used to return from a software vectored interrupt generated by this instruction.

### [Coding Example]

BRK

# **BRKCS**

Break Context Switch Software Context Switch

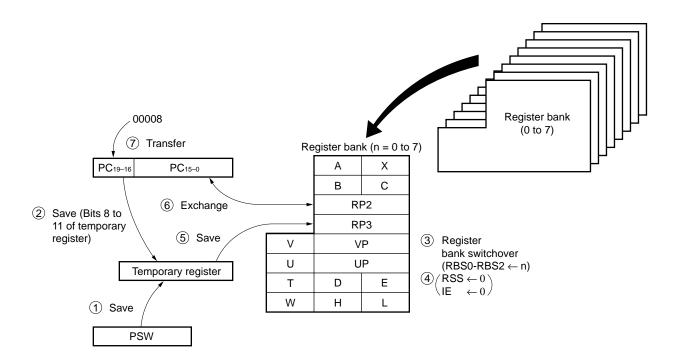
[Instruction format] BRKCS RBn

[Operation]  $PCLW \leftrightarrow RP2$ ,

RP3 ← PSW, PC<sub>15-19</sub>

 $\begin{aligned} & PC_{15-19} \leftarrow 0 \\ & RBS2 - 0 \leftarrow n, \\ & RSS \leftarrow 0, \end{aligned}$ 

 $IE \leftarrow 0$  (n = 0 to 7)


# [Operands]

| Mnemonic | Operands |
|----------|----------|
| BRKCS    | RBn      |

#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

- This is a software interrupt instruction.
- Register bank n written in the operand is selected, the contents of RP2 in that register bank and the contents of the low-order 16 bits of the program counter (PC) are exchanged, the contents of the program status word (PSW) and the high-order 4 bits of the PC are saved to the stack, the high-order 4 bits of the PC are set to 0, and a branch is made to that address. The RSS flag and IE flag are then cleared to 0.
- Only addresses in the base area (0 to FFFFH) can be branched to by this instruction.
- The RETCSB instruction is used to return from a software interrupt generated by this instruction.
- The contents of RP2 and RP3 must not be changed in the software interrupt program initiated by this instruction. If RP2 and RP3 are used, they must be saved to the stack, etc., and returned to their original value before the RETCSB instruction is executed.



# [Coding Example]

BRKCS RB3 ; Selects register bank 3, and executes instructions from the address indicated by RP2 in register bank 3

**RET** 

Return Return Subroutine

[Instruction format] RET

[Operation] Note  $PC \leftarrow (SP)$ ,

 $SP \leftarrow SP + 3$ 

Note For details, refer to CHAPTER 3, Figure 3-4 Data Saved to Stack Area, and Figure 3-5 Data Restored from Stack Area.

# [Operands]

None

# [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

- This is the instruction for returning from a subroutine call made by a CALL, CALLF, or CALLT instruction.
- The data saved to the stack is restored to the PC, and a return is made from the subroutine.

# **RETI**

Return from Interrupt Return from Hardware Vectored Interrupt

[Instruction format] RETI

[Operation] Note  $PC \leftarrow (SP)$ ,

 $\mathsf{PSW} \leftarrow (\mathsf{SP} + \mathsf{2}),$ 

 $PC \leftarrow SP + 4$ 

The bit set (1) in ISPR with the highest priority is cleared (0).

Note For details, refer to CHAPTER 3, Figure 3-4 Data Saved to Stack Area, and Figure 3-5 Data Restored from Stack Area.

### [Operands]

None

#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| R | R | R  | R   | R  |

- This is the instruction for returning from a vectored interrupt.
- The data saved in the stack is restored in PC and PSW, and of the flags set (1) in the ISPR register, the flag with the highest priority is cleared (0), and operation then returns from the interrupt processing routine.
- This instruction cannot be used to return from a software interrupt generated by a BRK instruction, BRKCS instruction or operand error, or from an interrupt that uses context switching.

**RETB** 

Return from Software Vectored Interrupt

[Instruction format] RETB

[Operation] Note  $PC \leftarrow (SP)$ ,

 $\mathsf{PSW} \leftarrow (\mathsf{SP} + \mathsf{2}),$ 

 $\mathsf{PC} \leftarrow \mathsf{SP} + \mathsf{4}$ 

Note For details, refer to CHAPTER 3, Figure 3-4 Data Saved to Stack Area, and Figure 3-5 Data Restored from Stack Area.

#### [Operands]

None

#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| R | R | R  | R   | R  |

- This is the instruction for returning from a software interrupt generated by an BRK instructions operand error.
- The PC and PSW saved to the stack are restored, and a return is made from the interrupt service routine.
- This instruction cannot be used to return from a hardware interrupt caused by a BRKCS instruction or hardware interrupt

# **RETCS**

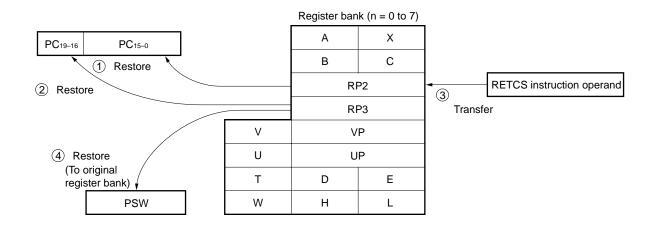
Return from Context Switch
Return from Hardware Context Switch

[Instruction format] RETCS targer

[Operation]  $PCLW \leftarrow RP2$ ,

 $PC_{15-19} \leftarrow RP2_{8-11}$   $RP2 \leftarrow addr16,$   $PSW \leftarrow RP3$ 

The bit set (1) in ISPR with the highest priority is cleared (0).


#### [Operands]

| Mnemonic | Operands |  |
|----------|----------|--|
| RETCS    | !addr16  |  |

#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| R | R | R  | R   | R  |

- The contents of register banks RP2 and RP3 that are specified when this instruction is executed are transferred to the program counter (PC) and program status word (PSW), and of the flags set (1) in the ISPR register, the flag with the highest priority is cleared (0), and operation then returns from the interrupt processing routine. The data specified by the operand is then transferred to RP2.
- The RETCS instruction is valid for context switching associated with generation of an interrupt request, and is used to return from branch processing due to context switching. addr16 written in the operand is the branch address used if the same register bank is specified again by the context switching function (only an address in the base area can be specified as the branch destination address).
- This instruction cannot be used to return from a software interrupt generated by a BRK instruction, BRKCS instruction or operand error, or from a vectored interrupt.
- Before this instruction is executed, the contents of RP2 and RP3 must be the same as immediately after interrupt acknowledgment.



# [Coding example]

RETCS !03456H; Returns from a context switching interrupt, and sets the address for acknowledgment of the next interrupt to 03456H

# **RETCSB**

Return from Context Switch Break Return from Software Context Switch

[Instruction format] RETCSB targer

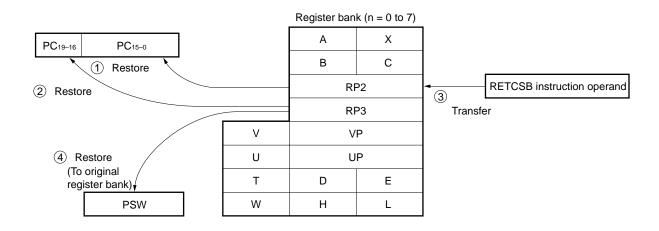
[Operation]  $PCLW \leftarrow RP2$ ,

 $PC_{15-19} \leftarrow RP3_{8-11}$   $RP2 \leftarrow addr1_6$ ,  $PSW \leftarrow RP3$ 

#### [Operands]

| Mnemonic | Operands |
|----------|----------|
| RETCSB   | !addr16  |

#### [Flags]


| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| R | R | R  | R   | R  |

## [Description]

The contents of RP2 and RP3 in the register bank specified when this instruction is executed are transferred
to the program counter (PC) and program status word (PSW), and a return is made from the interrupt service
routine.

The data specified by the operand is then transferred to RP2.

- The RETCSB instruction is valid for context switching by means of the BRKCS instruction, and is used to return
  from branch processing due to context switching. addr16 written in the operand is the branch address used
  if the same register bank is specified again by the context switching function (only an address in the base area
  can be specified as the branch destination address).
- This instruction cannot be used to return from a software interrupt generated by a BRK instruction or operand error, or from a hardware interrupt.
- Before this instruction is executed, the contents of RP2 and RP3 must be the same as immediately after interrupt acknowledgment.



# [Coding example]

RETCSB !0ABCDH ; Returns from an interrupt generated by a BRKCS instruction

# 7.17 Unconditional Branch Instruction

There is one unconditional branch instruction, as follows.

BR ... 401

Branch
Unconditional Branch

[Instruction format] BR target

[Operation] PC ← target

## [Operands]

| Mnemonic | Operands (target) |
|----------|-------------------|
| BR       | !addr16           |
|          | !!addr20          |
|          | rp                |
|          | rg                |
|          | [rp]              |
|          | [rg]              |
|          | \$addr20          |
|          | \$!addr20         |

#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

## [Description]

- Instruction that performs an unconditional branch.
- The target address operand (target) data is transferred to the PC, and a branch is made.
- If !addr16, rp or [rp] is specified as the operand, the branch destination address is limited to the base area (0 to FFFFH) (in the case of [rp], the branch destination table is also limited to the base area). This should only be used when it is absolutely essential to reduce the execution time or object size, and when a 78K/0, 78K/I, 78K/II, or 78K/III Series software is used and program amendment is difficult. Amendments may be necessary in order to make further use of a program that uses these instructions.
- With the NEC assembler RA78K4, if BR addr is written, the object code that can be assumed to be most appropriate can be selected and generated automatically from BR \$addr20, BR \$laddr20, BR !addr16, and BR!!addr20.

#### [Coding example]

BR TDE; Branches using the contents of the TDE register as the address

## 7.18 Conditional Branch Instructions

Conditional branch instructions are as follows:

- BNZ ... 403
- BNE ... 403
- BZ ... 404
- BE ... 404
- BNC ... 405
- BNL ... 405
- BC ... 406
- BL ... 406
- BNV ... 407
- BPO ... 407
- BV ... 408
- BPE ... 408
- BP ... 409
- BN ... 410
- BLT ... 411
- BGE ... 412
- BLE ... 413
- BGT ... 414
- BNH ... 415
- BH ... 416
- BF ... 417
- BT ... 418
- BTCLR ... 419
- BFSET ... 420
- DBNZ ... 421

BNZ BNE

Branch if Not Zero/Not Equal Conditional Branch upon Zero Flag (Z = 0)

[Instruction format] BNZ \$addr20

BNE \$addr20

[Operation]  $PC \leftarrow PC + 2 + jdisp8 \text{ if } Z = 0$ 

#### [Operands]

| Mnemonic | Operands (\$addr20) |
|----------|---------------------|
| BNZ      | \$addr20            |
| BNE      |                     |

#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

#### [Description]

If Z = 0, the program branches to the address specified by the operand.
 If Z = 1, no processing is performed and the next instruction is executed.

- The operation of the BNZ instruction and the BNE instruction is the same. They are used as follows:
  - BNZ instruction: To check whether the result of an addition, subtraction or increment/decrement instruction, or an 8-bit logical operation or shift/rotate instruction is 0.
  - BNE instruction: Checks for a match after a compare instruction.
- If two -80H values are added together in the case of 8 bits when two's complement type data addition is performed, or two -8000H values in the case of 16 bits, Z is set to 1. When determining whether or not the result of a two's complement type data addition is 0, check for overflow beforehand using the overflow flag (V).

## [Coding example]

CMP A, #55H

BNE \$0A39H ; Branches to 00A39H if the A register is not 0055H

The start address of the BNE instruction must be in the range 009B8H to 00AB7H

BZ BE

Branch if Zero/Equal than Conditional Branch upon Zero Flag (Z = 1)

[Instruction format] BZ \$addr20

BE \$addr20

[Operation]  $PC \leftarrow PC + 2 + jdisp8 \text{ if } Z = 1$ 

#### [Operands]

| Mnemonic | Operands (\$addr20) |
|----------|---------------------|
| BZ       | \$addr20            |
| ВЕ       |                     |

#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

## [Description]

- If Z = 1, the program branches to the address specified by the operand.
  - If Z = 0, no processing is performed and the next instruction is executed.
- The operation of the BZ instruction and the BE instruction is the same. They are used as follows:
  - BZ instruction: To check whether the result of an addition, subtraction or increment/decrement instruction, or an 8-bit logical operation or shift/rotate instruction is 0.
  - BE instruction: Checks for a match after a compare instruction.
- If two -80H values are added together in the case of 8 bits when two's complement type data addition is performed, or two -8000H values in the case of 16 bits, Z is set to 1. When determining whether or not the result of a two's complement type data addition is 0, check for overflow beforehand using the overflow flag (V).

# [Coding example]

DEC B

BZ \$3C5H; Branches to 003C5H if the B register is 0

The start address of the BZ instruction must be in the range 00344H to 00443H

**BNC BNL** 

Branch if Not Carry/Less than Conditional Branch upon Carry Flag (CY = 0)

[Instruction format] BNC \$addr20

BNL \$addr20

[Operation]  $PC \leftarrow PC + 2 + jdisp8 \text{ if } CY = 0$ 

#### [Operands]

| Mnemonic | Operands (\$addr20) |
|----------|---------------------|
| BNC      | \$addr20            |
| BNL      |                     |

#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

#### [Description]

• If CY = 0, the program branches to the address specified by the operand.

If CY = 1, no processing is performed and the next instruction is executed.

- The operation of the BNC instruction and the BNL instruction is the same. Differences in their use are as follows:
  - BNC instruction: Checks whether a carry has been generated after an addition or shift/rotate instruction.
     Determines the result of bit manipulation.
  - BNL instruction: Checks whether a borrow has been generated after a subtraction instruction.

After a compare instruction on unsigned data, checks whether or not the 1st operand of the compare instruction is smaller.

# [Coding example]

CMP A, B ; Compares the size of the A register contents and B register contents

BNL \$1500H; Branches to 01500H if the A register contents are smaller than the B register contents

The start address of the BNL instruction must be in the range 0147FH to 0157EH

BC BL

Branch if Carry/Less than Conditional Branch upon Carry Flag (CY = 1)

[Instruction format] BC \$addr20

BL \$addr20

[Operation]  $PC \leftarrow PC + 2 + jdisp8 \text{ if } CY = 1$ 

#### [Operands]

| Mnemonic | Operands (\$addr20) |
|----------|---------------------|
| ВС       | \$addr20            |
| BL       |                     |

#### [Flags]

| s | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

## [Description]

 $\bullet$  If CY = 1, the program branches to the address specified by the operand.

If CY = 0, no processing is performed and the next instruction is executed.

- The operation of the BC instruction and the BL instruction is the same. They are used as follows:
  - BC instruction: Checks whether a carry has been generated after an addition or shift/rotate instruction.
     Determines the result of bit manipulation.
  - BL instruction : Checks whether a borrow has been generated after a subtraction instruction.

After a compare instruction on unsigned data, checks whether or not the 1st operand of the compare instruction is smaller.

# [Coding example]

BC \$300H; Branches to 00300H if CY = 1

The start address of the BC instruction must be in the range 0027FH to 0037EH

BNV BPO

Branch if No Overflow/Branch if Parity Odd Conditional Branch upon Parity/Overflow Flag (P/V = 0)

[Instruction format] BNV \$addr20

BPO \$addr20

[Operation]  $PC \leftarrow PC + 2 + jdisp8 \text{ if } P/V = 0$ 

# [Operands]

| Mnemonic | Operands (\$addr20) |
|----------|---------------------|
| BNV      | \$addr20            |
| вро      |                     |

# [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

#### [Description]

If P/V = 0, the program branches to the address specified by the operand.
 If P/V = 1, no processing is performed and the next instruction is executed.

- The operation of the BNV instruction and the BPO instruction is the same. They are used as follows:
  - BNV instruction: Checks that the result has neither overflowed nor underflowed after an operation of two's complement format data, etc.
  - BPO instruction: Checks that the parity of the logical operation instruction or shift rotate instruction execution result is odd.

# [Coding example]

ADD B, C ; Adds together the contents of the B register and C register (two's complement type data)

BNV \$560H; Branches to 560H if there is no overflow in the result of the addition

The start address of the BNV instruction must be in the range 004DFH to 05DEH

# BV BPE

Branch if Overflow/Branch if Parity Even Conditional Branch upon Parity/Overflow Flag (P/V = 1)

[Instruction format] BV \$addr20

BPE \$addr20

[Operation]  $PC \leftarrow PC + 2 + jdisp8 \text{ if } P/V = 1$ 

#### [Operands]

| Mnemonic | Operands (\$addr20) |
|----------|---------------------|
| BV       | \$addr20            |
| BPE      |                     |

# [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

#### [Description]

If P/V = 1, the program branches to the address specified by the operand.
 If P/V = 0, no processing is performed and the next instruction is executed.

- The operation of the BV instruction and the BPE instruction is the same. They are used as follows:
  - BV instruction : Checks that the result has overflowed or underflowed after an operation of two's complement format data, etc.
  - BPE instruction: Checks that the parity of the logical operation instruction or shift rotate instruction execution result is even.

# [Coding example]

OR D, #055H; Finds the bit-wise logical sum of the D register contents and 055H

BPE \$841EH; Branches to 841EH if the parity is even as a result of finding the logical sum

The start address of this instruction must be in the range 839DH to 849CH

BP

**Branch if Positive** Conditional Branch upon Sign Flag (S = 0)

[Instruction format] BP \$addr20

[Operation]  $PC \leftarrow PC + 2 + jdisp8 \text{ if } S = 0$ 

## [Operands]

| Mnemonic | Operands (\$addr20) |
|----------|---------------------|
| ВР       | \$addr20            |

## [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

#### [Description]

• If S = 0, the program branches to the address specified by the operand. If S = 1, no processing is performed and the next instruction is executed.

• This instruction is used to check whether the result is positive (including 0) after a two's complement type data operation. However, a correct judgment cannot be made if the operation result overflows or underflows; therefore, a BV instruction or BNV instruction should be used beforehand to check that there is no overflow or underflow, or the BGE instruction should be used.

#### [Coding example]

BV \$OVER ; Branches to address OVER, if the operation result overflows or underflows

BP \$TARGET; Branches to address TARGET if the operation result is positive (including 0)

Address TARGET must be within -126 to +129 of the start address of the BP instruction

BN

Branch if Negative Conditional Branch upon Sign Flag (S = 1)

[Instruction format] BN \$addr20

[Operation]  $PC \leftarrow PC + 2 + jdisp8 \text{ if } S = 1$ 

# [Operands]

| Mnemonic | Operands (\$addr20) |
|----------|---------------------|
| BN       | \$addr20            |

## [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

## [Description]

- If S = 1, the program branches to the address specified by the operand.
   If S = 0, no processing is performed and the next instruction is executed.
- This instruction is used to check whether the result is negative after a two's complement type data operation.
   However, a correct judgment cannot be made if the operation result overflows or underflows; therefore, a BV instruction or BNV instruction should be used beforehand to check that there is no overflow or underflow, or the BLT instruction should be used.

#### [Coding example]

BN #TARGET; Branches to address TARGET if the operation result is negative

**BLT** 

Branch if less than

Conditional Branch upon Size of Number (Less than ... )

[Instruction format] BLT \$addr20

[Operation]  $PC \leftarrow PC + 3 + jdisp8 \text{ if } P/V \neq S = 1$ 

## [Operands]

| Mnemonic | Operands (\$addr20) |
|----------|---------------------|
| BLT      | \$addr20            |

## [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

#### [Description]

- If P/V ∀ S = 1, the program branches to the address specified by the operand.
   If P/V ∀ S = 0, no processing is performed and the next instruction is executed.
- This instruction is used to determine the relative size of two's complement type data, or to check whether the result of an operation is negative. In relative size determination, the instruction checks whether the 1st operand of the CMP instruction executed immediately before is smaller than the 2nd operand. This instruction is also used to check whether the operation result is negative, including the case where underflow has occurred.

#### [Coding example]

CMPW AX, #3456H

BLT \$8123H

; Branches to address 8123H if the contents of the AX register are less than 3456H The start address of the BLT instruction must be in the range 80A1H to 81A0H

**BGE** 

Branch if Greater than/Equal

Conditional Branch upon Size of Number (Greater than or Equal to ... )

[Instruction format] BGE \$addr20

[Operation]  $PC \leftarrow PC + 3 + jdisp8 \text{ if } P/V + S = 0$ 

## [Operands]

| Mnemonic | Operands (\$addr20) |
|----------|---------------------|
| BGE      | \$addr20            |

## [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

#### [Description]

- If P/V ∀ S = 0, the program branches to the address specified by the operand.
   If P/V ∀ S = 1, no processing is performed and the next instruction is executed.
- This instruction is used to determine the relative size of two's complement type data, or to check whether the result of an operation is 0 or positive. In relative size determination, the instruction checks whether the 1st operand of the CMP instruction executed immediately before is greater than the 2nd operand. This instruction is also used to check whether the operation result is 0 or greater, including the case where overflow has occurred.

#### [Coding example]

ADDW AX, BC

BGE \$23456H; Branches to address 23456H if the result of the immediately preceding addition instruction is 0 or greater

The start address of the BGE instruction must be in the range 233D4H to 234D3H

**BLE** 

Branch if less than/Equal

Conditional Branch upon Size of Number (Less than or Equal to ... )

[Instruction format] BLE \$addr20

**[Operation]** PC  $\leftarrow$  PC + 3 + jdisp8 if (P/V  $\forall$  S)  $\vee$  Z = 1

## [Operands]

| Mnemonic | Operands (\$addr20) |
|----------|---------------------|
| BLE      | \$addr20            |

## [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

#### [Description]

- If (P/V ∀ S) ∨ Z = 1, the program branches to the address specified by the operand.
   If (P/V ∀ S) ∨ Z = 0, no processing is performed and the next instruction is executed.
- This instruction is used to determine the relative size of two's complement type data, or to check whether the result of an operation is negative, including 0. In relative size determination, the instruction checks whether the 1st operand of the CMP instruction executed immediately before is smaller than the 2nd operand. This instruction is also used to check whether the operation result is negative, including the case where underflow has occurred.

#### [Coding example]

SUB H, L

BLE \$789ABH; Branches to 789ABH if the result of the immediately preceding subtraction instruction is 0 or less, including the case where underflow has occurred

The start address of the BL instruction must be in the range 78929H to 789ABH

**BGT** 

# Branch if Greater than

Conditional Branch upon Size of Number (Greater than ... )

[Instruction format] BGT \$addr20

**[Operation]**  $PC \leftarrow PC + 3 + jdisp8 \text{ if } (P/V \forall S) \lor Z = 0$ 

## [Operands]

| Mnemonic | Operands (\$addr20) |
|----------|---------------------|
| BGT      | \$addr20            |

## [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

#### [Description]

- If (P/V ∀ S) ∨ Z = 0, the program branches to the address specified by the operand.
   If (P/V ∀ S) ∨ Z = 1, no processing is performed and the next instruction is executed.
- This instruction is used to determine the relative size of two's complement type data, or to check whether the result of an operation is greater than 0. In relative size determination, the instruction checks whether the 1st operand of the CMP instruction executed immediately before is greater than the 2nd operand. This instruction is also used to check whether the operation result is greater than 0, including the case where overflow has occurred.

## [Coding example]

CMP A, E

BGT \$0CFFEDH ;Branches to address 0CFFEDH if the contents of the A register are greater than the contents of the B register

The start address of the BGT instruction must be in the range 0CFF6BH to 0D006DH

**BNH** 

Branch if Not Higher than

Conditional Branch upon Size of Number (Not Higher than ... )

[Instruction format] BNH \$addr20

[Operation]  $PC \leftarrow PC + 3 + jdisp8 \text{ if } Z \vee CY = 1$ 

## [Operands]

| Mnemonic | Operands (\$addr20) |
|----------|---------------------|
| BNH      | \$addr20            |

## [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

#### [Description]

- If Z ∨ CY = 1, the program branches to the address specified by the operand.
   If Z ∨ CY = 0, no processing is performed and the next instruction is executed.
- This instruction is used to determine the relative size of unsigned data. The instruction checks whether the 1st operand of the CMP instruction executed immediately before is not greater than the 2nd operand (i.e. the 1st operand is the same as or smaller than the 2nd operand).

#### [Coding example]

CMPW RP2, #8921H

**BNH \$TARGET** 

; Branches to address TARGET if the contents of the RP2 register are not greater than 8921H (equal to or less than 8912H)

The start address of the BNH instruction must be an address from which a branch can be made to address TARGET

BH

Branch if Higher than

Conditional Branch upon Size of Number (Higher than ... )

[Instruction format] BH \$addr20

**[Operation]**  $PC \leftarrow PC + 3 + jdisp8 \text{ if } Z \lor CY = 0$ 

# [Operands]

| Mnemonic | Operands (\$addr20) |
|----------|---------------------|
| вн       | \$addr20            |

## [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

## [Description]

- If Z ∨ CY = 0, the program branches to the address specified by the operand.
   If Z ∨ CY = 1, no processing is performed and the next instruction is executed.
- This instruction is used to determine the relative size of unsigned data. The instruction checks whether the 1st operand of the CMP instruction executed immediately before is greater than the 2nd operand.

## [Coding example]

CMP B, C

BH \$356H; Branches to 356H if the contents of the B register are greater than the contents of the C register

The start address of the BH instruction must be in the range 2D4H to 3D3H

**BF** 

Branch if False

Conditional Branch depending on Bit Test (Byte Data Bit = 0)

[Instruction format] BF bit, \$addr20

**[Operation]**  $PC \leftarrow PC + b + jdisp8 \text{ if bit } = 0$ 

## [Operands]

| Mnemonic | Operands (bit, \$addr20) | b (Number of Bytes) |
|----------|--------------------------|---------------------|
| BF       | saddr.bit, \$addr20      | 4/5                 |
|          | sfr.bit, \$addr20        | 4                   |
|          | X.bit, \$addr20          | 3                   |
|          | A.bit, \$addr20          | 3                   |
|          | PSWL.bit, \$addr20       | 3                   |
|          | PSWH.bit, \$addr20       | 3                   |
|          | mem2.bit, \$addr20       | 3                   |
|          | !addr16.bit, \$addr20    | 6                   |
|          | !!addr24.bit, \$addr20   | 7                   |

# [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

# [Description]

• If the contents of the 1st operand (bit) are cleared (0), the program branches to the address specified by the 2nd operand (\$addr20).

If the contents of the 1st operand (bit) are not cleared (0), no processing is performed and the next instruction is executed.

# [Coding example]

BF P2.2, \$1549H; Branches to address 01549H if bit 2 of port 2 is 0

The start address of the BF instruction must be in the range 014C6H to 015C5H

BT

**Branch if True** 

Conditional Branch depending on Bit Test (Byte Data Bit = 1)

[Instruction format] BT bit, \$addr20

[Operation]  $PC \leftarrow PC + b + jdisp8 \text{ if bit } = 1$ 

# [Operands]

| Mnemonic | Operands (bit, \$addr20) b (Number of By |     |
|----------|------------------------------------------|-----|
| BF       | saddr.bit, \$addr20                      | 3/4 |
|          | sfr.bit, \$addr20                        | 4   |
|          | X.bit, \$addr20                          | 3   |
|          | A.bit, \$addr20                          | 3   |
|          | PSWL.bit, \$addr20                       | 3   |
|          | PSWH.bit, \$addr20                       | 3   |
|          | mem2.bit, \$addr20                       | 3   |
|          | !addr16.bit, \$addr20                    | 6   |
|          | !!addr24.bit, \$addr20                   | 7   |

## [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

#### [Description]

• If the contents of the 1st operand (bit) are set (1), the program branches to the address specified by the 2nd operand (\$addr16).

If the contents of the 1st operand (bit) are not set (1), no processing is performed and the next instruction is executed.

# [Coding example]

BT 0FE47H.3, \$55CH; Branches to 0055CH if bit 3 of address 0FE47H

The start address of the BT instruction must be in the range 004D9H to 005D8H

**BTCLR** 

Branch if True and Clear

Conditional Branch and Clear depending on Bit Test (Byte Data Bit = 1)

[Instruction format] BTCLR bit, \$addr20

**[Operation]**  $PC \leftarrow PC + b + jdisp8 \text{ if bit} = 1, \text{ then bit} \leftarrow 0$ 

## [Operands]

| Mnemonic | Operands (bit, \$addr20) | b (Number of Bytes) |
|----------|--------------------------|---------------------|
| BTCLR    | saddr.bit, \$addr20      | 4/5                 |
|          | sfr.bit, \$addr20        | 4                   |
|          | X.bit, \$addr20          | 3                   |
|          | A.bit, \$addr20 3        |                     |
|          | PSWL.bit, \$addr20       | 3                   |
|          | PSWH.bit, \$addr20 3     |                     |
|          | mem2.bit, \$addr20       | 3                   |
|          | !addr16.bit, \$addr20    | 6                   |
|          | !!addr24.bit, \$addr20   | 7                   |

## [Flags]

## bit is PSWL.bit

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| × | × | ×  | ×   | ×  |

#### In other cases

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

# [Description]

- If the contents of the 1st operand (bit) are set (1), the contents of the 1st operand (bit) are cleared (0), and the program branches to the address specified by the 2nd operand.
  - If the contents of the 1st operand (bit) are not set (1), no processing is performed and the next instruction is executed.
- If the 1st operand (bit) is PSW.bit, the contents of the relevant flag are cleared (0).

## [Coding example]

BTCLR PSW.0, \$356H; If bit 0 of the PSW (CY flag) is 1, clears (0) the CY flag and branches to address 00356H

The start address of the BTCLR instruction must be in the range 002D4H to 003D3H

**BFSET** 

Branch if False and Set

Conditional Branch and Set depending on Bit Test (Byte Data Bit = 0)

[Instruction format] BFSET bit, \$addr20

**[Operation]**  $PC \leftarrow PC + b + jdisp8 \text{ if bit} = 0, \text{ then bit} \leftarrow 1$ 

## [Operands]

| Mnemonic | Operands (bit, \$addr20) | b (Number of Bytes) |
|----------|--------------------------|---------------------|
| BFSET    | saddr.bit, \$addr20 4/5  |                     |
|          | sfr.bit, \$addr20        | 4                   |
|          | X.bit, \$addr20          | 3                   |
|          | A.bit, \$addr20 3        |                     |
|          | PSWL.bit, \$addr20       | 3                   |
|          | PSWH.bit, \$addr20 3     |                     |
|          | mem2.bit, \$addr20       | 3                   |
|          | !addr16.bit, \$addr20    | 6                   |
|          | !!addr24.bit, \$addr20   | 7                   |

#### [Flags]

# bit is PSWL.bit

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| × | × | ×  | ×   | ×  |

#### In other cases

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

## [Description]

- If the contents of the 1st operand (bit) are cleared (0), the contents of the 1st operand (bit) are set (1), and the program branches to the address specified by the 2nd operand.
- If the contents of the 1st operand (bit) are set (1), no processing is performed and the next instruction is executed.
- If the 1st operand (bit) is PSW.bit, the contents of the relevant flag are set (1).

#### [Coding example]

BFSET A.6, \$3FFE1H; If bit 6 of the A register is 0, sets (1) bit 6 of the A register and branches to address 3FFE1H

The start address of the BFSET instruction must be in the range 3FF5FH to 4005EH

# **DBNZ**

Decrement and Branch if Not Zero Conditional Loop (dst ≠ 0)

[Instruction format] DBNZ dst, \$addr20

[Operation]  $dst \leftarrow dst - 1$ ,

then  $PC \leftarrow PC + b + jdisp8$  if  $dst \neq 0$ 

#### [Operands]

| Mnemonic                  | Operands (bit, \$addr20) | b (Number of Bytes) |
|---------------------------|--------------------------|---------------------|
| <b>DBNZ</b> B, \$addr20 2 |                          | 2                   |
|                           | C, \$addr20              | 2                   |
|                           | saddr, \$addr20          | 3/4                 |

#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

## [Description]

- The contents of the destination operand (dst) specified by the 1st operand are decremented by 1, and the program branches to the destination operand (dst).
- If the result of decrementing the destination operand (dst) by 1 is not 0, the program branches to the address indicated by the 2nd operand (\$addr20). If the result of decrementing the destination operand (dst) by 1 is 0, no processing is performed and the next instruction is executed.
- · Flags are not changed.

# [Coding example]

DBNZ B, \$1215H; Decrements the contents of the B register, and if 0, branches to 001215H

The start address of the DBNZ instruction must be in the range 001194H to 001293H

# 7.19 CPU Control Instructions

CPU control instructions are as follows:

MOV STBC, #byte ... 423
MOV WDM, #byte ... 424
LOCATION ... 425
SEL RBn ... 426
SEL RBn, ALT ... 427
SWRS ... 428
NOP ... 429
EI ... 430
DI ... 431

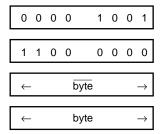
# MOV STBC, #byte

Move Standby Mode Setting

[Instruction format] MOV STBC #byte

[Operation] STBC  $\leftarrow$  byte

## [Operands]


| Mnemonic | Operands    |
|----------|-------------|
| MOV      | STBC, #byte |

## [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

#### [Description]

- This a special instruction for writing to the standby control register (STBC). The immediate data specified by the 2nd operand is written to STBC. The STBC register can only be written to by means of this instruction.
- This instruction has a special format, and in addition to the immediate data used to perform the write, the logical NOT of that value must also be provided in the operation code (see figure below). (This is generated automatically by the NEC assembler (RA78K4).)
  - Operation code format



• The CPU checks the immediate data to be used for the write and the logical NOT data, and only performs the write if they are correct. If they are not correct, the write is not performed and an operand error interrupt is generated.

## [Coding example]

MOV STBC, #2; Writes 2 to STBC (sets the STOP mode)

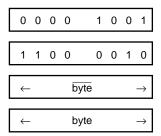
# MOV WDM, #byte

Move Watchdog Timer Setting

[Instruction format] MOV WDM #byte

 $\textbf{[Operation]} \hspace{1.5cm} \mathsf{WDM} \leftarrow \mathsf{byte}$ 

#### [Operands]


| Mnemonic | Operands   |
|----------|------------|
| MOV      | WDM, #byte |

#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

#### [Description]

- This a special instruction for writing to the watchdog timer mode register (WDM). The immediate data specified by the 2nd operand is written to WDM. The WDM register can only be written to by means of this instruction.
- This instruction can only be used with a product that incorporates a watchdog timer. Please refer to the User's
   Manual Hardware Volume for the relevant product to see whether a watchdog timer is incorporated.
- This instruction has a special format, and in addition to the immediate data used to perform the write, the logical NOT of that value must also be provided in the operation code (see figure below). (This is generated automatically by the NEC assembler (RA78K4).)
  - Operation code format



The CPU checks the immediate data to be used for the write and the logical NOT data, and only performs the
write if they are correct. If they are not correct, the write is not performed and an operand error interrupt is
generated.

#### [Coding example]

MOV WDM, #0C0H; Writes 0C0H to WDM

LOCATION

[Instruction format] LOCATION locaddr

[Operation] SFR & internal data area location address upper word specification

#### [Operands]

| Mnemonic | Operands |
|----------|----------|
| LOCATION | locaddr  |

#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

#### [Description]

- This instruction is used to specify the address of the internal data area (internal RAM and special function registers (SFRs)). If 0 is specified, the maximum address of the internal data area is 0FFFFH, and if 0FH is specified, the maximum address of the internal data area is 0FFFFFH.
- An interrupt or macro service request is not acknowledged between this instruction and the next instruction.
- This instruction must always be executed immediately after reset release. That is, this instruction must be located in the address specified by the reset vector. This instruction cannot be used more than once. If executed more than once, an address in the internal data area cannot be changed in the second or subsequent executions.
- The operand for this instruction is coded as shown below.

| locaddr | Operand Code |  |
|---------|--------------|--|
| 0H      | 01FEH        |  |
| 0FH     | 00FFH        |  |

Execution of this instruction is ignored if a different value is specified. Also, an operand error interrupt is generated if the exclusive logical sum of the upper byte and lower byte of the operand is not 0FFH.

## [Coding example]

LOCATION 0FH; Sets the maximum address of the internal data area to 0FFFFFH

Location

Location

# **SEL RBn**

Select Register Bank Register Bank Selection

[Instruction format] SEL RBn

 $[\textbf{Operation}] \hspace{1cm} \mathsf{RSS} \leftarrow 0, \, \mathsf{RBS2} - 0 \leftarrow n \; ; \; (n = 0 - 3)$ 

# [Operands]

| Mnemonic | Operands (RBn) |
|----------|----------------|
| SEL      | RBn            |

# [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

# [Description]

- Selects the register bank specified by the operand (RBn) as the register bank to be used from the next instruction onward.
- The range for RBn is RB0 to RB7.

# [Coding example]

SEL RB2; Selects register bank 2 as the register bank to be used from the next instruction onward.

# SEL RBn, ALT

Select Register Bank Register Bank Selection

[Instruction format] SEL RBn, ALT

[Operation] RSS1  $\leftarrow$  1, RBS2 - 0  $\leftarrow$  n; (n = 0 - 3)

## [Operands]

| Mnemonic | Operands |
|----------|----------|
| SEL      | RBn, ALT |

## [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

## [Description]

- Selects the register bank specified by the 1st operand (RBn) as the register bank to be used from the next instruction onward, and also sets (1) the register selection flag (RSS).
- The range for RBn is RB0 to RB7.
- This instruction is provided to maintain compatibility with the 78K/III Series, and can only be used when a 78K/III Series program is used. It should not be used when using a program for a 78K Series other than the 78K/III Series or when using a newly written program.

**SWRS** 

Switch Register Set Register Bit Switching

[Instruction format] SWRS

 $\textbf{[Operation]} \hspace{1cm} \mathsf{RSS} \leftarrow \overline{\mathsf{RSS}}$ 

[Operands]

None

# [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

# [Description]

- Inverts the contents of the register set selection flag (RSS).
- This instruction is provided to maintain compatibility with the 78K/III Series, and can only be used when a 78K/III Series program is used. It should not be used when using a program for a 78K Series other than the 78K/III Series or when using a newly written program.

NO Operation
No Operation

[Instruction format] NOP

[Operation] No Operation

[Operands]

None

# [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

# [Description]

• This instruction simply consumes time without performing any processing.

ΕI

Enable interrupt Interrupt Enabling

[Instruction format] El

[Operation] IE  $\leftarrow$  1 (Enable interrupt)

[Operands]

None

# [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

# [Description]

- Sets the state in which maskable interrupts can be acknowledged (sets (1) the interrupt enable flag (IE)).
- No interrupts or macro service requests are acknowledged for a certain period after execution of this instruction. Please refer to the **User's Manual Hardware Volume** for the relevant product for details.
- It is possible to arrange for acknowledgment of vectored interrupts from other sources not to be performed even though this instruction is executed. Please refer to the **User's Manual Hardware Volume** for the individual products for details.

DI

Disable interrupt Interrupt Disabling

[Instruction format] DI

[Operation] IE  $\leftarrow$  0 (Disable interrupt)

[Operands]

None

# [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

# [Description]

- Disables acknowledgment by vectored interrupts among maskable interrupts (clears (0) the interrupt enable flag (IE)).
- No interrupts or macro service requests are acknowledged for a certain period after execution of this instruction. Please refer to the **User's Manual Hardware Volume** for the relevant product for details.
- Please refer to the **User's Manual Hardware Volume** for the individual products for details of interrupt servicing.

# 7.20 Special Instructions

Special instructions are as follows.

CHKL ... 433 CHKLA ... 434 **CHKL** 

Check Level Pin Output Level Check

[Instruction format] CHKL sfr

#### [Operands]

| Mnemonic | Operands |
|----------|----------|
| CHKL     | sfr      |

#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| × | × |    | Р   |    |

#### [Description]

- The exclusive logical sum of the output pin level and output buffer prestage signal level is found.
- The S flag is set (1) if bit 7 is set (1) as a result of the exclusive logical sum operation, and S flag is cleared (0) if bit 7 is cleared (0).
- The Z flag is set (1) if all bits are 0 as a result of the exclusive logical sum operation, and Z flag is cleared (0) if there are non-zero bits.
- The P/V flag is set (1) if the number of bits in the data set (1) as a result of the exclusive logical sum operation is even, and cleared (0) if the number is odd.
- This instruction is used to detect an abnormal state which has arisen for some reason or other in which the output pin level and the output buffer prestage signal level are different. In normal operation, the Z flag is always set (1).
- When this instruction is executed, with a product that has a port read control register (PRDC), the PRDC0 bit of the PRDC register must be cleared (0). An abnormal state cannot be detected if the PRDC0 bit is set (1).
- When this instruction is executed on a port that includes a pin used as a control output, the input/output mode
  for the port with a pin used as a control output must be set to input mode. If the input/output mode for a port
  with a pin used as a control output is set to output mode, operation may be judged to be abnormal even though
  it is normal.
- A pin for which the input/output mode as a port is specified as the input mode will always be judged to be normal by this instruction.

## [Coding example]

CHKL P0

BNZ \$ERROR; Checks whether the port 0 pin level and output buffer prestage signal level match, and if they do not, branches to address ERROR

- Caution The CHKL instruction is not available in the  $\mu$ PD784216, 784216Y, 784218Y, 784225, 784225Y, 784937 Subseries. Do not execute this instruction. If this instruction is executed, the following condition will result.
  - After the pin levels of output pins are read two times, they are exclusive-ORed. As a result, if the pins checked with this instruction are used in the port output mode, the exclusive-OR result is always 0 for all bits, and the Z flag is set to (1).

# **CHKLA**

Check Level and Transfer to Register Pin Output Level Check and Transfer to Register

[Instruction format] CHKLA sfr

**[Operation]**  $A \leftarrow (Pin level) \forall (output latch)$ 

#### [Operands]

| Mnemonic | Operands |
|----------|----------|
| CHKLA    | sfr      |

#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| × | × |    | Р   |    |

#### [Description]

- The exclusive logical sum of the output pin level and output buffer prestage signal level is found, and the result is stored in the A register.
- The S flag is set (1) if bit 7 is set (1) as a result of the exclusive logical sum operation, and S flag is cleared (0) if bit 7 is cleared (0).
- The Z flag is set (1) if all bits are 0 as a result of the exclusive logical sum operation, and Z flag is cleared (0) if there are non-zero bits.
- The P/V flag is set (1) if the number of bits in the data set (1) as a result of the exclusive logical sum operation is even, and cleared (0) if the number is odd.
- This instruction is used to detect an abnormal state which has arisen for some reason or other in which the output pin level and the output buffer prestage signal level are different. In normal operation, the Z flag is always set (1).
- When this instruction is executed, with a product that has a port read control register (PRDC), the PRDC0 bit of the PRDC register must be cleared (0). An abnormal state cannot be detected if the PRDC0 bit is set (1).
- When this instruction is executed on a port that includes a pin used as a control output, the input/output mode
  for the port with a pin used as a control output must be set to input mode. If the input/output mode for a port
  with a pin used as a control output is set to output mode, operation may be judged to be abnormal even though
  it is normal
- A pin for which the input/output mode as a port is specified as the input mode will always be judged to be normal by this instruction.

#### [Coding example]

CHKLA P3; Checks whether the port 3 pin level and output buffer prestage signal level match, and stores the result in the A register

- Caution The CHKLA instruction is not available in the μPD784216, 784216Y, 784218Y, 784225, 784225Y, 784937 Subseries. Do not execute this instruction. If this instruction is executed, the following condition will result.
  - After the pin levels of output pins are read two times, they are Exclusive-ORed. As a result, if the pins checked with this instruction are used in the port output mode, the exclusive-OR result is always 0 for all bits, and the Z flag is set to (1) along with that the result is saved in the A register.

# 7.21 String Instructions

String instructions are as follows.

MOVTBLW ... 436
MOVM ... 438
XCHM ... 440
MOVBK ... 442
XCHBK ... 445
CMPME ... 448
CMPMNE ... 451
CMPMC ... 454
CMPMNC ... 457
CMPBKE ... 460
CMPBKNE ... 466
CMPBKNC ... 466

# **MOVTBLW**

Move Table Word Table Word Transfer

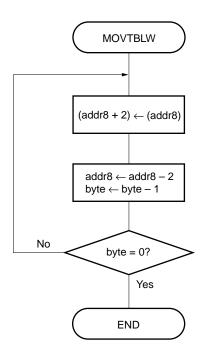
[Instruction format] MOVTBLW !addr8, byte

[Operation]  $(addr8 + 2) \leftarrow (addr8),$ 

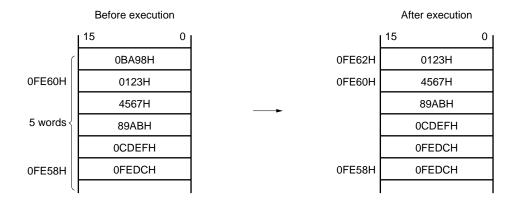
byte  $\leftarrow$  byte -1, addr8  $\leftarrow$  addr8 -2, End if byte = 0

### [Operands]

| Mnemonic | Operands      |
|----------|---------------|
| MOVTBLW  | !addr16, byte |


### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |


### [Description]

- The contents of the memory addressed by the 16 bits immediate data specified by the 1st operand are transferred to the address incremented by 2. addr8 is then decremented by 2. The above operations are repeated the number of times indicated by the 8 bits immediate data written as the 2nd operand.
- This instruction is used to shift the data table used by the MACW and MACSW instructions.
- The address of the most significant data of the data on which the transfer is to be performed is written directly in the 1st operand !addr8 as a label or number.
- The address written as the 1st operand must be in the range 00FE00H to 00FEFFH when a LOCATION 0 instruction is executed, or in the range 0FFE00H to 0FFEFFH when a LOCATION 0FH instruction is executed.

**Remark** The  $\mu$ PD784915 Subseries is fixed to the LOCATION 0 instruction.



 ${\tt MOVTBLW~!0FFE60H, 5~;~Transfers~the~data~in~0FFE58H~through~0FFE60H~to~0FFE5AH~through~0FFE62H}$ 



# **MOVM**

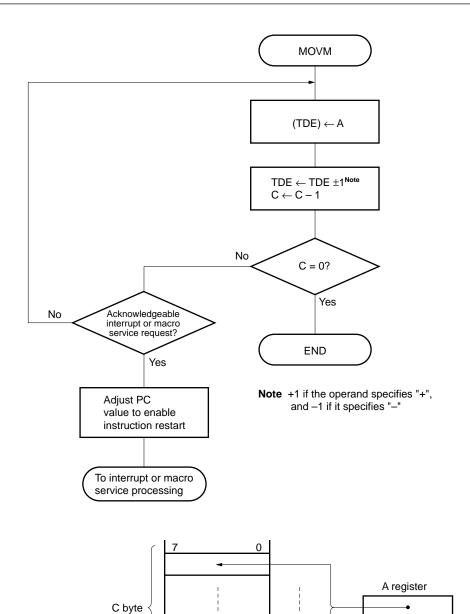
Move Multiple Byte Block Transfer of Fixed Byte Data

[Instruction format] MOVM [TDE +], A

MOVM [TDE -], A

**[Operation]** (TDE)  $\leftarrow$  A, TDE  $\leftarrow$  TDE + 1, C  $\leftarrow$  C - 1 End if C = 0

 $(TDE) \leftarrow A$ ,  $TDE \leftarrow TDE - 1$ ,  $C \leftarrow C - 1$  End if C = 0


### [Operands]

| Mnemonic | Operands    |
|----------|-------------|
| MOVM     | [TDE + ], A |
|          | [TDE – ], A |

### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

- The contents of the A register are transferred to the memory addressed by the TDE register, and the contents of the TDE register are incremented/decremented. The contents of the C register are then decremented, and the above operations are repeated until the contents of the C register are 0.
- If an acknowledgeable interrupt or macro service request is generated during execution of this instruction, execution of this instruction is interrupted and the interrupt or macro service request is acknowledged. When an interrupt is acknowledged, if the return address and the contents of the TDE and C registers used by this instruction which have been saved to the stack or to RP2 and R7 are not changed, execution of the interrupted instruction is resumed upon returning from the interrupt. When a macro service request is acknowledged, execution of this instruction is resumed after completion of the macro service.
- This instruction is mainly used to initialize a certain area of memory with a specific value. The MOVBK instruction is used to perform initialization with multi-byte data.



MOVM [TDE +], A ; Clears RAM FE00H to FEFFH

TDE

# **XCHM**

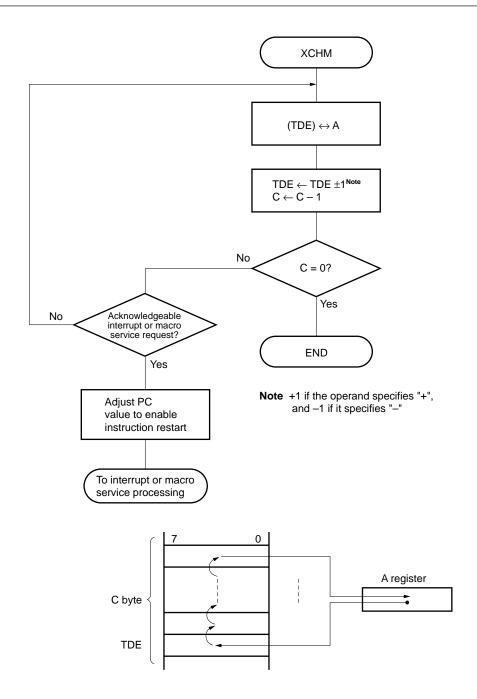
Exchange Multiple Byte Block Exchange of Fixed Byte Data

[Instruction format] XCHM [TDE + ], A

XCHM [TDE -], A

**[Operation]** (TDE)  $\leftrightarrow$  A, TDE  $\leftarrow$  TDE + 1, C  $\leftarrow$  C - 1 End if C = 0

 $(TDE) \leftrightarrow A$ ,  $TDE \leftarrow TDE - 1$ ,  $C \leftarrow C - 1$  End if C = 0


### [Operands]

| Mnemonic | Operands    |
|----------|-------------|
| хснм     | [TDE + ], A |
|          | [TDE – ], A |

#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

- The contents of the A register are exchanged with the contents of the memory addressed by the TDE register, and the contents of the TDE register are incremented/decremented. The contents of the C register are then decremented, and the above operations are repeated until the contents of the C register are 0.
- If an acknowledgeable interrupt or macro service request is generated during execution of this instruction, execution of this instruction is interrupted and the interrupt or macro service request is acknowledged. When an interrupt is acknowledged, if the return address and the contents of the TDE and C registers used by this instruction which have been saved to the stack or to RP2 and R7 are not changed, execution of the interrupted instruction is resumed upon returning from the interrupt. When a macro service request is acknowledged, execution of this instruction is resumed after completion of the macro service.
- This instruction is mainly used to perform a one-byte move of data in memory. XCHM [TDE + ], A is used for
  a move in the upper address direction, and XCHM [TDE ], A for a move in the low-order address direction.
  The MOVBK instruction is used to move two or more bytes.



 $\begin{array}{lll} \text{MOV C, \#10H} & ; \text{ C} \leftarrow \text{10H} \\ \text{MOV A, \#00H} & ; \text{ A} \leftarrow \text{00H} \\ \text{MOVG TDE, \#3050H} ; \text{ TDE} \leftarrow \text{3050H} \end{array}$ 

XCHM [TDE +], A ; Shifts the contents of memory 3050H through 305FH one address at a time into the

addresses behind (the contents of address 3050H become 0)

# **MOVBK**

Move Block Byte Byte Data Block Transfer

[Instruction format] MOVBK [TDE +], [WHL +]

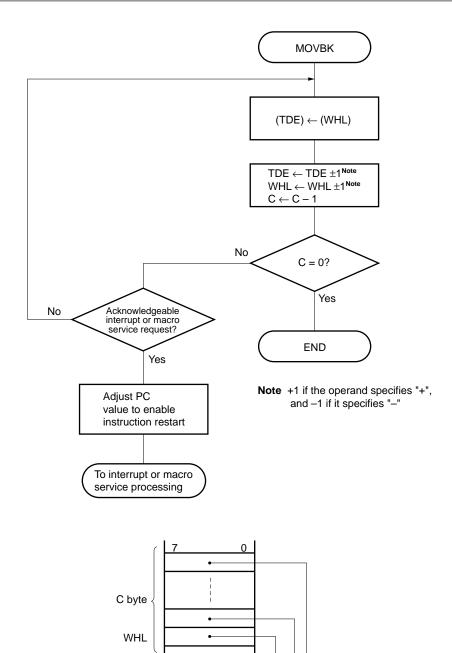
MOVBK [TDE - ], [WHL - ]

**[Operation]**  $(TDE) \leftarrow (WHL), TDE \leftarrow TDE + 1, WHL \leftarrow WHL + 1 C \leftarrow C - 1$ 

End if C = 0

 $(TDE) \leftarrow (WHL), TDE \leftarrow TDE - 1, WHL \leftarrow WHL - 1 C \leftarrow C - 1$ 

End if C = 0


#### [Operands]

| Mnemonic | Operands           |
|----------|--------------------|
| MOVBK    | [TDE + ], [WHL + ] |
|          | [TDE – ], [WHL – ] |

#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

- The contents of the memory addressed by the WHL register are transferred to the memory addressed by the
  TDE register, and the contents of the TDE and WHL registers are incremented/decremented. The contents of
  the C register are then decremented, and the above operations are repeated until the contents of the C register
  are 0.
- If an acknowledgeable interrupt or macro service request is generated during execution of this instruction, execution of this instruction is interrupted and the interrupt or macro service request is acknowledged. When an interrupt is acknowledged, if the return address and the contents of the TDE, WHL, and C registers used by this instruction which have been saved to the stack or to RP2 and R7 are not changed, execution of the interrupted instruction is resumed upon returning from the interrupt. When a macro service request is acknowledged, execution of this instruction is resumed after completion of the macro service.
- If the transfer source data area and transfer destination data area overlap, the operation is as follows.
  - If the minimum address of the transfer source is smaller than the maximum address of the transfer destination,
     the respective minimum addresses are used as the initial values for both the TDE and the WHL register, and
     MOVBK [TDE + ], [WHL + ] is used.
  - If the maximum address of the transfer source is greater than the minimum address of the transfer destination,
     the respective maximum addresses are used as the initial values for both the TDE and the WHL register, and
     MOVBK [TDE -], [WHL -] is used.



TDE

### **CHAPTER 7 DESCRIPTION OF INSTRUCTIONS**

# [Coding example]

 $\begin{array}{lll} \mbox{MOV C, \#10H} & ; \ \mbox{C} \leftarrow \mbox{10H} \\ \mbox{MOVG TDE, \#3000H} & ; \ \mbox{TDE} \leftarrow \mbox{3000H} \\ \mbox{MOVG WHL, \#5000H} & ; \ \mbox{WHL} \leftarrow \mbox{5000H} \end{array}$ 

 $MOVBK\ [TDE\ +\ ],\ [WHL\ +\ ]\ \ ; Transfers\ the\ contents\ of\ memory\ 5000H\ through\ 500FH\ to\ memory\ 3000H\ through\ through\ for\ memory\ 5000H\ through\ for\ memory\ for\ me$ 

300FH

# **XCHBK**

Exchange Block Byte Byte Data Block Exchange

[Instruction format] XCHBK [TDE +], [WHL +]

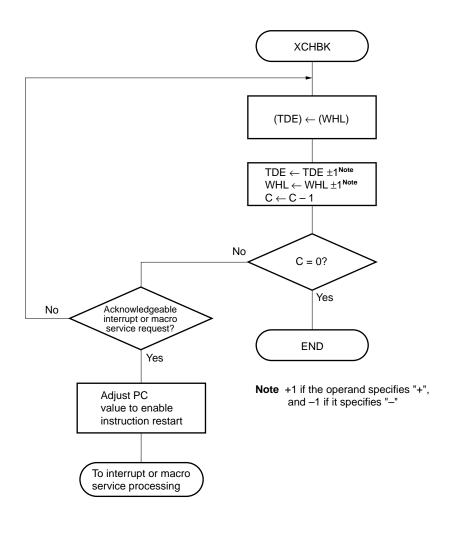
XCHBK [TDE -], [WHL -]

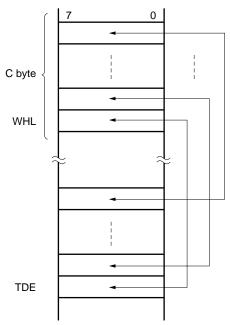
[Operation]  $(TDE) \leftrightarrow (WHL), TDE \leftarrow TDE + 1,$ 

WHL  $\leftarrow$  WHL + 1 C  $\leftarrow$  C - 1 End if C = 0

 $(TDE) \leftrightarrow (WHL), TDE \leftarrow TDE - 1,$ 

WHL  $\leftarrow$  WHL - 1 C  $\leftarrow$  C - 1 End if C = 0


### [Operands]


| Mnemonic | Operands           |
|----------|--------------------|
| хснвк    | [TDE + ], [WHL + ] |
|          | [TDE – ], [WHL – ] |

#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
|   |   |    |     |    |

- The contents of the memory addressed by the WHL register are exchanged with the contents of the memory addressed by the TDE register, and the contents of the WHL and TDE registers are incremented/decremented. The contents of the C register are then decremented, and the above operations are repeated until the contents of the C register are 0.
- If an acknowledgeable interrupt or macro service request is generated during execution of this instruction, execution of this instruction is interrupted and the interrupt or macro service request is acknowledged. When an interrupt is acknowledged, if the return address and the contents of the TDE, WHL, and C registers used by this instruction which have been saved to the stack or to RP2 and R7 are not changed, execution of the interrupted instruction is resumed upon returning from the interrupt. When a macro service request is acknowledged, execution of this instruction is resumed after completion of the macro service.





MOV C, #80H

MOVG TDE, #3456H

MOVG WHL, #1FF96H

 $XCHBK\ [TDE+], [WHL+]\ ; Exchanges\ the\ 80H-byte\ data\ from\ address\ 3456H\ with\ the\ data\ from\ address\ 1FF96H\ data$ 

# **CMPME**

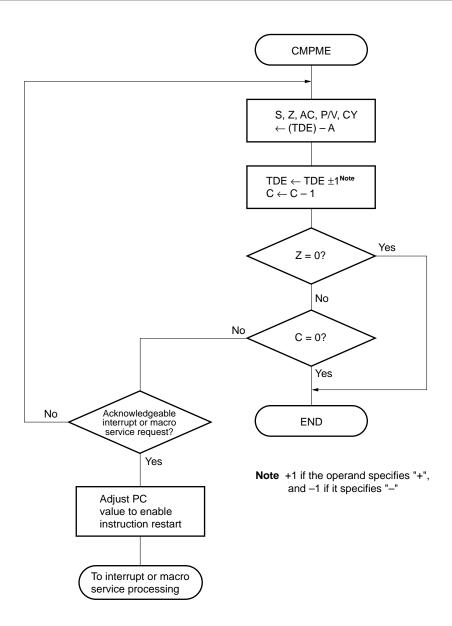
# Compare Multiple Equal Byte Block Comparison with Fixed Byte Data (Match Detection)

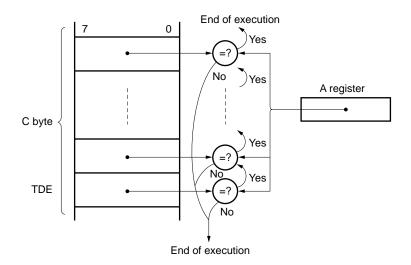
[Instruction format] CMPME [TDE + ], A

CMPME [TDE -], A

[Operation] (TDE) – A, TDE  $\leftarrow$  TDE + 1, C  $\leftarrow$  C – 1 End if C = 0 or Z = 0

(TDE) – A, TDE  $\leftarrow$  TDE – 1, C  $\leftarrow$  C – 1 End if C = 0 or Z = 0


#### [Operands]


| Mnemonic | Operands    |  |
|----------|-------------|--|
| СМРМЕ    | [TDE + ], A |  |
|          | [TDE – ], A |  |

#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| × | × | ×  | V   | ×  |

- The contents of the A register are compared with the contents of the memory addressed by the TDE register, the contents of the TDE register are incremented/decremented, and the contents of the C register are decremented. The above operations are repeated until the result of the comparison is a mismatch, or the contents of the C register are 0.
- Execution of this instruction does not change the contents of the A register or of the memory addressed by the TDE register.
- If an acknowledgeable interrupt or macro service request is generated during execution of this instruction, execution of this instruction is interrupted and the interrupt or macro service request is acknowledged. When an interrupt is acknowledged, if the return address and the contents of the TDE and C registers used by this instruction which have been saved to the stack or to RP2 and R7 are not changed, execution of the interrupted instruction is resumed upon returning from the interrupt. When a macro service request is acknowledged, execution of this instruction is resumed after completion of the macro service.
- The S, Z, AC, P/V, and CY flags are changed in accordance with the last compare operation (subtraction) executed by this instruction.
- The S flag is set (1) if bit 7 is set (1) as a result of the subtraction, and cleared (0) otherwise.
- The Z flag is set (1) if the result of the subtraction is 0, and z flag is cleared (0) otherwise.
- The AC flag is set (1) if a borrow is generated out of bit 4 into bit 3 as a result of the subtraction, and cleared (0) otherwise.
- The P/V flag is set (1) if a borrow is generated in bit 6 and a borrow is not generated in bit 7 as a result of the subtraction (when underflow is generated by a two's complement type operation), or if a borrow is not generated in bit 6 and a borrow is generated in bit 7 (when overflow is generated by a two's complement type operation), and is cleared (0) otherwise.
- The CY flag is set (1) if a borrow is generated in bit 7 as a result of the subtraction, and cleared (0) otherwise.





MOV C, #20H

MOVG TDE, #56283H

MOV A, #00H

CMPME [TDE +], A ; Indicates whether the 20H-byte data from address 56283H is all 00H

BNZ \$JMP ; Branches to address JMP if there is data that is not 00H

# **CMPMNE**

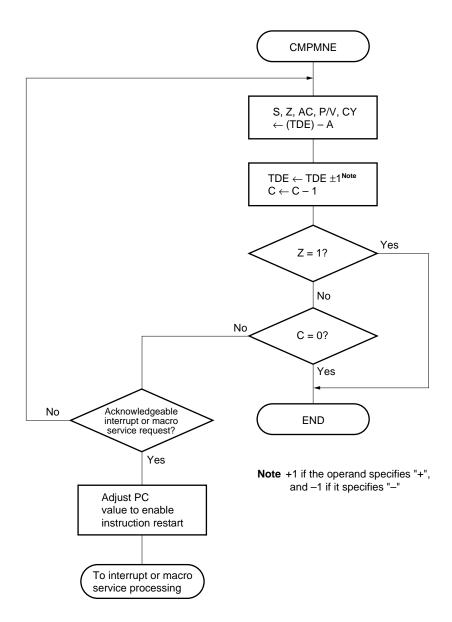
Compare Multiple Not Equal Byte Block Comparison with Fixed Byte Data (Mismatch Detection)

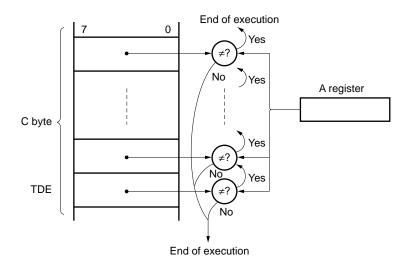
[Instruction format] CMPMNE [TDE + ], A

CMPMNE [TDE -], A

**[Operation]** (TDE) – A, TDE  $\leftarrow$  TDE + 1, C  $\leftarrow$  C – 1 End if C = 0 or Z = 1

(TDE) – A, TDE  $\leftarrow$  TDE – 1, C  $\leftarrow$  C – 1 End if C = 0 or Z = 1


#### [Operands]


| Mnemonic | Operands    |
|----------|-------------|
| CMPMNE   | [TDE + ], A |
|          | [TDE – ], A |

#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| × | × | ×  | V   | ×  |

- The contents of the A register are compared with the contents of the memory addressed by the TDE register, the contents of the TDE register are incremented/decremented, and the contents of the C register are decremented. The above operations are repeated until the result of the comparison is a match or the contents of the C register are 0.
- Execution of this instruction does not change the contents of the A register or of the memory addressed by the TDE register.
- If an acknowledgeable interrupt or macro service request is generated during execution of this instruction, execution of this instruction is interrupted and the interrupt or macro service request is acknowledged. When an interrupt is acknowledged, if the return address and the contents of the TDE and C registers used by this instruction which have been saved to the stack or to RP2 and R7 are not changed, execution of the interrupted instruction is resumed upon returning from the interrupt. When a macro service request is acknowledged, execution of this instruction is resumed after completion of the macro service.
- The S, Z, AC, P/V, and CY flags are changed in accordance with the last compare operation (subtraction) executed by this instruction.
- The S flag is set (1) if bit 7 is set (1) as a result of the subtraction, and cleared (0) otherwise.
- The Z flag is set (1) if the result of the subtraction is 0, and z flag is cleared (0) otherwise.
- The AC flag is set (1) if a borrow is generated out of bit 4 into bit 3 as a result of the subtraction, and cleared (0) otherwise.
- The P/V flag is set (1) if a borrow is generated in bit 6 and a borrow is not generated in bit 7 as a result of the subtraction (when underflow is generated by a two's complement type operation), or if a borrow is not generated in bit 6 and a borrow is generated in bit 7 (when overflow is generated by a two's complement type operation), and is cleared (0) otherwise.
- The CY flag is set (1) if a borrow is generated in bit 7 as a result of the subtraction, and cleared (0) otherwise.





 $\begin{array}{ll} \text{MOV C, \#00H} & ; \text{ C} \leftarrow \text{00H} \\ \\ \text{MOVG TDE, \#3000H} & ; \text{TDE} \leftarrow \text{3000H} \\ \end{array}$ 

CMPMNE [TDE +], A

BZ \$IMP ; Branches to the address indicated by label IMP if the same value as that of the A register

is in 3000H to 30FFH

# **CMPMC**

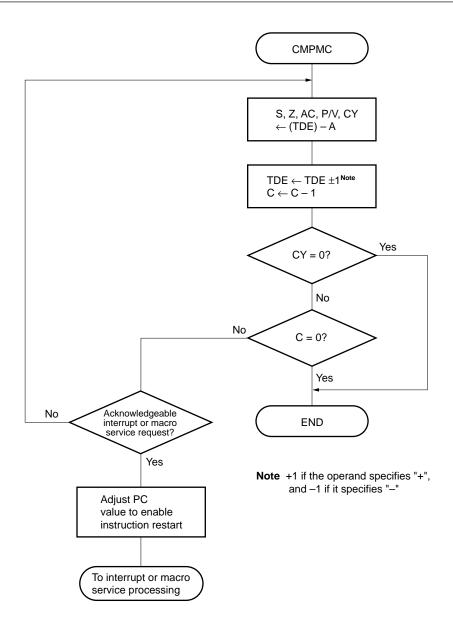
Compare Multiple Carry Byte Block Comparison with Fixed Byte Data (Size Comparison)

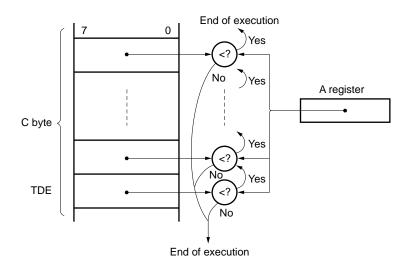
[Instruction format] CMPMC [TDE + ], A

CMPMC [TDE -], A

**[Operation]** (TDE) – A, TDE  $\leftarrow$  TDE + 1, C  $\leftarrow$  C – 1 End if C = 0 or CY = 0

(TDE) – A, TDE  $\leftarrow$  TDE – 1, C  $\leftarrow$  C – 1 End if C = 0 or CY = 0


#### [Operands]


| Mnemonic | Operands    |
|----------|-------------|
| СМРМС    | [TDE + ], A |
|          | [TDE – ], A |

#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| × | × | ×  | V   | ×  |

- The contents of the A register are compared with the contents of the memory addressed by the TDE register, the contents of the TDE register are incremented/decremented, and the contents of the C register are decremented. The above operations are repeated until the result of the comparison is that the contents of the memory addressed by the TDE register are equal to or greater than the contents of the A register, or the contents of the C register are 0.
- Execution of this instruction does not change the contents of the A register or of the memory addressed by the TDE register.
- If an acknowledgeable interrupt or macro service request is generated during execution of this instruction, execution of this instruction is interrupted and the interrupt or macro service request is acknowledged. When an interrupt is acknowledged, if the return address and the contents of the TDE and C registers used by this instruction which have been saved to the stack or to RP2 and R7 are not changed, execution of the interrupted instruction is resumed upon returning from the interrupt. When a macro service request is acknowledged, execution of this instruction is resumed after completion of the macro service.
- The S, Z, AC, P/V, and CY flags are changed in accordance with the last compare operation (subtraction) executed by this instruction.
- The S flag is set (1) if bit 7 is set (1) as a result of the subtraction, and cleared (0) otherwise.
- The Z flag is set (1) if the result of the subtraction is 0, and z flag is cleared (0) otherwise.
- The AC flag is set (1) if a borrow is generated out of bit 4 into bit 3 as a result of the subtraction, and cleared (0) otherwise.
- The P/V flag is set (1) if a borrow is generated in bit 6 and a borrow is not generated in bit 7 as a result of the subtraction (when underflow is generated by a two's complement type operation), or if a borrow is not generated in bit 6 and a borrow is generated in bit 7 (when overflow is generated by a two's complement type operation), and is cleared (0) otherwise.
- The CY flag is set (1) if a borrow is generated in bit 7 as a result of the subtraction, and cleared (0) otherwise.





MOV C, #10H

MOV A, #80H

MOVG TDE, #567800H

CMPMC [TDE +], A

BNC \$BIG

; Branches to address BIG if data of 80H or above is present in the 10H-byte data from address 567800H

# **CMPMNC**

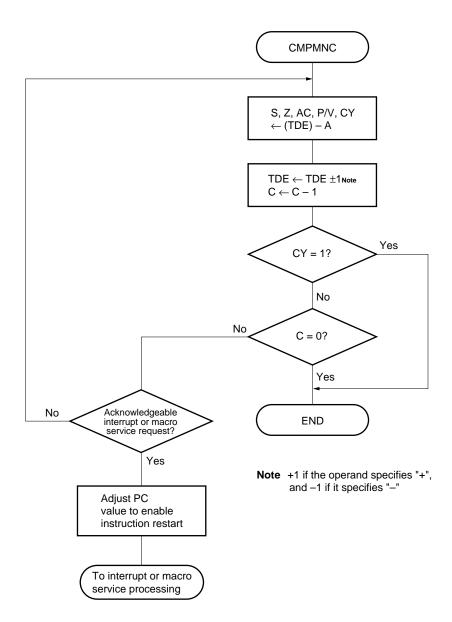
Compare Multiple Not Carry Byte Block Comparison with Fixed Byte Data (Size Comparison)

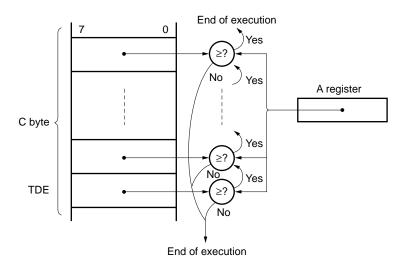
[Instruction format] CMPMNC [TDE + ], A

CMPMNC [TDE -], A

**[Operation]** (TDE) - A,  $TDE \leftarrow TDE + 1$ ,  $C \leftarrow C - 1$  End if C = 0 or CY = 1

(TDE) – A, TDE  $\leftarrow$  TDE – 1, C  $\leftarrow$  C – 1 End if C = 0 or CY = 1


### [Operands]


| Mnemonic | Operands    |
|----------|-------------|
| CMPMNC   | [TDE + ], A |
|          | [TDE – ], A |

#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| × | × | ×  | V   | ×  |

- The contents of the A register are compared with the contents of the memory addressed by the TDE register, the contents of the TDE register are incremented/decremented, and the contents of the C register are decremented. The above operations are repeated until the result of the comparison is that the contents of the A register are greater, or the contents of the C register are 0.
- Execution of this instruction does not change the contents of the A register or of the memory addressed by the TDE register.
- If an acknowledgeable interrupt or macro service request is generated during execution of this instruction, execution of this instruction is interrupted and the interrupt or macro service request is acknowledged. When an interrupt is acknowledged, if the return address and the contents of the TDE and C registers used by this instruction which have been saved to the stack or to RP2 and R7 are not changed, execution of the interrupted instruction is resumed upon returning from the interrupt. When a macro service request is acknowledged, execution of this instruction is resumed after completion of the macro service.
- The S, Z, AC, P/V, and CY flags are changed in accordance with the last compare operation (subtraction) executed by this instruction.
- The S flag is set (1) if bit 7 is set (1) as a result of the subtraction, and cleared (0) otherwise.
- The Z flag is set (1) if the result of the subtraction is 0, and z flag is cleared (0) otherwise.
- The AC flag is set (1) if a borrow is generated out of bit 4 into bit 3 as a result of the subtraction, and cleared (0) otherwise.
- The P/V flag is set (1) if a borrow is generated in bit 6 and a borrow is not generated in bit 7 as a result of the subtraction (when underflow is generated by a two's complement type operation), or if a borrow is not generated in bit 6 and a borrow is generated in bit 7 (when overflow is generated by a two's complement type operation), and is cleared (0) otherwise.
- The CY flag is set (1) if a borrow is generated in bit 7 as a result of the subtraction, and cleared (0) otherwise.





 $\begin{array}{ll} \text{MOV C, \#00H} & ; \text{ C} \leftarrow \text{00H} \\ \\ \text{MOVG TDE, \#8000H} & ; \text{ TDE} \leftarrow \text{8000H} \\ \end{array}$ 

CMPMNC [TDE +], A

BC \$JMP ; Branches to the address indicated by label JMP if there is a value greater than the contents

of the A register in 8000H to 80FFH

# **CMPBKE**

Compare Block Equal Byte Block Comparison with Byte Data (Match Detection)

[Instruction format] CMPBKE [TDE + ], [WHL + ]

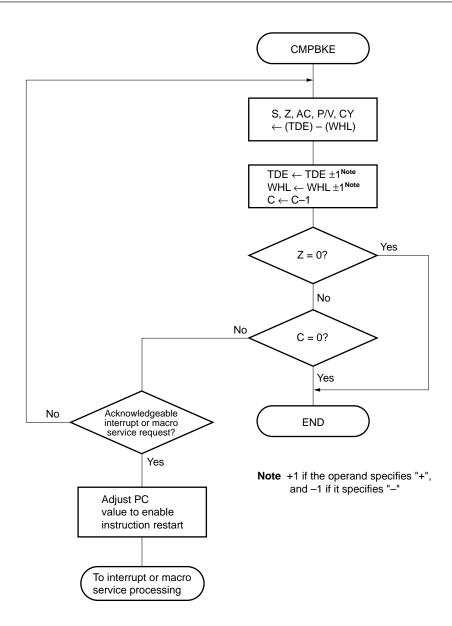
CMPBKE [TDE - ], [WHL - ]

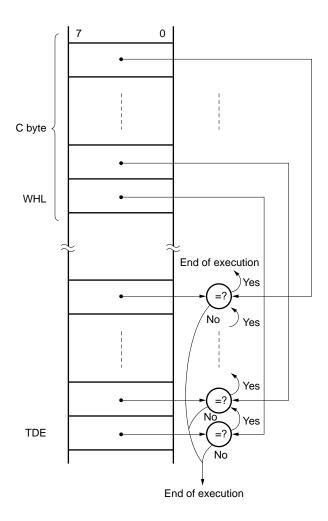
**[Operation]**  $(TDE) - (WHL), TDE \leftarrow TDE + 1, WHL \leftarrow WHL + 1, C \leftarrow C - 1$ 

End if C = 0 or Z = 0

(TDE) – (WHL), TDE  $\leftarrow$  TDE – 1, WHL  $\leftarrow$  WHL – 1, C  $\leftarrow$  C – 1

End if C = 0 or Z = 0


#### [Operands]


| Mnemonic | Operands           |
|----------|--------------------|
| СМРВКЕ   | [TDE + ], [WHL + ] |
|          | [TDE – ], [WHL – ] |

#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| × | × | ×  | V   | ×  |

- The contents of the memory addressed by the WHL register are compared with the contents of the memory addressed by the TDE register, the contents of the TDE and WHL registers are incremented/decremented, and the contents of the C register are decremented. The above operations are repeated until the result of the comparison is a mismatch, or the contents of the C register are 0.
- Execution of this instruction does not change the contents of the memory addressed by the TDE and WHL
  registers.
- If an acknowledgeable interrupt or macro service request is generated during execution of this instruction, execution of this instruction is interrupted and the interrupt or macro service request is acknowledged. When an interrupt is acknowledged, if the return address and the contents of the TDE, WHL, and C registers used by this instruction which have been saved to the stack or to RP2 and R7 are not changed, execution of the interrupted instruction is resumed upon returning from the interrupt. When a macro service request is acknowledged, execution of this instruction is resumed after completion of the macro service.
- The S, Z, AC, P/V, and CY flags are changed in accordance with the last compare operation (subtraction) executed by this instruction.
- The S flag is set (1) if bit 7 is set (1) as a result of the subtraction, and cleared (0) otherwise.
- The Z flag is set (1) if the result of the subtraction is 0, and z flag is cleared (0) otherwise.
- The AC flag is set (1) if a borrow is generated out of bit 4 into bit 3 as a result of the subtraction, and cleared (0) otherwise.
- The P/V flag is set (1) if a borrow is generated in bit 6 and a borrow is not generated in bit 7 as a result of the subtraction (when underflow is generated by a two's complement type operation), or if a borrow is not generated in bit 6 and a borrow is generated in bit 7 (when overflow is generated by a two's complement type operation), and is cleared (0) otherwise.
- The CY flag is set (1) if a borrow is generated in bit 7 as a result of the subtraction, and cleared (0) otherwise.





MOV C, #40H MOVG TDE, #342156H MOVG WHL, #3421AAH CMPBKE [TDE +], [WHL +] BNE \$DIFF

; Compares the 40H-byte data from address 342156H with the data from address 3421AAH, and branches to address DIFF if there is different data

# **CMPBKNE**

Compare Block Not Equal Byte Block Comparison with Byte Data (Mismatch Detection)

[Instruction format] CMPBKNE [TDE + ], [WHL + ]

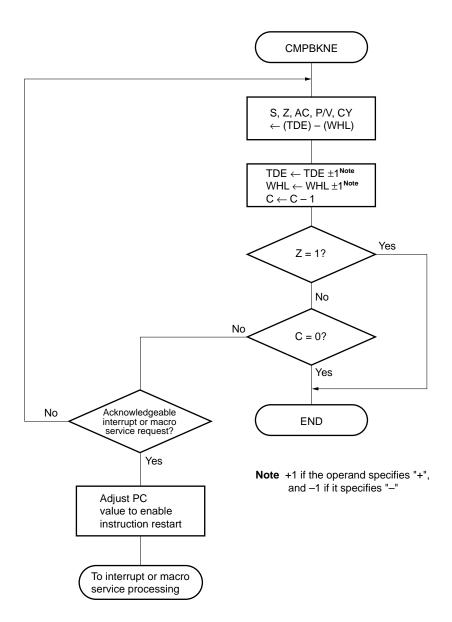
CMPBKNE [TDE - ], [WHL - ]

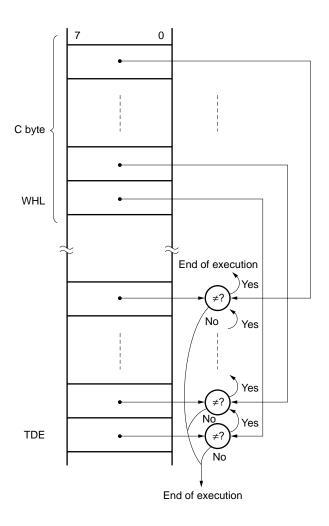
[Operation] (TDE) – (WHL), TDE  $\leftarrow$  TDE + 1, WHL  $\leftarrow$  WHL + 1, C  $\leftarrow$  C – 1

End if C = 0 or Z = 1

(TDE) – (WHL), TDE  $\leftarrow$  TDE – 1, WHL  $\leftarrow$  WHL – 1, C  $\leftarrow$  C – 1

End if C = 0 or Z = 1


#### [Operands]


| Mnemonic | Operands           |  |
|----------|--------------------|--|
| CMPBKNE  | [TDE + ], [WHL + ] |  |
|          | [TDE – ], [WHL – ] |  |

#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| × | × | ×  | V   | ×  |

- The contents of the memory addressed by the WHL register are compared with the contents of the memory addressed by the TDE register, the contents of the TDE and WHL registers are incremented/decremented, and the contents of the C register are decremented. The above operations are repeated until the result of the comparison is a match, or the contents of the C register are 0.
- Execution of this instruction does not change the contents of the memory addressed by the TDE and WHL
  registers.
- If an acknowledgeable interrupt or macro service request is generated during execution of this instruction, execution of this instruction is interrupted and the interrupt or macro service request is acknowledged. When an interrupt is acknowledged, if the return address and the contents of the TDE, WHL, and C registers used by this instruction which have been saved to the stack or to RP2 and R7 are not changed, execution of the interrupted instruction is resumed upon returning from the interrupt. When a macro service request is acknowledged, execution of this instruction is resumed after completion of the macro service.
- The S, Z, AC, P/V, and CY flags are changed in accordance with the last compare operation (subtraction) executed by this instruction.
- The S flag is set (1) if bit 7 is set (1) as a result of the subtraction, and cleared (0) otherwise.
- The Z flag is set (1) if the result of the subtraction is 0, and z flag is cleared (0) otherwise.
- The AC flag is set (1) if a borrow is generated out of bit 4 into bit 3 as a result of the subtraction, and cleared (0) otherwise.
- The P/V flag is set (1) if a borrow is generated in bit 6 and a borrow is not generated in bit 7 as a result of the subtraction (when underflow is generated by a two's complement type operation), or if a borrow is not generated in bit 6 and a borrow is generated in bit 7 (when overflow is generated by a two's complement type operation), and is cleared (0) otherwise.
- The CY flag is set (1) if a borrow is generated in bit 7 as a result of the subtraction, and cleared (0) otherwise.





MOV C, #5H MOVG TDE, #0FFC50H MOVG WHL, #0FC50H CMPBKNE [TDE +], [WHL +] BE \$FIND

; Compares the 5-byte data from address 0FFC50H with the data from address 0FC50H, and branches to address FIND if there is matching data

# **CMPBKC**

Compare Block Carry Byte Block Comparison with Byte Data (Size Detection)

[Instruction format] CMPBKC [TDE + ], [WHL + ]

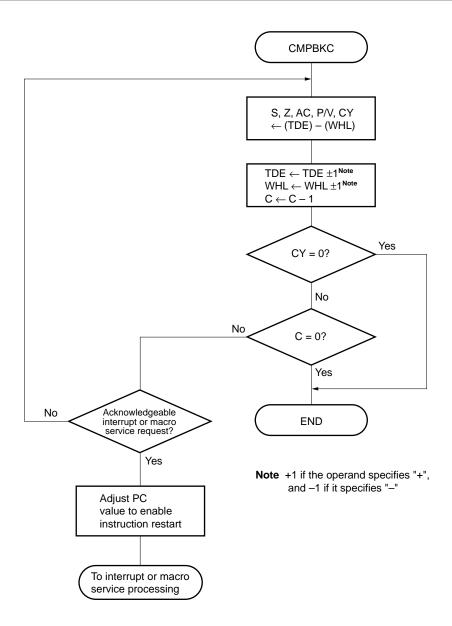
CMPBKC [TDE -], [WHL -]

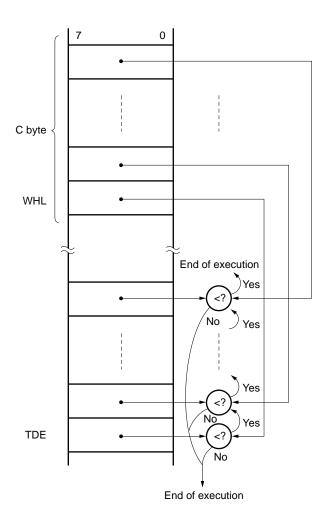
**[Operation]** (TDE) – (WHL), TDE  $\leftarrow$  TDE + 1, WHL  $\leftarrow$  WHL + 1, C  $\leftarrow$  C – 1

End if C = 0 or CY = 0

(TDE) – (WHL), TDE  $\leftarrow$  TDE – 1, WHL  $\leftarrow$  WHL – 1, C  $\leftarrow$  C – 1

End if C = 0 or CY = 0


#### [Operands]


| Mnemonic | Operands           |  |
|----------|--------------------|--|
| СМРВКС   | [TDE + ], [WHL + ] |  |
|          | [TDE – ], [WHL – ] |  |

#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| × | × | ×  | V   | ×  |

- The contents of the memory addressed by the WHL register are compared with the contents of the memory addressed by the TDE register, the contents of the TDE and WHL registers are incremented/decremented, and the contents of the C register are decremented. The above operations are repeated until the result of the comparison is that the contents of the memory addressed by the TDE register are equal to or greater than the contents of the memory addressed by the WHL register, or the contents of the C register are 0.
- Execution of this instruction does not change the contents of the memory addressed by the TDE and WHL
  registers.
- If an acknowledgeable interrupt or macro service request is generated during execution of this instruction, execution of this instruction is interrupted and the interrupt or macro service request is acknowledged. When an interrupt is acknowledged, if the return address and the contents of the TDE, WHL, and C registers used by this instruction which have been saved to the stack or to RP2 and R7 are not changed, execution of the interrupted instruction is resumed upon returning from the interrupt. When a macro service request is acknowledged, execution of this instruction is resumed after completion of the macro service.
- The S, Z, AC, P/V, and CY flags are changed in accordance with the last compare operation (subtraction) executed by this instruction.
- The S flag is set (1) if bit 7 is set (1) as a result of the subtraction, and cleared (0) otherwise.
- The Z flag is set (1) if the result of the subtraction is 0, and z flag is cleared (0) otherwise.
- The AC flag is set (1) if a borrow is generated out of bit 4 into bit 3 as a result of the subtraction, and cleared (0) otherwise.
- The P/V flag is set (1) if a borrow is generated in bit 6 and a borrow is not generated in bit 7 as a result of the subtraction (when underflow is generated by a two's complement type operation), or if a borrow is not generated in bit 6 and a borrow is generated in bit 7 (when overflow is generated by a two's complement type operation), and is cleared (0) otherwise.
- The CY flag is set (1) if a borrow is generated in bit 7 as a result of the subtraction, and cleared (0) otherwise.





MOV C, #3H MOVG TDE, #0E8762H MOVG WHL, #03502H CMPBKC [TDE – ], [WHL – ] BNC \$BIG

; Compares the 3-byte data from address 0E8760H with the 3-byte data from address 03500H, and branches to address BIG if the result of the comparison is that the values are the same or the 3-byte data from address 0E8760H is greater

## **CMPBKNC**

Compare Block Not Carry Byte Fixed Byte Data Block Comparison (Size Comparison)

[Instruction format] CMPBKNC [TDE + ], [WHL + ]

CMPBKNC [TDE - ], [WHL - ]

[Operation] (TDE) – (WHL), TDE  $\leftarrow$  TDE + 1, WHL  $\leftarrow$  WHL + 1, C  $\leftarrow$  C – 1

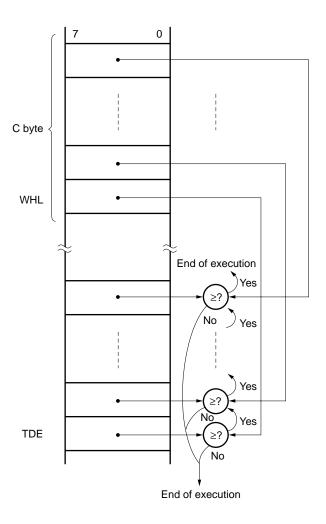
End if C = 0 or CY = 1

(TDE) – (WHL), TDE  $\leftarrow$  TDE – 1, WHL  $\leftarrow$  WHL – 1, C  $\leftarrow$  C – 1

End if C = 0 or CY = 1

#### [Operands]

| Mnemonic | Operands           |  |
|----------|--------------------|--|
| CMPBKNC  | [TDE + ], [WHL + ] |  |
|          | [TDE – ], [WHL – ] |  |


#### [Flags]

| S | Z | AC | P/V | CY |
|---|---|----|-----|----|
| × | × | ×  | V   | ×  |

#### [Description]

- The contents of the memory addressed by the WHL register are compared with the contents of the memory addressed by the TDE register, the contents of the TDE and WHL registers are incremented/decremented, and the contents of the C register are decremented. The above operations are repeated until the result of the comparison is that the contents of the memory addressed by the WHL register are greater, or the contents of the C register are 0.
- Execution of this instruction does not change the contents of the memory addressed by the TDE and WHL
  registers.
- If an acknowledgeable interrupt or macro service request is generated during execution of this instruction, execution of this instruction is interrupted and the interrupt or macro service request is acknowledged. When an interrupt is acknowledged, if the return address and the contents of the TDE, WHL, and C registers used by this instruction which have been saved to the stack or to RP2 and R7 are not changed, execution of the interrupted instruction is resumed upon returning from the interrupt. When a macro service request is acknowledged, execution of this instruction is resumed after completion of the macro service.
- The S, Z, AC, P/V, and CY flags are changed in accordance with the last compare operation (subtraction) executed by this instruction.
- The S flag is set (1) if bit 7 is set (1) as a result of the subtraction, and cleared (0) otherwise.
- The Z flag is set (1) if the result of the subtraction is 0, and z flag is cleared (0) otherwise.
- The AC flag is set (1) if a borrow is generated out of bit 4 into bit 3 as a result of the subtraction, and cleared (0) otherwise.
- The P/V flag is set (1) if a borrow is generated in bit 6 and a borrow is not generated in bit 7 as a result of the subtraction (when underflow is generated by a two's complement type operation), or if a borrow is not generated in bit 6 and a borrow is generated in bit 7 (when overflow is generated by a two's complement type operation), and is cleared (0) otherwise.
- The CY flag is set (1) if a borrow is generated in bit 7 as a result of the subtraction, and cleared (0) otherwise.





#### [Coding example]

MOV C, #4H

MOVG TDE, #05503H

MOVG WHL, #0FFC03H

CMPBKNC [TDE - ], [WHL - ]

**BC \$LITTLE** 

; Compares the 4-byte data from address 05500H with the data from address 0FFC00H, and branches to address LITTLE if the data from address 05500H is smaller  $\frac{1}{2}$ 

## **CHAPTER 8 DEVELOPMENT TOOLS**

Tools required for 78K/IV Series product development are shown in this chapter.

For details, refer to the User's Manual — Hardware of each device and the Single-Chip Microcontroller Development Tool Selection Guide (U11069E).

## 8.1 Development Tools

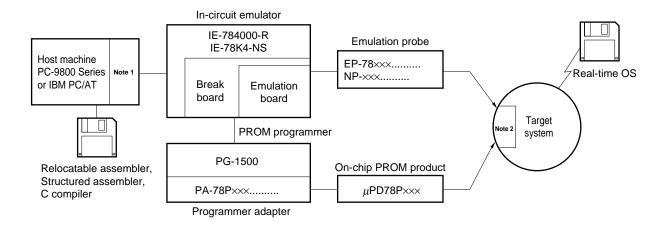
The following development tools are provided to develop programs for application systems

Table 8-1. Types and Functions of Development Tools (1/2)

| Development tools                                              |                                                                                  | Functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hardware                                                       | In-circuit emulator<br>(IE-784000-R)<br>(IE-78K4-NS)                             | This is a hardware tool used for program debugging for system development of 78K/IV Series.  When a personal computer (PC-9800 Series or IBM PC/(IE-78K4-NS) AT <sup>TM</sup> ) is used as a host machine of this emulator, it is possible to perform more efficient debugging by means of functions such as the symbolic debugging and the object file and symbol file transfer.  An on-chip serial interface RS-232-C enables connection to a PROM programmer (PG-1500). |
| Emulation board (IE-78××-R-EM) (IE-78××-R-EM-A) (IE-78××-R-EM) |                                                                                  | This is a board to emulate peripheral hardware that is specific to the target device.                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                | I/O emulation board<br>(IE-78xxx-R-EM1)<br>(IE-78xxx-R-EM1)<br>(IE-78xxx-NS-EM1) | This is a board to emulate peripheral hardware that is specific to the target device. It is used in combination with an emulation board. The I/O emulation board required for the target device depends on the products.                                                                                                                                                                                                                                                   |
|                                                                | Emulation probe (EP-78×××) (NP-×××)                                              | This probe connects the in-circuit emulator to the target device. It is provided each target device package.                                                                                                                                                                                                                                                                                                                                                               |
|                                                                | Conversion socket (EV-9200××-××)                                                 | This is a socket used to connect the emulation probe for QFP to the application system. It is a standard accessory for an emulation probe for QPF. Mount it on the circuit board for an application system.                                                                                                                                                                                                                                                                |
|                                                                | Programmer adapter (PA-78Pxxx)                                                   | This is an adapter for the PROM programmer (PG-1500) that is used for programming on-chip PROM products.                                                                                                                                                                                                                                                                                                                                                                   |
| Jig (EV-990                                                    | 00)                                                                              | Jig for removing WQFP-package product from the EV-9200××-××.                                                                                                                                                                                                                                                                                                                                                                                                               |

Table 8-1. Types and Functions of Development Tools (2/2)

| Development tools |                                                     | Functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|-------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Software          | Integrated debugger<br>(ID78K4)                     | This is a control program for in-circuit emulators for the 78K/IV Series. This debugger is used in combination with the device files. This debugger enables more effective debugging than previous IE controllers by offering the following features: source program level debugging written in C language, structured assembly language, or assembly language and display for a variety of simultaneous a variety of information by dividing the screen of the host machine. |  |  |
|                   | Device file                                         | Used in combination with an integrated debugger. This file is required when debugging the 78K/IV Series.                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                   | In-circuit emulator control program (IE controller) | This is software to perform efficient debugging by connecting the IE to the host machine.  This software makes full use of the capabilities of the IE by means of file (object or symbol) transfer, on-line assembly, disassembly, break condition (event) setup, etc.                                                                                                                                                                                                        |  |  |
|                   | Relocatable assembler <sup>Note 1</sup>             | This is a program to convert a program written in mnemonic to an object code that can be executed by microcontrollers.  In addition, an automatic function to perform a symbol table creation and branch instruction optimization processing is provided.                                                                                                                                                                                                                     |  |  |
|                   | Structured assembler preprocessor                   | This software introduces a structured programming method into the assembler.  It enables writing functions with a C language-like control structure without sacrificing the size and speed of the assembler.                                                                                                                                                                                                                                                                  |  |  |
|                   | C compiler <sup>Note 1</sup>                        | This is a program that translates a program written in the high-level C language into object code, which can be executed by a microcontroller.                                                                                                                                                                                                                                                                                                                                |  |  |
|                   | C library source                                    | This source program is attached to the C compiler. This program is required when modifying a library (To better match user specifications).                                                                                                                                                                                                                                                                                                                                   |  |  |
|                   | System simulator<br>(SM78K4) <sup>Note 2</sup>      | This is a software development support tool. C source level or assembler level debugging is possible while simulating the operation of the target system in the host machine. The SM78K4 enables the verification of the logic and performance of applications independently from the hardware development. Consequently, development efficiency and software quality can be improved.                                                                                        |  |  |


Notes 1. Used in combination with the device files for 78K/IV Series.

2. Used in combination with the device files.

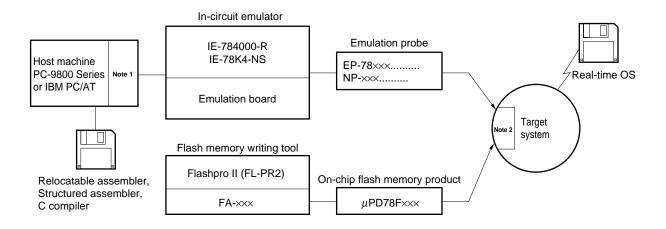

**Remark** All the software listed above runs under MS-DOS<sup>TM</sup> and PC DOS<sup>TM</sup>.

Figure 8-1. Development Tools Structure

#### (On-chip PROM)



#### (On-chip Flash Memory)



Notes 1. Integrated debugger and device file

2. Conversion socket to connect emulation probe to the target system (Products whose prefix is EV-9200)

Remark The meaning of part number prefix are as follows.

IE : In-circuit emulator EP : Emulation probe

NP : Emulation probe (Made by Naitou Densei Machidaseisakusho, Co., Ltd.)

PA : PROM programmer adapter
FA : Adapter for flash memory writing

×××.....: Varies depending on the target device or package.

## 8.2 PROM Programming Tools

## (1) Hardware

| PG-1500                 | PROM programmer which allows programming, in standalone mode or via operation from a host machine, of a single-chip microcontroller with on-chip PROM by connection of the board provided and a separately available PROM programmer adapter. It can also program typical 256-Kbit to 4-Mbit PROM. |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROM programmer adapter | Adapter which provided for each product with on-chip PROM. This adapter is used in combination with PROM programmer. For actual product names, refer to the <b>User's Manual — Hardware</b> for the relevant device.                                                                               |

## (2) Software

| PG-1500 controller | Controls the PG-1500 on the host machine by connecting PG-1500 to the host machine with |
|--------------------|-----------------------------------------------------------------------------------------|
|                    | parallel and serial interface.                                                          |

# 8.3 Flash Memory Programming Tools

| Flashpro II (FL-PR2)     | This is flash programmer for a microcontroller in the flash memory.                               |
|--------------------------|---------------------------------------------------------------------------------------------------|
| Adapter for flash memory | This must be wired to match the objective product.                                                |
| programming              | For details about part names, refer to the hardware version of the user's manual for each device. |

**Remark** This is a product of Naitou Densei Machidaseisakusho Co., Ltd. Consult with an NEC representative before buying this part.

## **CHAPTER 9 EMBEDDED SOFTWARE**

## 9.1 Real-time OS

| RX78K/IV Note<br>Real-time OS | The aim of the RX78K/IV is to realize multi-task environments for real-time required control fields. The CPU idle time can be allotted to other processes to improve the overall performance of the system. The RX78K/IV provides system calls (31 kinds) conforming to the µITRON specification, and the tools (configurator) for creating the RX78K/IV nucleus and several information tables. The RX78K/IV should be used in combination with separately available assembler package (RA78K4) and device files.  Precaution when used under PC environment> Real-time OS is a DOS-based application. When using this application on Windows, use the DOS prompt. |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MX78K4<br>OS                  | μITRON specification subset OS. Nucleus of MX78K4 is attached. Task, event, and time management are performed. Task execution sequence is controlled in task management and with subsequent switch to the next execution task.  - Precaution when used under PC environment>  MX78K4 is a DOS-based application. When using this application on Windows, use the DOS prompt.                                                                                                                                                                                                                                                                                        |

**Note** When purchasing the RX78K/IV, the purchasing application must be filled in advance and a using conditions agreement signed.

## APPENDIX A INDEX OF INSTRUCTIONS (MNEMONICS: BY FUNCTION)

| [8-Bit Data Transfer Instruction]  |     | [Multiplication/Division Instructions] |     |
|------------------------------------|-----|----------------------------------------|-----|
| MOV                                | 294 | MULU                                   | 326 |
|                                    |     | MULUW                                  | 327 |
| [16-Bit Data Transfer Instruction] |     | MULW                                   | 328 |
|                                    |     | DIVUW                                  | 329 |
| MOVW                               | 297 | DIVUX                                  | 330 |
| [24-Bit Data Transfer Instruction] |     | [Special Operation Instructions]       |     |
| MOVG                               | 300 | MACW                                   | 332 |
|                                    |     | MACSW                                  | 335 |
| [8-Bit Data Exchange Instruction]  |     | SACW                                   | 338 |
| XCH                                | 302 | [Increment/Decrement Instructions]     |     |
| [16-Bit Data Exchange Instruction] |     | INC                                    | 342 |
|                                    |     | DEC                                    | 343 |
| XCHW                               | 304 | INCW                                   | 344 |
|                                    |     | DECW                                   | 345 |
| [8-Bit Operation Instructions]     |     | INCG                                   | 346 |
|                                    |     | DECG                                   | 347 |
| ADD                                | 306 |                                        |     |
| ADDC                               | 307 | [Adjustment Instructions]              |     |
| SUB                                | 308 |                                        |     |
| SUBC                               | 309 | ADJBA                                  | 349 |
| CMP                                | 310 | ADJBS                                  | 350 |
| AND                                | 312 | CVTBW                                  | 351 |
| OR                                 | 313 |                                        |     |
| XOR                                | 314 | [Shift/Rotate Instructions]            |     |
| [16-Bit Operation Instructions]    |     | ROR                                    |     |
|                                    |     | ROL                                    |     |
| ADDW                               | 316 | RORC                                   |     |
| SUBW                               | 318 | ROLC                                   |     |
| CMPW                               | 320 | SHR                                    | 357 |
|                                    |     | SHL                                    |     |
| [24-Bit Operation Instructions]    |     | SHRW                                   |     |
|                                    |     | SHLW                                   | 360 |
| ADDG                               | 323 | ROR4                                   | 361 |
| SUBG                               | 324 | ROL4                                   | 362 |

| [Bit Manipulation Instructions]    |     | [Conditional Branch Instructions] |     |
|------------------------------------|-----|-----------------------------------|-----|
| MOV1                               | 364 | BNZ                               | 403 |
| AND1                               | 366 | BNE                               | 403 |
| OR1                                | 368 | BZ                                | 404 |
| XOR1                               | 370 | BE                                | 404 |
| NOT1                               | 371 | BNC                               | 405 |
| SET1                               | 372 | BNL                               | 405 |
| CLR1                               | 373 | BC                                | 406 |
|                                    |     | BL                                | 406 |
| [Stack Manipulation Instructions]  |     | BNV                               | 407 |
|                                    |     | BPO                               | 407 |
| PUSH                               | 375 | BV                                | 408 |
| PUSHU                              | 377 | BPE                               | 408 |
| POP                                | 378 | BP                                | 409 |
| POPU                               | 380 | BN                                | 410 |
| MOVG                               | 381 | BLT                               | 411 |
| ADDWG                              | 382 | BGE                               | 412 |
| SUBWG                              | 383 | BLE                               | 413 |
| INCG SP                            | 384 | BGT                               | 414 |
| DECG SP                            | 385 | BNH                               | 415 |
|                                    |     | BH                                | 416 |
| [Call/Return Instructions]         |     | BF                                | 417 |
|                                    |     | BT                                | 418 |
| CALL                               | 387 | BTCLR                             | 419 |
| CALLF                              | 388 | BFSET                             | 420 |
| CALLT                              | 389 | DBNZ                              | 421 |
| BRK                                | 390 |                                   |     |
| BRKCS                              | 391 | [CPU Control Instructions]        |     |
| RET                                | 393 |                                   |     |
| RETI                               | 394 | MOV STBC, #byte                   | 423 |
| RETB                               | 395 | MOV WDM, #byte                    | 424 |
| RETCS                              | 396 | LOCATION                          | 425 |
| RETCSB                             | 398 | SEL RBn                           | 426 |
|                                    |     | SEL RBn, ALT                      | 427 |
| [Unconditional Branch Instruction] |     | SWRS                              | 428 |
|                                    |     | NOP                               | 429 |
| BR                                 | 401 | EI                                | 430 |
|                                    |     | DI                                | 431 |
|                                    |     | [Special Instructions]            |     |
|                                    |     | CHKL                              | 433 |
|                                    |     | CHKLA                             | 434 |

## [String Instructions]

| MOVTBLW |     |
|---------|-----|
| MOVM    |     |
| XCHM    | 440 |
| MOVBK   |     |
| XCHBK   | 445 |
| CMPME   | 448 |
| CMPMNE  |     |
| CMPMC   | 454 |
| CMPMNC  | 457 |
| CMPBKE  | 460 |
| CMPBKNE | 463 |
| CMPBKC  | 466 |
| CMPRKNC | 469 |

## APPENDIX B INDEX OF INSTRUCTIONS (MNEMONICS: ALPHABETICAL ORDER)

| [A]   |     | [C]     |     |
|-------|-----|---------|-----|
| ADD   | 306 | CALL    | 387 |
| ADDC  | 307 | CALLF   | 388 |
| ADDG  | 323 | CALLT   | 389 |
| ADDW  | 316 | CHKL    | 433 |
| ADDWG | 382 | CHKLA   | 434 |
| ADJBA | 349 | CLR1    | 373 |
| ADJBS | 350 | CMP     | 310 |
| AND   | 312 | CMPBKC  | 466 |
| AND1  | 366 | CMPBKE  | 460 |
|       |     | CMPBKNC | 469 |
| [B]   |     | CMPBKNE | 463 |
|       |     | CMPMC   | 454 |
| BC    | 406 | CMPME   | 448 |
| BE    | 404 | CMPMNC  | 457 |
| BF    | 417 | CMPMNE  | 451 |
| BFSET | 420 | CMPW    | 320 |
| BGE   | 412 | CVTBW   | 351 |
| BGT   | 414 |         |     |
| BH    | 416 | [D]     |     |
| BL    | 406 |         |     |
| BLE   | 413 | DBNZ    | 421 |
| BLT   | 411 | DEC     | 343 |
| BN    | 410 | DECG    | 347 |
| BNC   | 405 | DECG SP | 385 |
| BNE   | 403 | DECW    | 345 |
| BNH   | 415 | DI      | 431 |
| BNL   | 405 | DIVUW   | 329 |
| BNV   | 407 | DIVUX   | 330 |
| BNZ   | 403 |         |     |
| BP    | 409 | [E]     |     |
| BPE   | 408 |         |     |
| BPO   | 407 | EI      | 430 |
| BR    | 401 |         |     |
| BRK   | 390 | [1]     |     |
| BRKCS | 391 |         |     |
| BT    | 418 | INC     | 342 |
| BTCLR | 419 | INCG    | 346 |
| BV    | 408 | INCG SP | 384 |
| BZ    | 404 | INCW    | 344 |
|       |     |         |     |

| [L]             |          | [R]          |     |
|-----------------|----------|--------------|-----|
| LOCATION        | 425      | ROL          | 354 |
|                 |          | ROLC         | 356 |
| [M]             |          | ROL4         | 362 |
|                 |          | ROR          | 353 |
| MACSW           | 335      | RORC         | 355 |
| MACW            | 332      | ROR4         | 361 |
| MOV             | 294      | RET          | 393 |
| MOVBK           | 442      | RETB         | 395 |
| MOVG            | 300, 381 | RETCS        | 396 |
| MOVM            | 297      | RETCSB       | 398 |
| MOV STBC, #byte | 423      | RETI         | 394 |
| MOVTBLW         | 436      |              |     |
| MOVW            | 438      | [S]          |     |
| MOV WDM, #byte  | 424      |              |     |
| MOV1            | 364      | SACW         | 338 |
| MULU            | 326      | SEL RBn      | 426 |
| MULUW           | 327      | SEL RBn, ALT | 427 |
| MULW            | 328      | SET1         | 372 |
|                 |          | SHL          | 358 |
| [N]             |          | SHLW         | 360 |
|                 |          | SHR          | 357 |
| NOP             | 429      | SHRW         | 359 |
| NOT1            | 371      | SUB          | 308 |
|                 |          | SUBC         | 309 |
| [0]             |          | SUBG         | 324 |
| -               |          | SUBW         | 318 |
| OR              | 313      | SUBWG        | 383 |
| OR1             | 368      | SWRS         | 428 |
| [P]             |          | [X]          |     |
| POP             | 378      | XCH          | 302 |
| POPU            | 380      | XCHBK        | 445 |
| PUSH            | 375      | XCHM         | 440 |
| PUSHU           | 377      | XCHW         | 304 |
|                 |          | XOR          | 314 |
|                 |          | VOR1         | 270 |

## APPENDIX C REVISION HISTORY

Revisions through this document are listed in the following table. The column "Applicable Chapters" indicates the chapters in each edition. (1/3)

| Edition     | Major Revisions from Previous Edition                                                                                                                                                                                                                                                                                                                                                                                                                    | Applicable Chapters            |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| 2nd Edition | The following instructions are added to bit manipulation instructions.  MOV1 CY, !addr16.bit CY, !!addr24, bit !addr16.bit, CY !!addr24.bit, CY  AND1, OR1 CY, !addr16.bit CY, !!addr24.bit CY, !!addr24.bit XOR1 CY, !addr16.bit CY,!!addr24.bit  XOR1 CY, !addr16.bit CY,!!addr24.bit  NOT1, SET1, CLR1 !addr16.bit !!addr24.bit  The following instructions are added to conditional branch instructions.  BF, BT, BFSET, BTCLR !addr16.bit, \$addr20 | CHAPTER 6 INSTRUCTION SET      |
| 3rd Edition | <ul> <li>!!addr24.bit, \$addr20</li> <li>Descriptions regarding μPD784915 Subseries are added.</li> <li>μPD784020 is added to μPD784026 Subseries.</li> </ul>                                                                                                                                                                                                                                                                                            | Throughout                     |
|             | Notation used in section <b>5.2.10 Short direct 24-bit memory indirect</b> addressing changed as follows: [%saddrp] → [%saddrg]                                                                                                                                                                                                                                                                                                                          | CHAPTER 5 ADDRESSING           |
|             | <ul> <li>saddrg1 and saddrg2 are added to section 6.1 Legend, (1) Operand Identifiers and Description (2/2).</li> <li>MOVG operand corrected as follows:         [TDE+HL], WHL → [TDE+C], WHL</li> <li>Section 6.5 Number of Instruction Clocks is added</li> </ul>                                                                                                                                                                                      | CHAPTER 6<br>INSTRUCTION SET   |
|             | • 3.5-inch 2HC or 3.5-inch 2HD is added as supply medium for IBM PC/AT   • Part numbers for ordering integrated debuggers are changed as follows: $\mu \text{S5A10ID78K4} \rightarrow \mu \text{SAA10ID78K4}$ $\mu \text{S5A13ID78K4} \rightarrow \mu \text{SAA13ID78K4}$ $\mu \text{S7B10ID78K4} \rightarrow \mu \text{SBB10ID78K4}$                                                                                                                    | CHAPTER 8<br>DEVELOPMENT TOOLS |

(2/3)

| Edition     | Major Revisions from Previous Edition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Applicable Chapters                         |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| 4th Edition | <ul> <li>GK Package (80-pin plastic TQFP, fine pitch, 12 mm × 12 mm) is added to μPD784021.</li> <li>Descriptions regarding μPD784038/784038Y Subseries are added.</li> <li>Descriptions regarding μPD784046 Subseries are added.</li> <li>Descriptions regarding μPD784208/784208Y Subseries are added.</li> <li>A "Note" mark is appended to the RETCS instruction, which indicates that the μPD784208 and 784208Y Subseries do not have the RETCS instruction.</li> </ul>                                                                                                                                                                                                                                                                    | Throughout                                  |
|             | Descriptions regarding flash memory are added.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CHAPTER 8 DEVELOPMENT TOOLS                 |
|             | Descriptions regarding the MX78K4 are added.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CHAPTER 9<br>SOFTWARE FOR<br>EMBEDDING      |
| 5th Edition | <ul> <li>New products (μPD784031/Y) and new package (80-pin plastic QFP (14 mm square, 1.4 mm thick)) have been added to the μPD784038/Y Subseries.</li> <li>Entries related to the new product (μPD784054) of the μPD784046 Subseries have been added.</li> <li>Entries related to the μPD784208 Subseries have been deleted.</li> <li>Entries related to the μPD784216/Y Subseries have been added.</li> <li>Entries related to the new products (μPD784915A, 784916A) of the μPD784915 Subseries have been added.</li> <li>Entries related to the μPD784908 Subseries have been added.</li> <li>Entries related to the μPD784908 Subseries have been added.</li> <li>Entries related to the μPD78F4943 Subseries have been added.</li> </ul> | Throughout                                  |
|             | • Note that there is no RETCS instruction in the $\mu$ PD764208 and $\mu$ PD784208Y Subseries has been deleted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CHAPTER 6<br>INSTRUCTION SET                |
|             | <ul> <li>The entry, 'Highest-order/On Highest-order side' for RETI instructions has been changed to 'Highest Priority.'</li> <li>Note that there is no RETCS instruction in the μPD764208 and μPD784208Y Subseries has been deleted, 'target' has been added to the instruction format, and the entry, 'Highest-order/On Highest-order side' has been changed to 'Highest Priority.'</li> <li>'target' has been added to the instruction format for RETCSB instructions.</li> </ul>                                                                                                                                                                                                                                                             | CHAPTER 7<br>DESCRIPTION OF<br>INSTRUCTIONS |
|             | Entries related to flash memory have been corrected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CHAPTER 8 DEVELOPMENT TOOLS                 |

(3/3)

| Edition     | Major Revisions from Previous Edition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Applicable Chapters                   |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| 6th Edition | <ul> <li>Adds the μPD784218, 784218Y, 784225, 784225Y, 784928, and 784928Y Subseries and μPD784943.</li> <li>The following products are in the development to completion stage: μPD784037, 784038, 78P4038 μPD784031Y, 784035Y, 784036Y, 784037Y, 784038Y, 78P4038Y μPD784215, 784216 μPD784215Y, 784216Y μPD784915A, 784916A</li> <li>Changes the GC-7EA package to the GC-8EU package in the μPD784214, 784215, 784216, 784214Y, 784215Y, and 784216Y.</li> <li>Describes that the μPD784915 Subseries provide the fixed LOCATION 0 instruction instead of the LOCATION 0FH instruction.</li> <li>Adds Note describing that the special instructions (CHKL and CHKLA) are not available for the μPD784216, 784216Y, 784218, 784218Y, 784225, and 784215Y,</li> <li>Changes the μPD78F4943 Subseries to the μPD784943 Subseries.</li> </ul>            | Throughout                            |
| 7th Edition | <ul> <li>Addition of μPD784937 and 784955 Subseries. Deletion of μPD784943.</li> <li>The following products changed from under development stage to completed.         μPD784031(A), 784035(A), 784036(A),         μPD784044(A), 784044(A1), 784044(A2), 784046(A), 784046(A1),         784046(A2),         μPD784054(A), 784054(A1), 784054(A2), μPD784214, 784214Y,         μPD784915B, 784916B,         μPD784927, 78F4928, 784927Y, 78F4928Y</li> <li>Modification of GC-7EA package to GC-8EU package for the μPD78F4216,         78F4216Y</li> <li>Modification of power supply voltage in the μPD784908 Subseries.         Mask ROM version (μPD784907, 784908) changed from (VDD = 4.5 to         5.5 V) to (VDD = 3.5 to 5.5 V)         PROM version (μPD78P4908) changed from (VDD = 4.5 to 5.5 V) to         (VDD = 4.0 to 5.5 V)</li> </ul> | Throughout                            |
|             | Modification of the Notes in the special instructions (CHKL, CHKLA).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CHAPTER 6<br>INSTRUCTION SET          |
|             | Modification of the operation sequence of the POP instruction.  Addition of the Note in CHKL instruction.  Addition of Note in CHKLA instruction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CHAPTER 7 DESCRIPTION OF INSTRUCTIONS |
|             | Modification of the format.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CHAPTER 8 DEVELOPMENT TOOLS           |
|             | Addition of the description on the PC environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CHAPTER 9 EMBEDDED<br>SOFTWARE        |



# Facsimile Wessage Although NEC has taken all possible steps to ensure that the documentation supplied to our customers is complete, bug free

| From:                                                                                                 | to our customers is complete, bug free and up-to-date, we readily accept that errors may occur. Despite all the care and precautions we've taken, you may |             |                                                                                        |               |      |  |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------|---------------|------|--|
|                                                                                                       |                                                                                                                                                           |             | encounter problems in the documentation.  Please complete this form whenever           |               |      |  |
| Company                                                                                               |                                                                                                                                                           |             | you'd like to report errors or suggest<br>improvements to us.                          |               |      |  |
| Tel.                                                                                                  | FAX                                                                                                                                                       |             |                                                                                        |               |      |  |
| Address                                                                                               |                                                                                                                                                           |             |                                                                                        |               |      |  |
|                                                                                                       |                                                                                                                                                           |             | Thank you for yo                                                                       | our kind supp | ort. |  |
| North America NEC Electronics Inc. Corporate Communications Dept. Fax: 1-800-729-9288 1-408-588-6130  | Hong Kong, Philippines, Oceania<br>NEC Electronics Hong Kong Ltd.<br>Fax: +852-2886-9022/9044                                                             |             | Asian Nations except Philippines NEC Electronics Singapore Pte. Ltd. Fax: +65-250-3583 |               |      |  |
| Europe NEC Electronics (Europe) GmbH Technical Documentation Dept. Fax: +49-211-6503-274              | Korea NEC Electronics Hong Kong Ltd. Seoul Branch Fax: 02-528-4411                                                                                        |             | Japan NEC Semiconductor Technical Hotline Fax: 044-548-7900                            |               |      |  |
| South AmericaTaiwanNEC do Brasil S.A.NEC Electronics Taiwan Ltd.Fax: +55-11-6465-6829Fax: 02-719-5951 |                                                                                                                                                           |             |                                                                                        |               |      |  |
| I would like to report the follo                                                                      |                                                                                                                                                           | _           | uggestion:                                                                             |               |      |  |
| Document title:                                                                                       |                                                                                                                                                           |             |                                                                                        |               |      |  |
| Document number:                                                                                      |                                                                                                                                                           |             | Page number: _                                                                         |               |      |  |
|                                                                                                       |                                                                                                                                                           |             |                                                                                        |               |      |  |
| If possible, please fax the ref                                                                       | erenced page o                                                                                                                                            | or drawing. |                                                                                        |               |      |  |
| <b>Document Rating</b>                                                                                | Excellent                                                                                                                                                 | Good        | Acceptable                                                                             | Poor          |      |  |
| Clarity                                                                                               |                                                                                                                                                           |             |                                                                                        | ٥             |      |  |
| Technical Accuracy                                                                                    |                                                                                                                                                           |             |                                                                                        | ۵             |      |  |
| Organization                                                                                          |                                                                                                                                                           |             |                                                                                        |               |      |  |