MITSUBISHI 8-BIT SINGLE-CHIP MICROCOMPUTER 740 FAMILY / 38000 SERIES

38C3 Group

User's Manual

keen	safety	first	in v	vour	circuit	designs	1
NOOP	Julioty	11100		y O G i	OII OUIL	acciqiic	

• Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes	regarding	these	materia	ls
-------	-----------	-------	---------	----

- These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
- Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts or circuit application examples contained in these materials.
- All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.
- Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of JAPAN and/or the country of destination is prohibited.
- Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

REVISION DESCRIPTION LIST 38C3 Group User's Manual
--

Rev.	Revision Description	Rev.
No.	First Edition	date 990412
1.0	First Edition	990412

Preface

This user's manual describes Mitsubishi's CMOS 8-bit microcomputers 38C3 Group.

After reading this manual, the user should have a through knowledge of the functions and features of the 38C3 Group, and should be able to fully utilize the product. The manual starts with specifications and ends with application examples.

For details of software, refer to the "740 Family Software Manual."

For details of development support tools, refer to the "DEVELOPMENT SUPPORT TOOLS FOR MICROCOMPUTERS" data book.

BEFORE USING THIS USER'S MANUAL

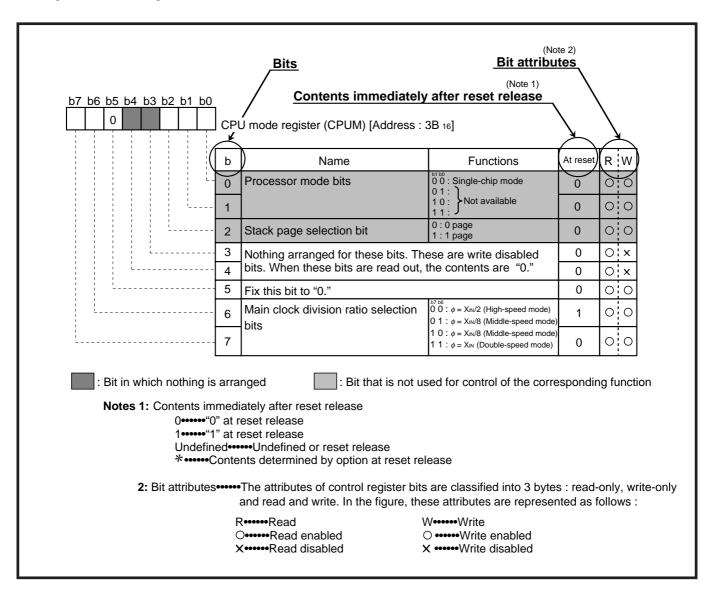
This user's manual consists of the following three chapters. Refer to the chapter appropriate to your conditions, such as hardware design or software development.

1. Organization

CHAPTER 1 HARDWARE

This chapter describes features of the microcomputer and operation of each peripheral function.

• CHAPTER 2 APPLICATION


This chapter describes usage and application examples of peripheral functions, based mainly on setting examples of relevant registers.

CHAPTER 3 APPENDIX

This chapter includes a list of registers, and necessary information for systems development using the microcomputer, the mask ROM confirmation (for mask ROM version), ROM programming confirmation, and the mark specifications which are to be submitted when ordering.

2. Structure of Register

The figure of each register structure describes its functions, contents at reset, and attributes as follows:

Table of contents

CHAPTER I HARDWARE	
DESCRIPTION	1-2
FEATURES	
APPLICATION	
PIN CONFIGURATION	
FUNCTIONAL BLOCK	
PIN DESCRIPTION	
PART NUMBERING	
GROUP EXPANSION	
Memory Type	
Memory Size	
Package FUNCTIONAL DESCRIPTION	
Central Processing Unit (CPU)	
Memory	
I/O Ports	
Interrupts	
Timers	
Serial I/O	
A-D Converter	
LCD Drive control circuit	
φ Clock Output Function	
ROM Correction Function (Mask ROM version only)	
Reset Circuit	
Clock Generating Circuit	
NOTES ON PROGRAMMING	1-44
NOTES ON USE	
DATA REQUIRED FOR MASK ORDERS	
DATA REQUIRED FOR ROM WRITING ORDERS	
ROM PROGRAMMING METHOD	
FUNCTIONAL DESCRIPTION SUPPLEMENT	1-46
CHAPTER 2 APPLICATION	
2.1 I/O port	2-2
2.1.1 Memory map	
2.1.2 Relevant registers	
2.1.3 Terminate unused pins	
2.1.4 Notes on I/O port	
2.1.5 Termination of unused pins	
2.2 Timer	
2.2.1 Memory map	
2.2.2 Relevant registers	
2.2.3 Timer application examples	
2.2.4 Notes on timer A (PWM mode and IGBT output mode)	
2.3 Serial I/O	
2.3.1 Memory map	
2.3.3 Serial I/O connection examples	
2.3.3 Serial I/O Connection examples	∠-30

2.3.4 Serial I/O's modes	2-38
2.3.5 Serial I/O application examples	2-38
2.3.6 Notes on serial I/O	2-51
2.4 LCD controller	2-52
2.4.1 Memory map	2-52
2.4.2 Relevant registers	2-53
2.4.3 LCD controller application examples	2-54
2.4.4 Notes on LCD controller	2-58
2.5 A-D converter	2-59
2.5.1 Memory map	
2.5.2 Relevant registers	
2.5.3 A-D converter application examples	
2.5.4 Notes on A-D converter	
2.6 ROM correct function	
2.6.1 Memory map	
2.6.2 Relevant registers	
2.6.3 ROM correct function application examples	
2.7 Reset circuit	
2.7.1 Connection example of reset IC	
2.7.2 Notes on reset circuit	
2.8 Clock generating circuit	
2.8.1 Relevant register	
2.8.2 Clock generating circuit application examples	2-72
CHAPTER 3 APPENDIX	
3.1 Electrical characteristics	2.2
3.1.1 Absolute maximum ratings	
3.1.2 Recommended operating conditions	
3.1.3 Electrical characteristics	
3.1.4 A-D converter characteristics	
3.1.5 Timing requirements and switching characteristics	
3.1.6 Absolute maximum ratings (M version)	
3.1.7 Recommended operating conditions (M version)	
3.1.8 Electrical characteristics (M version)	
3.1.9 A-D converter characteristics (M version)	
3.1.10 Timing requirements and switching characteristics (M version)	
3.2 Standard characteristics	
3.2.1 Power source current standard characteristics	3-20
3.2.2 Port standard characteristics	3-21
3.3 Notes on use	3-26
3.3.1 Notes on interrupts	3-26
3.3.2 Notes on timer A (PWM mode and IGBT output mode)	3-27
3.3.3 Notes on serial I/O	3-29
3.3.4 Notes on LCD controller	3-29
3.3.5 Notes on A-D converter	
3.3.6 Notes on reset circuit	
3.4 Countermeasures against noise	
3.4.1 Shortest wiring length	
3.4.2 Connection of bypass capacitor across Vss line and Vcc line	
3.4.3 Wiring to analog input pins	
3.4.4 Oscillator concerns	
3.4.5 Setup for I/O ports	3-36

3.4.6 Providing of watchdog timer function by software	3-37
3.5 Control registers	3-38
3.6 Mask ROM confirmation form	
3.7 ROM programming confirmation form	3-62
3.8 Mark specification form	3-66
3.9 Package outline	3-67
3.10 Machine instructions	3-68
3.11 List of instruction code	3-79
3.12 SFR memory map	3-80
3.13 Pin configuration	3-81

List of figures

CHAPTER 1 HARDWARE	
Fig. 1 M38C34M6AXXXFP pin configuration	1-2
Fig. 2 Functional block diagram	1-3
Fig. 3 Part numbering	1-6
Fig. 4 Memory expansion plan	1-7
Fig. 5 740 Family CPU register structure	1-8
Fig. 6 Register push and pop at interrupt generation and subroutine call	1-9
Fig. 7 Structure of CPU mode register	. 1-11
Fig. 8 Memory map diagram	
Fig. 9 Memory map of special function register (SFR)	
Fig. 10 Structure of PULL register A and PULL register B	
Fig. 11 Structure of port P8 output selection register	
Fig. 12 Port block diagram (1)	
Fig. 13 Port block diagram (2)	
Fig. 14 Port block diagram (3)	. 1-18
Fig. 15 Interrupt control	
Fig. 16 Structure of interrupt-related registers	
Fig. 17 Connection example when using key input interrupt and port P8 block diagram	
Fig. 18 Structure of timer related register	
Fig. 19 Block diagram of timer	
Fig. 20 Timing chart of timer 6 PWM1 mode	
Fig. 21 Block diagram of timer A	
Fig. 22 Structure of timer A related registers	
Fig. 23 Timing chart of timer A PWM, IGBT output modes	
Fig. 24 Block diagram of serial I/O	
Fig. 25 Structure of serial I/O control register	
Fig. 26 Serial I/O timing (for LSB first)	
Fig. 27 Structure of A-D control register	
Fig. 28 Black diagram of A-D converter	
Fig. 29 Structure of LCD related registers	
Fig. 30 Block diagram of LCD controller/driver	
Fig. 31 Example of circuit at each bias	
Fig. 32 LCD display RAM map	
Fig. 33 LCD drive waveform (1/2 bias)	
Fig. 34 LCD drive waveform (1/3 bias)	
Fig. 35 Structure of φ output control register	
Fig. 36 Structure of ROM correct address register	
Fig. 37 Structure of ROM correct data	
Fig. 38 Structure of ROM correct enable register 1	
Fig. 40 Reset carriers	
Fig. 41 Internal status at react	
Fig. 43 Coromic reconstant sircuit	
Fig. 42 Ceramic resonator circuit	
Fig. 44 Clock generating circuit block diagram	
Fig. 45 State transitions of system clock	
Fig. 45 State transitions of system clock	
Fig. 47 Timing chart after interrupt occurs	
1 19. 77 Tilling Graft after lifterrupt occurs	. 1-4/

	Fig. 48 Time up to execution of interrupt processing routine	
	Fig. 49 A-D conversion equivalent circuit	
	Fig. 50 A-D conversion timing chart	1-49
Cŀ	HAPTER 2 APPLICATION	
٠.		
	Fig. 2.1.1 Memory map of I/O port relevant registers	
	Fig. 2.1.2 Structure of port Pi (i = 0, 1, 2, 3, 4, 5, 6, 8)	
	Fig. 2.1.3 Structure of port P7	
	Fig. 2.1.4 Structure of Port P0 direction register and port P1 direction register	
	Fig. 2.1.5 Structure of Port Pi direction register (i = 2, 4, 5, 6, 8)	
	Fig. 2.1.6 Structure of Port P7 direction register	
	Fig. 2.1.7 Structure of PULL register A	
	Fig. 2.1.8 Structure of PULL register B	
	Fig. 2.1.9 Structure of Port P8 output selection register	
	Fig. 2.2.1 Memory map of registers relevant to timers	
	Fig. 2.2.2 Structure of Timer i (i=1, 3, 4, 5, 6)	
	Fig. 2.2.3 Structure of Timer 2	
	Fig. 2.2.4 Structure of Timer 6 PWM register	
	Fig. 2.2.5 Structure of Timer 12 mode register	
	Fig. 2.2.6 Structure of Timer 34 mode register	
	Fig. 2.2.7 Structure of Timer 56 mode register	
	Fig. 2.2.8 Structure of Timer A register (low-order, high-order)	
	Fig. 2.2.10 Structure of Timer A mode register	
	Fig. 2.2.11 Structure of Timer A control register	
	Fig. 2.2.12 Structure of Interrupt request register 1	
	Fig. 2.2.13 Structure of Interrupt request register 2	
	Fig. 2.2.14 Structure of Interrupt control register 1	
	Fig. 2.2.15 Structure of Interrupt control register 2	
	Fig. 2.2.16 Timers connection and setting of division ratios	
	Fig. 2.2.17 Relevant registers setting	
	Fig. 2.2.18 Control procedure	
	Fig. 2.2.19 Peripheral circuit example	
	Fig. 2.2.20 Timers connection and setting of division ratios	
	Fig. 2.2.21 Relevant registers setting	
	Fig. 2.2.22 Control procedure	
	Fig. 2.2.23 Judgment method of valid/invalid of input pulses	2-25
	Fig. 2.2.24 Relevant registers setting	
	Fig. 2.2.25 Control procedure	2-27
	Fig. 2.2.26 Timers connection and setting of division ratios	2-28
	Fig. 2.2.27 Relevant registers setting	2-29
	Fig. 2.2.28 Control procedure	
	Fig. 2.2.29 PWM output and IGBT output (1)	
	Fig. 2.2.30 PWM output and IGBT output (2)	
	Fig. 2.2.31 PWM output and IGBT output (3)	
	Fig. 2.3.1 Memory map of registers relevant to Serial I/O	
	Fig. 2.3.2 Structure of Serial I/O control register 1	
	Fig. 2.3.3 Structure of Serial I/O control register 2	
	Fig. 2.3.4 Structure of Interrupt request register 1	
	Fig. 2.3.5 Structure of Interrupt control register 1	
	Fig. 2.3.6 Serial I/O connection examples (1)	
	Fig. 2.3.7 Serial I/O connection examples (2)	2-37

List of figures

Fig.	2.3.8 Serial I/O's modes	. 2-38
_	2.3.9 Connection diagram	
_	2.3.10 Timing chart	
	2.3.11 Registers setting relevant to transmission side	
_	2.3.12 Registers setting relevant to reception side	
_	2.3.13 Control procedure of transmission side	
_	2.3.14 Control procedure of reception side	
_	2.3.15 Connection diagram	
	2.3.16 Timing chart	
_	2.3.17 Relevant registers setting	
_	2.3.18 Setting of transmission data	
_	2.3.19 Control procedure	
_	2.3.20 Connection diagram	
_	2.3.21 Timing chart	
_	2.3.22 Relevant registers setting in master unit	
_	2.3.23 Relevant registers setting in slave unit	
_		
_	2.3.24 Control procedure of master unit	
_	2.3.25 Control procedure of slave unit	
_	2.4.1 Memory map of registers relevant to LCD controller	
	2.4.2 Structure of Segment output enable register	
_	2.4.3 Structure of LCD mode register	
_	2.4.4 LCD panel	
_	2.4.5 Segment allocation example	
_	2.4.6 LCD display RAM map	
_	2.4.7 LCD display RAM setting	
_	2.4.8 Relevant registers setting	
_	2.4.9 Control procedure	
	2.5.1 Memory map of A-D converter relevant registers	
_	2.5.2 Structure of A-D control register	
_	2.5.3 Structure of A-D conversion register (low-order)	
Fig.	2.5.4 Structure of A-D conversion register (high-order)	. 2-60
	2.5.5 Structure of Interrupt request register 2	
Fig.	2.5.6 Structure of Interrupt control register 2	. 2-61
	2.5.7 Connection diagram	
Fig.	2.5.8 Setting of relevant registers	. 2-62
Fig.	2.5.9 Control procedure	. 2-63
Fig.	2.6.1 Memory map of ROM correct function relevant registers	. 2-65
Fig.	2.6.2 Structure of ROM correct enable register 1	. 2-66
	2.6.3 Connection diagram	
_	2.6.4 Setting of relevant registers	
	2.6.5 Control procedure	
	2.7.1 Example of power-on reset circuit	
_	2.7.2 RAM backup system example	
_	2.8.1 Structure of CPU mode register	
_	2.8.2 Connection diagram	
_	2.8.3 Status transition diagram during power failure	
_	2.8.4 Setting of relevant registers	
_	2.8.5 Control procedure	
_	2.8.6 Structure of clock counter	
_	2.8.7 Initial setting of relevant registers	
	2.8.8 Setting of relevant registers after detecting power failure	
_	2.8.9 Control procedure	
	p. v v v v v · · · · · · · · · · · · · ·	

CHAPTER 3 APPENDIX ■

Fig. 3.1.1 Circuit for measuring output switching characteristics	3-18
Fig. 3.1.2 Timing chart	3-19
Fig. 3.2.1 Power source current standard characteristics	3-20
Fig. 3.2.2 Power source current standard characteristics (in wait mode)	3-20
Fig. 3.2.3 CMOS output port (P0, P1, P2, P3) P-channel side characteristics (25 °C).	3-21
Fig. 3.2.4 CMOS output port (P0, P1, P2, P3) P-channel side characteristics (90 °C).	3-21
Fig. 3.2.5 CMOS output port (P0, P1, P2, P3) P-channel side characteristics (25 °C).	3-22
Fig. 3.2.6 CMOS output port (P0, P1, P2, P3) N-channel side characteristics (90 °C)	
Fig. 3.2.7 CMOS output port (P4, P5 ₀ , P5 ₂ -P5 ₇ , P6, P7 ₀ , P7 ₁ , P8) P-channel side character	eristics
(25 °C)	
Fig. 3.2.8 CMOS output port (P4, P5 ₀ , P5 ₂ –P5 ₇ , P6, P7 ₀ , P7 ₁ , P8) P-channel side character	
(90 °C)	
Fig. 3.2.9 CMOS output port (P4, P5 ₂ –P5 ₇ , P6, P7 ₀ , P7 ₁) N-channel side characteristics (
Fig. 3.2.10 CMOS output port (P4, P5 ₂ -P5 ₇ , P6, P7 ₀ , P7 ₁) N-channel side characterist	ics
(90 °C)	
Fig. 3.2.12 CMOS output port (P5 ₀ , P8) N-channel side characteristics (90 °C)	
Fig. 3.3.1 Sequence of switch detection edge	
Fig. 3.3.2 Sequence of check of interrupt request bit	
Fig. 3.3.3 Structure of interrupt control register 2	
Fig. 3.3.4 PWM output and IGBT output (1)	
Fig. 3.3.5 PWM output and IGBT output (2)	
Fig. 3.3.6 PWM output and IGBT output (3)	
Fig. 3.4.1 Selection of packages	
Fig. 3.4.2 Wiring for the RESET pin	
Fig. 3.4.3 Wiring for clock I/O pins	
Fig. 3.4.4 Wiring for the V _{PP} pin of the One Time PROM and the EPROM version	
Fig. 3.4.5 Bypass capacitor across the Vss line and the Vcc line	
Fig. 3.4.6 Analog signal line and a resistor and a capacitor	
Fig. 3.4.7 Wiring for a large current signal line	
Fig. 3.4.8 Wiring of signal lines where potential levels change frequently	
Fig. 3.4.9 Vss pattern on the underside of an oscillator	
Fig. 3.4.10 Setup for I/O ports	
Fig. 3.4.11 Watchdog timer by software	
Fig. 3.5.1 Structure of Port Pi	
Fig. 3.5.2 Structure of Port P0 direction register and Port P1 direction register	
Fig. 3.5.3 Structure of Port Pi direction register	
Fig. 3.5.4 Structure of Port P7	
Fig. 3.5.5 Structure of Port P7 direction register	
Fig. 3.5.6 Structure of PULL register A	
Fig. 3.5.7 Structure of PULL register B	
Fig. 3.5.8 Structure of Port P8 output selection register	
Fig. 3.5.9 Structure of Serial I/O control register 1	
Fig. 3.5.10 Structure of Serial I/O control register 2	
Fig. 3.5.11 Structure of Serial I/O register	
Fig. 3.5.12 Structure of Timer i	
Fig. 3.5.13 Structure of Timer 2	
Fig. 3.5.14 Structure of Timer 6 PWM register	
Fig. 3.5.15 Structure of Timer 12 mode register	3-46

List of figures

Fig.	3.5.16	Structure	of	Timer 34 mode register	3-47
Fig.	3.5.17	Structure	of	Timer 56 mode register	3-47
Fig.	3.5.18	Structure	of	ϕ output control register	3-48
Fig.	3.5.19	Structure	of	Timer A register (low-order, high-order)	3-48
Fig.	3.5.20	Structure	of	Compare register (low-order, high-order)	3-49
Fig.	3.5.21	Structure	of	Timer A mode register	3-49
Fig.	3.5.22	Structure	of	Timer A control register	3-50
Fig.	3.5.23	Structure	of	A-D control register	3-50
Fig.	3.5.24	Structure	of	A-D conversion register (low-order)	3-51
Fig.	3.5.25	Structure	of	A-D conversion register (high-order)	3-51
Fig.	3.5.26	Structure	of	Segment output enable register	3-52
Fig.	3.5.27	Structure	of	LCD mode register	3-52
Fig.	3.5.28	Structure	of	Interrupt edge selection register	3-53
Fig.	3.5.29	Structure	of	CPU mode register	3-53
Fig.	3.5.30	Structure	of	Interrupt requist register 1	3-54
Fig.	3.5.31	Structure	of	Interrupt request register 2	3-55
Fig.	3.5.32	Structure	of	Interrupt control register 1	3-56
Fig.	3.5.33	Structure	of	Interrupt control register 2	3-56
Fig.	3.5.34	Structure	of	ROM correct enable register 1	3-57

List of tables

CI	HAPTER 1 HARDWARE	
	Table 1 Pin description (1)	1-4
	Table 2 Pin description (2)	
	Table 3 Support products	
	Table 4 Push and pop instructions of accumulator or processor status register	1-9
	Table 5 Set and clear instructions of each bit of processor status register	1-10
	Table 6 List of I/O port function (1)	1-14
	Table 7 List of I/O port function (2)	1-15
	Table 8 Interrupt vector addresses and priority	1-20
	Table 9 Function of P46/Sclk1 and P40/Sclk2	
	Table 10 Maximum number of display pixels at each duty ratio	
	Table 11 Bias control and applied voltage to V _{I1} -V _{L3}	
	Table 12 Duty ratio control and common pins used	
	Table 13 Programming adapter	
	Table 14 Interrupt sources, vector addresses and interrupt priority	
	Table 15 Relative formula for a reference voltage V _{REF} of A-D converter and V _{ref}	
	Table 16 Change of A-D conversion register during A-D conversion	1-48
CI	HAPTER 2 APPLICATION	
	Table 2.1.1 Termination of unused pins	2-7
	Table 2.1.1 Tellimation of unused pins	2 1
CI	HAPTER 3 APPENDIX	
	Table 3.1.1 Absolute maximum ratings	3-2
	Table 3.1.2 Recommended operating conditions	
	Table 3.1.3 Recommended operating conditions	
	Table 3.1.4 Recommended operating conditions	
	Table 3.1.5 Electrical characteristics	
	Table 3.1.6 Electrical characteristics	3-6
	Table 3.1.7 A-D converter characteristics	3-7
	Table 3.1.8 Timing requirements 1	3-8
	Table 3.1.9 Timing requirements 2	
	Table 3.1.10 Switching characteristics 1	3-9
	Table 3.1.11 Switching characteristics 2	
	Table 3.1.12 Absolute maximum ratings (M version)	
	Table 3.1.13 Recommended operating conditions (M version)	
	Table 3.1.14 Recommended operating conditions (M version)	
	Table 3.1.15 Recommended operating conditions (M version)	
	Table 3.1.16 Recommended operating conditions (M version)	
	Table 3.1.17 Recommended operating conditions (M version)	
	Table 3.1.18 Electrical characteristics (M version)	
	Table 3.1.19 Electrical characteristics (M version)	
	Table 3.1.20 A-D converter characteristics (M version)	
	Table 3.1.21 Timing requirements 1 (M version)	
	Table 3.1.22 Timing requirements 2 (M version)	
	Table 3.1.23 Switching characteristics 1 (M version)	
	1 abio 5.1.27 Owitoling Grafacteristics 2 (W VCISIOII)	5-10

CHAPTER 1

HARDWARE

DESCRIPTION FEATURES APPLICATION PIN CONFIGURATION **FUNCTIONAL BLOCK** PIN DESCRIPTION PART NUMBERING **GROUP EXPANSION FUNCTIONAL DESCRIPTION** NOTES ON PROGRAMMING NOTES ON USE DATA REQUIRED FOR MASK **ORDERS** DATA REQUIRED FOR ROM WRITING **ORDERS** ROM PROGRAMMING METHOD FUNCTIONAL DESCRIPTION **SUPPLEMENT**

DESCRIPTION/FEATURES/APPLICATION/PIN CONFIGURATION

DESCRIPTION

The 38C3 group is the 8-bit microcomputer based on the 740 family core technology.

The 38C3 group has a LCD drive control circuit, a 10-channel A-D converter, and a Serial I/O as additional functions.

The various microcomputers in the 38C3 group include variations of internal memory size and packaging. For details, refer to the section on part numbering.

For details on availability of microcomputers in the 38C3 group, refer to the section on group expansion.

FEATURES

LATORES						
• Basic machine-language instructions						
$ullet$ The minimum instruction execution time 0.5 μs						
(at 8MHz oscillation frequency)						
Memory size						
ROM4 K to 48 K bytes						
RAM						
• Programmable input/output ports						
● Software pull-up/pull-down resistors						
(Ports P0–P8 except Port P51)						
●Interrupts						
(includes key input interrupt)						
●Timers						
● A-D converter						
● Serial I/O8-bit X 1 (Clock-synchronized)						

●LCD drive control circuit
Bias 1/1, 1/2, 1/3
Duty
Common output
Segment output
●2 Clock generating circuit
(connect to external ceramic resonator or quartz-crystal oscillator)
● Power source voltage
In high-speed mode
In middle-speed mode
(M version is 2.2* to 5.5 V)
In low-speed mode2.5 to 5.5 V
(M version is 2.2* to 5.5 V)
● Power dissipation
In high-speed mode32 mW
(at 8 MHz oscillation frequency)
In low-speed mode45 μW
(at 32 kHz oscillation frequency, at 3 V power source voltage)
●Operating temperature range – 20 to 85°C
* Mask ROM version only

APPLICATION

Camera, household appliances, consumer electronics, etc.

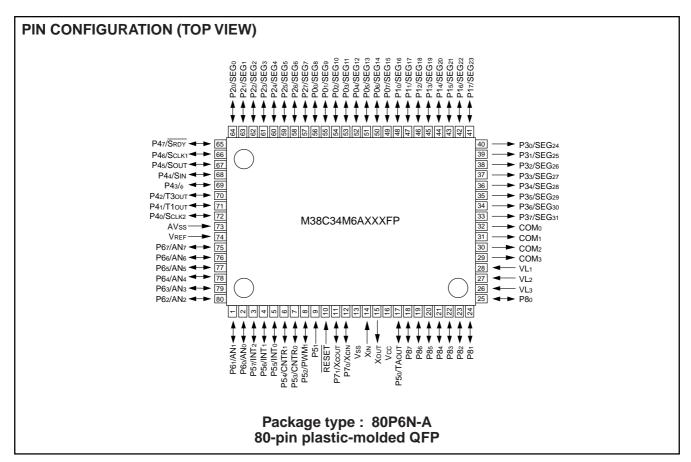


Fig. 1 M38C34M6AXXXFP pin configuration

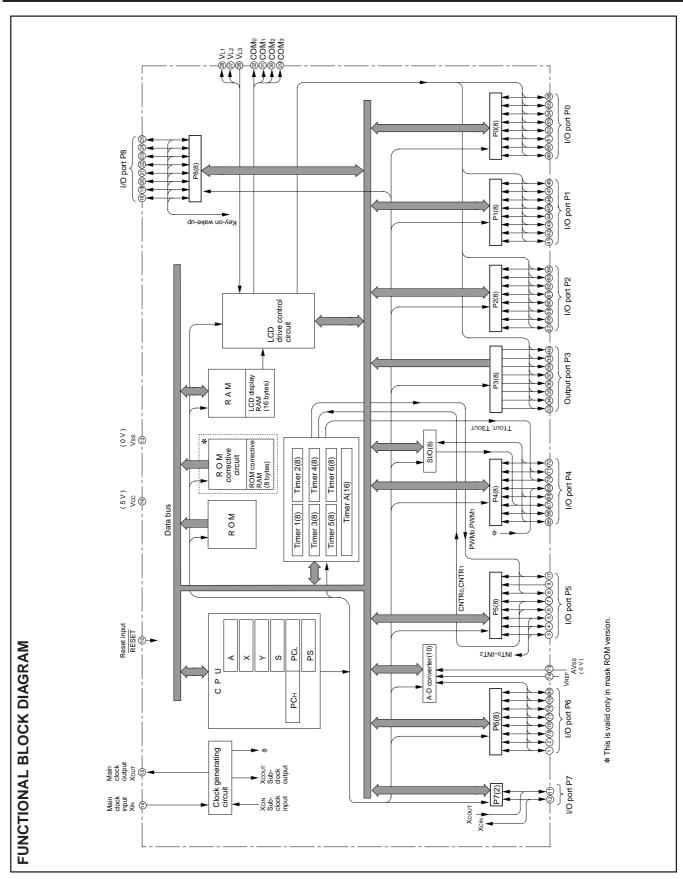


Fig. 2 Functional block diagram

PIN DESCRIPTION

PIN DESCRIPTION

Table 1 Pin description (1)

Dia	Nama							
Pin	Name	Function	Function except a port function					
Vcc, Vss	Power source	• Apply voltage of 2.5* V to 5.5 V to Vcc, and 0 V to Vss.						
VREF	Analog reference voltage	Reference voltage input pin for A-D converter.						
AVss	Analog power source	GND input pin for A-D converter. Connect to Vss.						
RESET	Reset input	Reset input pin for active "L."						
XIN	Clock input	 Input and output pins for the main clock generating circuit. Feedback resistor is built in between XIN pin and XOUT pin. Connect a ceramic resonator or a quartz-crystal oscillator 						
Хоит	Clock output	oscillation frequency. If an external clock is used, connect the clock source to the						
VL1 – VL3	LCD power source	Input 0 ≤ VL1 ≤ VL2 ≤ VL3 ≤ VCC voltage. Input 0 − VL3 voltage to LCD.						
COM ₀ – COM ₃	Common output	 LCD common output pins. COM1, COM2, and COM3 are not used at 1/1 duty ratio. COM2 and COM3 are not used at 1/2 duty ratio. COM3 is not used at 1/3 duty ratio. 						
P00/SEG8 – P07/SEG15	I/O port P0	8-bit I/O port. CMOS compatible input level. CMOS 3-state output structure.	LCD segment pins					
P10/SEG16 - P17/SEG23	I/O port P1	I/O direction register allows each port to be individually programmed as either input or output. Pull-down control is enabled.						
P20/SEG0 – P27/SEG7	I/O port P2							
P30/SEG24 - P37/SEG31	Output port P3	8-bit output port. CMOS state output. Pull-down control is enabled.						
P40/SCLK2	I/O port P4	8-bit I/O port.	Serial I/O function pin					
P41/T10UT		CMOS compatible input level. CMOS 3-state output structure.	Timer output pin					
P42/T30UT		I/O direction register allows each pin to be individually	Timer output pin					
P43/ф		programmed as either input or output.	• φ output pin					
P44/SIN, P45/SOUT, P46/ <u>SCLK1,</u> P47/SRDY		Pull-up control is enabled.	Serial I/O function pins					

^{*} Mask ROM version of M version is 2.2 V to 5.5 V.

PIN DESCRIPTION

Table 2 Pin description (2)

Dia	Nama	Function	
Pin	Name	Function	Function except a port function
P51	Input port P5	1-bit input pin. CMOS compatible input level.	
P50/TAOUT	I/O port P5	• 7-bit I/O port.	Timer A output pin
P52/PWM1		CMOS compatible input level. CMOS 3-state output structure.	PWM1 output (timer output) pin
P53/CNTR0, P54/CNTR1		I/O direction register allows each pin to be individually programmed as either input or output.	External count I/O pins
P55/INT0, P56/INT1, P57/INT2	_	Pull-up control is enabled.	External interrupt input pins
P60/AN0 – P67/AN7	I/O port P6	8-bit I/O port. CMOS compatible input level. CMOS 3-state output structure. I/O direction register allows each pin to be individually programmed as either input or output. Pull-up control is enabled.	A-D conversion input pins
P70/XCIN, P71/XCOUT	I/O port P7	2-bit I/O port. CMOS compatible input level. CMOS 3-state output structure. I/O direction register allows each pin to be individually programmed as either input or output. Pull-up control is enabled.	Sub-clock generating circuit I/O pins
P80 – P87	I/O port P8	8-bit I/O port. TTL input level. CMOS 3-state output structure. I/O direction register allows each pin to be individually programmed as either input or output. Pull-up control is enabled.	Key input (Key-on wake-up) interrupt input pins

PART NUMBERING

PART NUMBERING

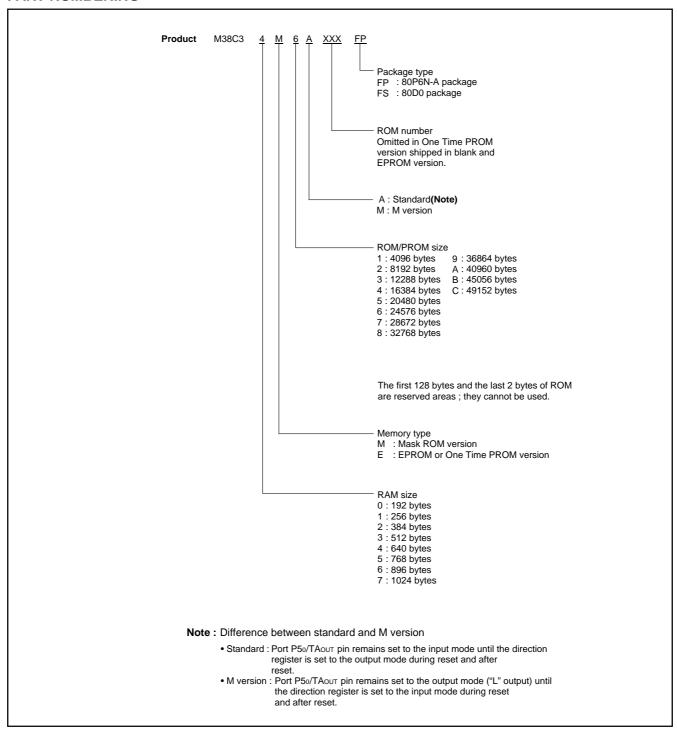


Fig. 3 Part numbering

GROUP EXPANSION

Mitsubishi plans to expand the 38C3 group as follows.

Memory Type

Support for mask ROM, One Time PROM, and EPROM versions

Memory Size

Packages

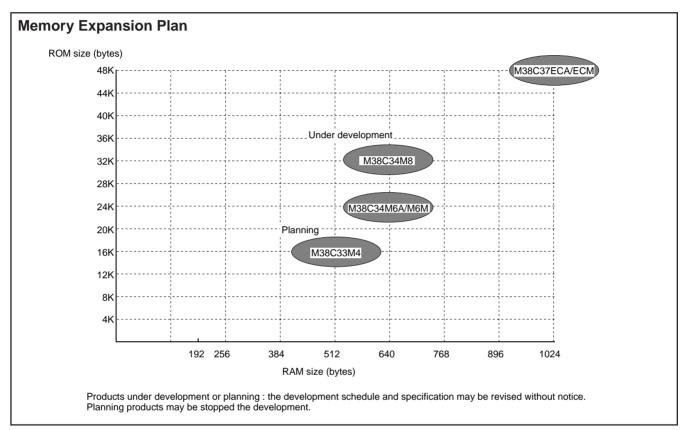


Fig. 4 Memory expansion plan

Currently supported products are listed below.

Table 3 Support products

As of December 1998

Product name	(P) ROM size (bytes) ROM size for User in ()	RAM size (bytes)	Package	Remarks
M38C34M6AXXXFP	24576 (24446)	640		Mask ROM version
M38C37ECAXXXFP			80P6N-A	One Time PROM version
M38C37ECAFP	49152 (49022)	1024		One Time PROM version (blank)
M38C37ECAFS			80D0	EPROM version
M38C34M6MXXXFP	24576 (24446)	640		Mask ROM version
M38C37ECMXXXFP		1024	80P6N-A	One Time PROM version
M38C37ECMFP	49152 (49022)			One Time PROM version (blank)
M38C37ECMFS			80D0	EPROM version

FUNCTIONAL DESCRIPTION

FUNCTIONAL DESCRIPTION Central Processing Unit (CPU)

The 38C3 group uses the standard 740 Family instruction set. Refer to the table of 740 Family addressing modes and machine instructions or the 740 Family Software Manual for details on the instruction set

Machine-resident 740 Family instructions are as follows:

The FST and SLW instructions cannot be used.

The STP, WIT, MUL, and DIV instructions can be used.

[Accumulator (A)]

The accumulator is an 8-bit register. Data operations such as data transfer, etc., are executed mainly through the accumulator.

[Index Register X (X)]

The index register X is an 8-bit register. In the index addressing modes, the value of the OPERAND is added to the contents of register X and specifies the real address.

[Index Register Y (Y)]

The index register Y is an 8-bit register. In partial instruction, the value of the OPERAND is added to the contents of register Y and specifies the real address.

[Stack Pointer (S)]

The stack pointer is an 8-bit register used during subroutine calls and interrupts. This register indicates start address of stored area (stack) for storing registers during subroutine calls and interrupts.

The low-order 8 bits of the stack address are determined by the contents of the stack pointer. The high-order 8 bits of the stack address are determined by the stack page selection bit. If the stack page selection bit is "0", the high-order 8 bits becomes "0016". If the stack page selection bit is "1", the high-order 8 bits becomes "0116".

The operations of pushing register contents onto the stack and popping them from the stack are shown in Figure 6.

Store registers other than those described in Figure 6 with program when the user needs them during interrupts or subroutine calls.

[Program Counter (PC)]

The program counter is a 16-bit counter consisting of two 8-bit registers PCH and PCL. It is used to indicate the address of the next instruction to be executed.

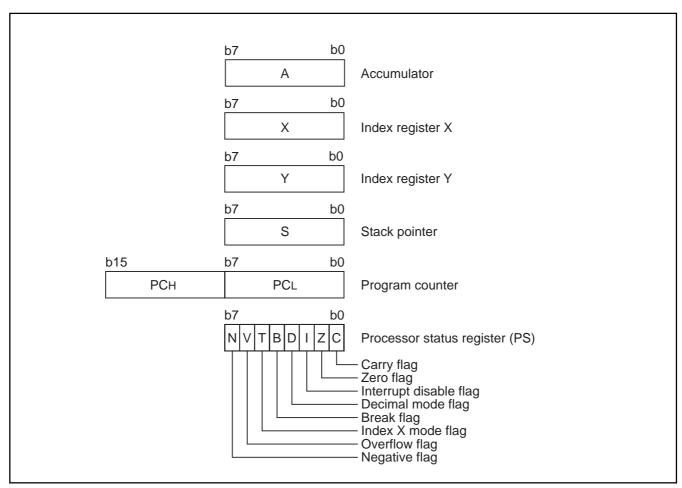


Fig. 5 740 Family CPU register structure

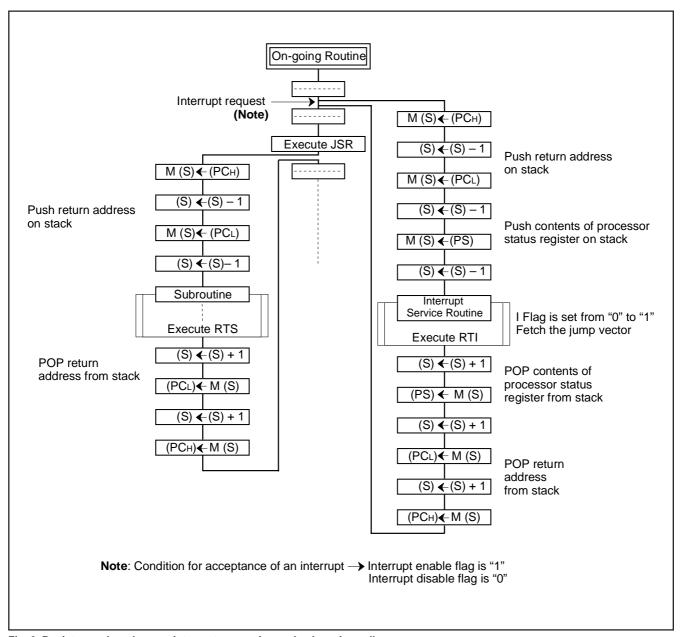


Fig. 6 Register push and pop at interrupt generation and subroutine call

Table 4 Push and pop instructions of accumulator or processor status register

	Push instruction to stack	Pop instruction from stack
Accumulator	PHA	PLA
Processor status register	PHP	PLP

FUNCTIONAL DESCRIPTION

[Processor status register (PS)]

The processor status register is an 8-bit register consisting of 5 flags which indicate the status of the processor after an arithmetic operation and 3 flags which decide MCU operation. Branch operations can be performed by testing the Carry (C) flag , Zero (Z) flag, Overflow (V) flag, or the Negative (N) flag. In decimal mode, the Z, V, N flags are not valid.

•Bit 0: Carry flag (C)

The C flag contains a carry or borrow generated by the arithmetic logic unit (ALU) immediately after an arithmetic operation. It can also be changed by a shift or rotate instruction.

•Bit 1: Zero flag (Z)

The Z flag is set if the result of an immediate arithmetic operation or a data transfer is "0", and cleared if the result is anything other than "0"

•Bit 2: Interrupt disable flag (I)

The I flag disables all interrupts except for the interrupt generated by the BRK instruction.

Interrupts are disabled when the I flag is "1".

•Bit 3: Decimal mode flag (D)

The D flag determines whether additions and subtractions are executed in binary or decimal. Binary arithmetic is executed when this flag is "0"; decimal arithmetic is executed when it is "1". Decimal correction is automatic in decimal mode. Only the ADC and SBC instructions can be used for decimal arithmetic.

•Bit 4: Break flag (B)

The B flag is used to indicate that the current interrupt was generated by the BRK instruction. The BRK flag in the processor status register is always "0". When the BRK instruction is used to generate an interrupt, the processor status register is pushed onto the stack with the break flag set to "1".

•Bit 5: Index X mode flag (T)

When the T flag is "0", arithmetic operations are performed between accumulator and memory. When the T flag is "1", direct arithmetic operations and direct data transfers are enabled between memory locations.

•Bit 6: Overflow flag (V)

The V flag is used during the addition or subtraction of one byte of signed data. It is set if the result exceeds +127 to -128. When the BIT instruction is executed, bit 6 of the memory location operated on by the BIT instruction is stored in the overflow flag.

•Bit 7: Negative flag (N)

The N flag is set if the result of an arithmetic operation or data transfer is negative. When the BIT instruction is executed, bit 7 of the memory location operated on by the BIT instruction is stored in the negative flag.

Table 5 Set and clear instructions of each bit of processor status register

	C flag	Z flag	I flag	D flag	B flag	T flag	V flag	N flag
Set instruction	SEC	-	SEI	SED	_	SET	_	_
Clear instruction	CLC	_	CLI	CLD	_	CLT	CLV	_

[CPU Mode Register (CPUM)] 003B16

The CPU mode register contains the stack page selection bit and the internal system clock selection bit etc.

The CPU mode register is allocated at address 003B16.

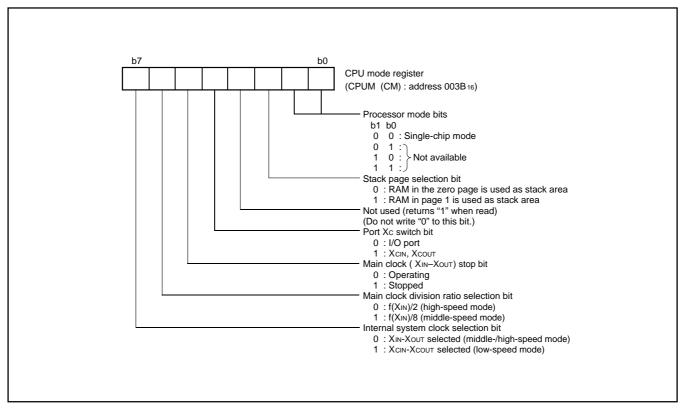


Fig. 7 Structure of CPU mode register

FUNCTIONAL DESCRIPTION

MEMORY

Special Function Register (SFR) Area

The Special Function Register area in the zero page contains control registers such as I/O ports and timers.

RAM

RAM is used for data storage and for stack area of subroutine calls and interrupts.

ROM

The first 128 bytes and the last 2 bytes of ROM are reserved for device testing and the rest is user area for storing programs.

Interrupt Vector Area

The interrupt vector area contains reset and interrupt vectors.

Zero Page

Access to this area with only 2 bytes is possible in the zero page addressing mode.

Special Page

Access to this area with only 2 bytes is possible in the special page addressing mode.

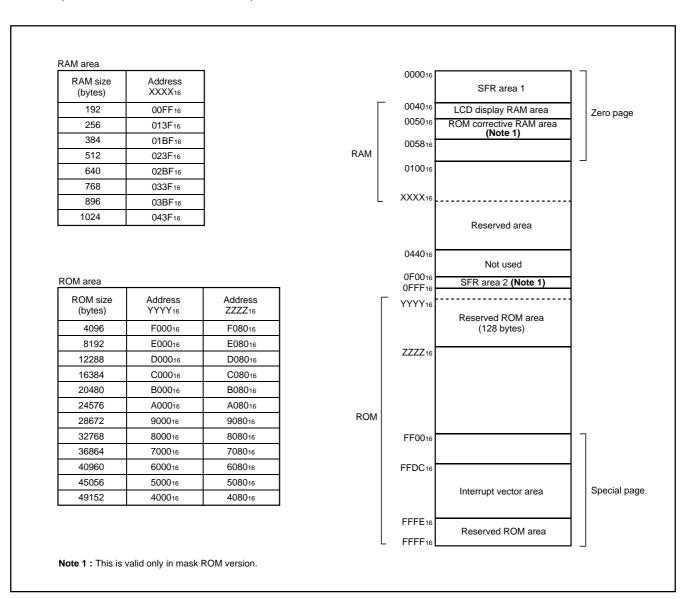


Fig. 8 Memory map diagram

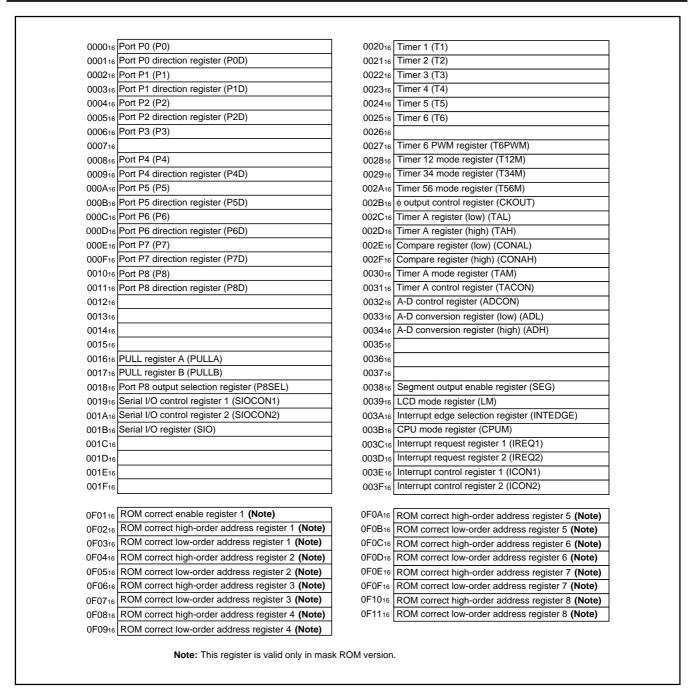


Fig. 9 Memory map of special function register (SFR)

FUNCTIONAL DESCRIPTION

I/O PORTS

[Direction Registers (ports P2, P4, P50, P52–P57, and P6–P8)]

The I/O ports P2, P4, P50, P52–P57, and P6–P8 have direction registers which determine the input/output direction of each individual pin. Each bit in a direction register corresponds to one pin, each pin can be set to be input port or output port.

When "0" is written to the bit corresponding to a pin, that pin becomes an input pin. When "1" is written to that bit, that pin becomes an output pin.

If data is read from a pin set to output, the value of the port output latch is read, not the value of the pin itself. Pins set to input are floating. If a pin set to input is written to, only the port output latch is written to and the pin remains floating.

[Direction Registers (ports P0 and P1)]

Ports P0 and P1 have direction registers which determine the input/output direction of each individual port.

Each port in a direction register corresponds to one port, each port can be set to be input or output.

When "0" is written to the bit 0 of a direction register, that port becomes an input port. When "1" is written to that port, that port becomes an output port. Bits 1 to 7 of ports P0 and P1 direction registers are not used.

Pull-up/Pull-down Control

By setting the PULL register A (address 001616) or the PULL register B (address 001716), ports except for ports P3 and P51 can control either pull-down or pull-up (pins that are shared with the segment output pins for LCD are pull-down; all other pins are pull-up) with a program.

However, the contents of PULL register A and PULL register B do not affect ports programmed as the output ports.

Port P8 Output Selection

Ports P80 to P87 can be switched to N-channel open-drain output by setting "1" to the port P8 output selection register.

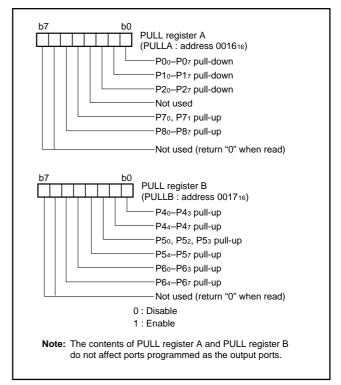


Fig. 10 Structure of PULL register A and PULL register B

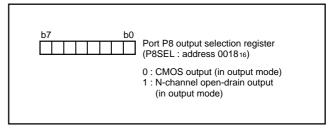


Fig. 11 Structure of port P8 output selection register

Table 6 List of I/O port function (1)

Pin	Name	Input/Output	I/O format	Non-port function	Related SFRs	Ref. No.			
P00/SEG8 – P07/SEG15	Port P0	Input/Output, port unit	CMOS compatible input level CMOS 3-state output	LCD segment output	PULL register A Segment output enable reg- ister	(1)			
P10/SEG16 – P17/SEG23	Port P1	Input/Output, port unit	CMOS compatible input level CMOS 3-state output	LCD segment output	PULL register A Segment output enable reg- ister				
P20/SEG0 – P27/SEG7	Port P2	Input/Output, individual bits	CMOS compatible input CMOS 3-state output	LCD segment output	PULL register A Segment output enable reg- ister				
P30/SEG24 – P37/SEG31	Port P3	Output, individual bits	CMOS 3-state output	LCD segment output	Segment output enable register	(2)			

FUNCTIONAL DESCRIPTION

Table 7 List of I/O port function (2)

Pin	Name	Input/Output	I/O format	Non-port function	Related SFRs	Ref. No.
P40/SCLK2	Port P4	Input/Output, individual bits	CMOS compatible input level CMOS 3-state output	Serial I/O function I/O	Serial I/O control registers 1, 2 PULL register B	(3)
P41/T10UT				Timer output	Timer 12 mode register PULL register B	(4)
P42/T30UT				Timer output	Timer 34 mode register PULL register B	(4)
Р43/ф				φ clock output	φ output control register PULL register B	(5)
P44/SIN P45/SOUT P46/SCLK1 P47/SRDY				Serial I/O function I/O	Serial I/O control registers 1, 2 PULL register B	(6) (7) (8) (9)
P50/TAOUT	Port P5	Input/Output, individual bits	CMOS compatible input level CMOS 3-state output	Timer A output	Timer A mode register Timer A control register PULL register B	(10)
P51		Input	CMOS compatible input level			(11)
P52/PWM1		Input/Output, individual bits	CMOS compatible input level CMOS 3-state output	PWM output	Timer 56 mode register PULL register B	(4)
P53/CNTR0 P54/CNTR1				External count I/O	Interrupt edge selection register PULL register B	(12)
P55/INT0 P56/INT1 P57/INT2				External interrupt input	Interrupt edge selection register PULL register B	(12)
P60/AN0 - P67/AN7	Port P6	Input/Output, individual bits	CMOS compatible input level CMOS 3-state output	A-D converter input	A-D control register PULL register B	(13)
P70/XCIN	Port P7	Input/Output, individual bits	CMOS compatible input level	Sub-clock generating circuit I/O	CPU mode register PULL register A	(14)
P71/Xcout		individual bits	CMOS 3-state output	Gircuit I/O	1 OLL Tegister A	(15)
P80 – P87	Port P8	Input/Output, individual bits	CMOS compatible input level CMOS 3-state output	Key input (key-on wake-up) interrupt in- put	Interrupt control register 2 PULL register A	(17)
COM ₀ – COM ₃	Common	Output	LCD common output		LCD mode register	(16)

Notes 1: Make sure that the input level at each pin is either 0 V or Vcc during execution of the STP instruction.

When an input level is at an intermediate potential, a current will flow from Vcc to Vss through the input-stage gate.

^{2:} For details of how to use double function ports as function I/O ports, refer to the applicable sections.

FUNCTIONAL DESCRIPTION

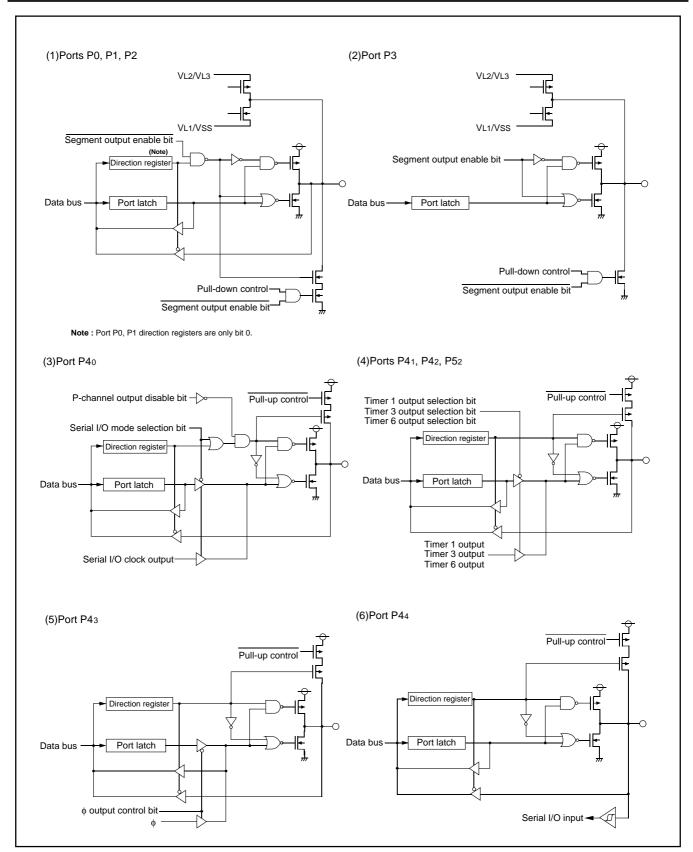


Fig. 12 Port block diagram (1)

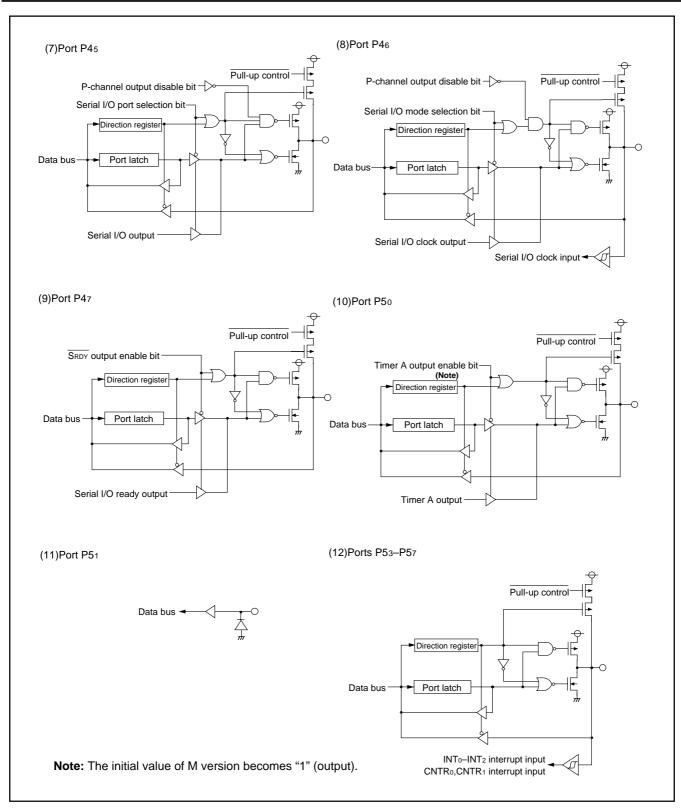


Fig. 13 Port block diagram (2)

FUNCTIONAL DESCRIPTION

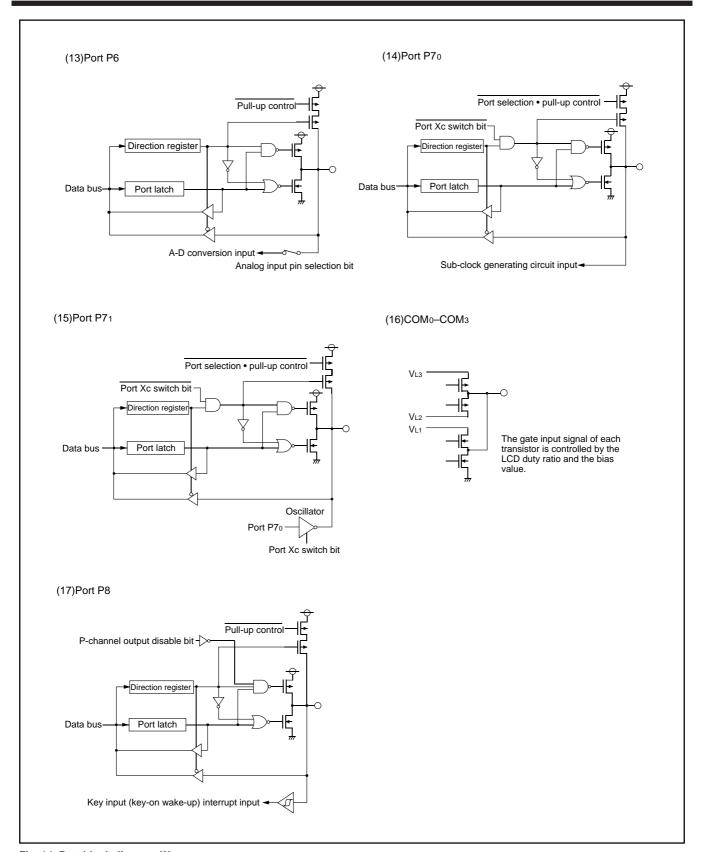


Fig. 14 Port block diagram (3)

INTERRUPTS

Interrupts occur by sixteen sources: six external, nine internal, and one software.

Interrupt Control

Each interrupt except the BRK instruction interrupt have both an interrupt request bit and an interrupt enable bit, and is controlled by the interrupt disable flag. An interrupt occurs if the corresponding interrupt request and enable bits are "1" and the interrupt disable flag is "0".

Interrupt enable bits can be set or cleared by software. Interrupt request bits can be cleared by software, but cannot be set by software. The BRK instruction interrupt and reset cannot be disabled with any flag or bit. The I flag disables all interrupts except the BRK instruction interrupt and reset. If several interrupts requests occurs at the same time the interrupt with highest priority is accepted first.

Interrupt Operation

By acceptance of an interrupt, the following operations are automatically performed:

- 1. The processing being executed is stopped.
- 2. The contents of the program counter and processor status register are automatically pushed onto the stack.
- The interrupt disable flag is set and the corresponding interrupt request bit is cleared.
- 4. The interrupt jump destination address is read from the vector table into the program counter.

■Notes on Interrupts

When the active edge of an external interrupt (INT0 – INT2, CNTR0 or CNTR1) is set or an vector interrupt source where several interrupt source is assigned to the same vector address is switched, the corresponding interrupt request bit may also be set. Therefore, take following sequence:

- (1) Disable the interrupt.
- (2) Change the active edge in interrupt edge selection register.
- (3) Clear the set interrupt request bit to "0."
- (4) Enable the interrupt.

FUNCTIONAL DESCRIPTION

Table 8 Interrupt vector addresses and priority

Interrupt Course	Driority	Vector Addres	sses (Note 1)	Interrupt Request	Remarks	
Interrupt Source	Priority	High	Low	Generating Conditions	Remarks	
Reset (Note 2)	1	FFFD16	FFFC16	At reset	Non-maskable	
INT ₀	2	FFFB16	FFFA ₁₆	At detection of either rising or falling edge of INTo input	External interrupt (active edge selectable)	
INT1	3	FFF916	FFF816	At detection of either rising or falling edge of INT1 input	External interrupt (active edge selectable)	
INT2	4	FFF716	FFF616	At detection of either rising or falling edge of INT2 input	External interrupt (active edge selectable)	
Serial I/O	5	FFF516	FFF416	At completion of serial I/O data transmit/receive	Valid when serial I/O is selected	
Timer A	6	FFF316	FFF216	At timer A underflow		
Timer 1	7	FFF116	FFF016	At timer 1 underflow		
Timer 2	8	FFEF16	FFEE16	At timer 2 underflow	STP release timer underflow	
Timer 3	9	FFED16	FFEC ₁₆	At timer 3 underflow		
Timer 4	10	FFEB16	FFEA ₁₆	At timer 4 underflow		
Timer 5	11	FFE916	FFE816	At timer 5 underflow		
Timer 6	12	FFE716	FFE616	At timer 6 underflow		
CNTR ₀	13	FFE516	FFE416	At detection of either rising or falling edge of CNTRo input	External interrupt (active edge selectable)	
CNTR ₁	14	FFE316	FFE216	At detection of either rising or falling edge of CNTR1 input	External interrupt (active edge selectable)	
Key input (Key- on wake-up)	15	FFE116	FFE016	At falling of port P8 (at input) input logical level AND	External interrupt (falling valid)	
A-D conversion	16	FFDF16	FFDE16	At completion of A-D conversion	Valid when A-D conversion interrupt is selected	
BRK instruction	17	FFDD16	FFDC16	At BRK instruction execution	Non-maskable software interrupt	

Notes 1: Vector addresses contain interrupt jump destination addresses.

^{2:} Reset function in the same way as an interrupt with the highest priority.

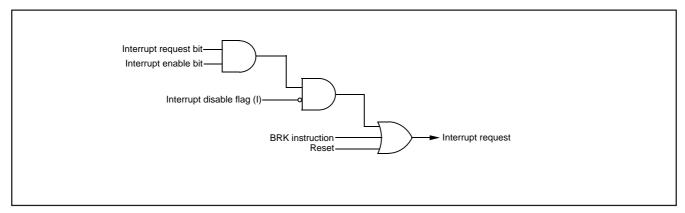


Fig. 15 Interrupt control

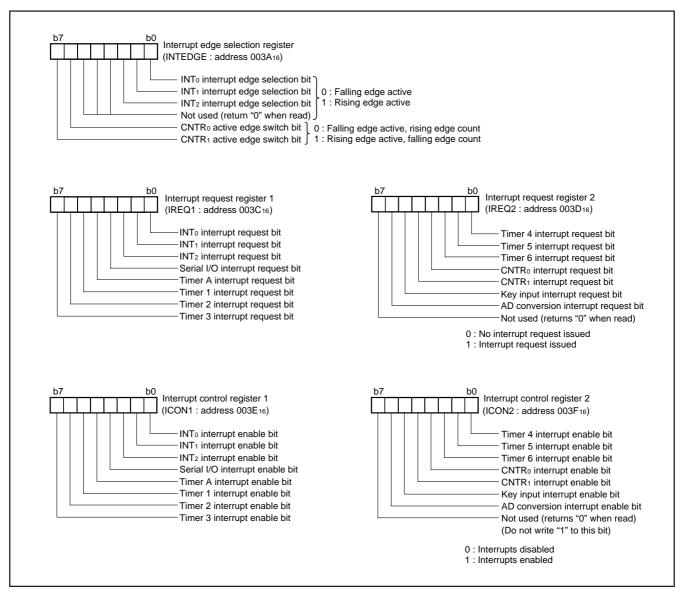


Fig. 16 Structure of interrupt-related registers

FUNCTIONAL DESCRIPTION

Key Input Interrupt (Key-on Wake-Up)

A key input interrupt request is generated by applying "L" level to any pin of port P8 that have been set to input mode. In other words, it is generated when AND of input level goes from "1" to "0". An example

of using a key input interrupt is shown in Figure 17, where an interrupt request is generated by pressing one of the keys consisted as an active-low key matrix which inputs to ports P80–P83.

Fig. 17 Connection example when using key input interrupt and port P8 block diagram

TIMERS 8-Bit Timer

The 38C3 group has six built-in timers: Timer 1, Timer 2, Timer 3, Timer 4, Timer 5, and Timer 6.

Each timer has the 8-bit timer latch. All timers are down-counters. When the timer reaches "0016," an underflow occurs with the next count pulse. Then the contents of the timer latch is reloaded into the timer and the timer continues down-counting. When a timer underflows, the interrupt request bit corresponding to that timer is set to "1."

The count can be stopped by setting the stop bit of each timer to "1." The system clock φ can be set to either the high-speed mode or low-speed mode with the CPU mode register. At the same time, timer internal count source is switched to either f(XIN) or f(XCIN).

●Timer 1, Timer 2

The count sources of timer 1 and timer 2 can be selected by setting the timer 12 mode register. A rectangular waveform of timer 1 underflow signal divided by 2 is output from the P41/T10UT pin. The waveform polarity changes each time timer 1 overflows. The active edge of the external clock CNTRo can be switched with the bit 6 of the interrupt edge selection register.

At reset or when executing the STP instruction, all bits of the timer 12 mode register are cleared to "0," timer 1 is set to "FF16," and timer 2 is set to "0116."

Timer 3, Timer 4

The count sources of timer 3 and timer 4 can be selected by setting the timer 34 mode register. A rectangular waveform of timer 3 underflow signal divided by 2 is output from the P42/T30UT pin. The waveform polarity changes each time timer 3 overflows. The active edge of the external clock CNTR1 can be switched with the bit 7 of the interrupt edge selection register.

●Timer 5, Timer 6

The count sources of timer 5 and timer 6 can be selected by setting the timer 56 mode register. A rectangular waveform of timer 6 underflow signal divided by 2 can be output from the P52/PWM1 pin.

●Timer 6 PWM₁ Mode

Timer 6 can output a rectangular waveform with "H" duty cycle n/ (n+m) from the P52/PWM1 pin by setting the timer 56 mode register (refer to Figure 20). The n is the value set in timer 6 latch (address 002516) and m is the value in the timer 6 PWM register (address 002716). If n is "0," the PWM output is "L," if m is "0," the PWM output is "H" (n = 0 is prior than m = 0). In the PWM mode, interrupts occur at the rising edge of the PWM output.

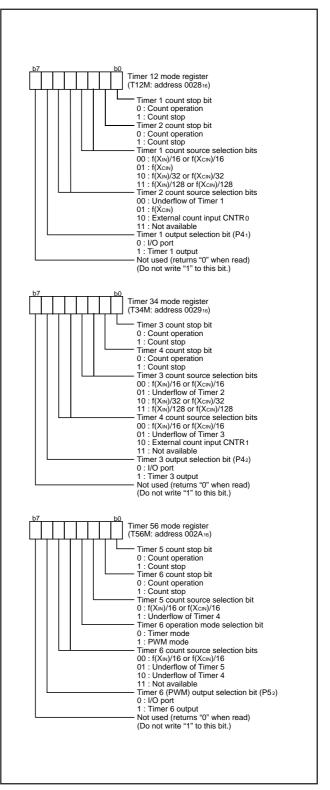


Fig. 18 Structure of timer related register

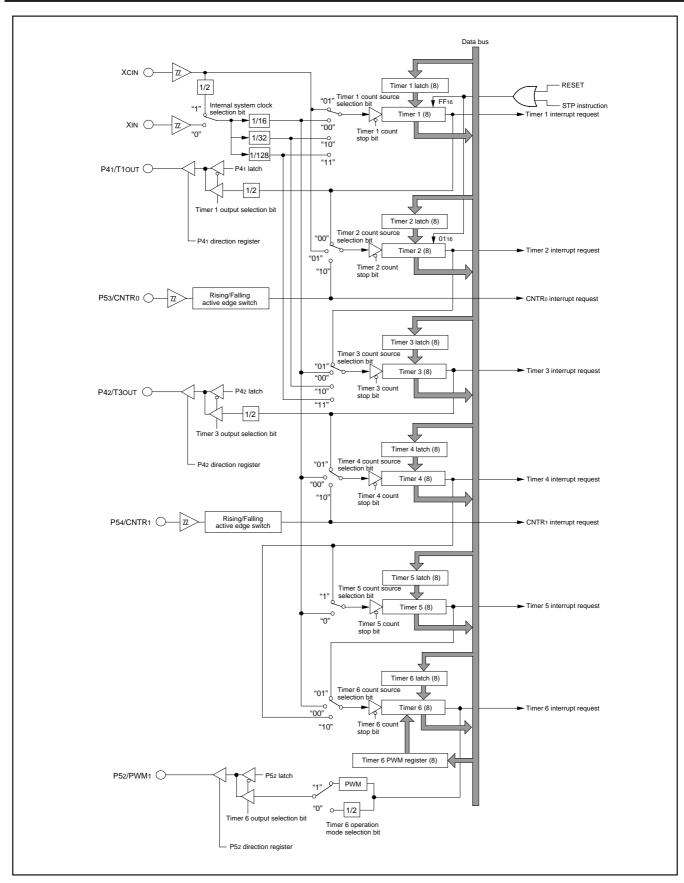


Fig. 19 Block diagram of timer

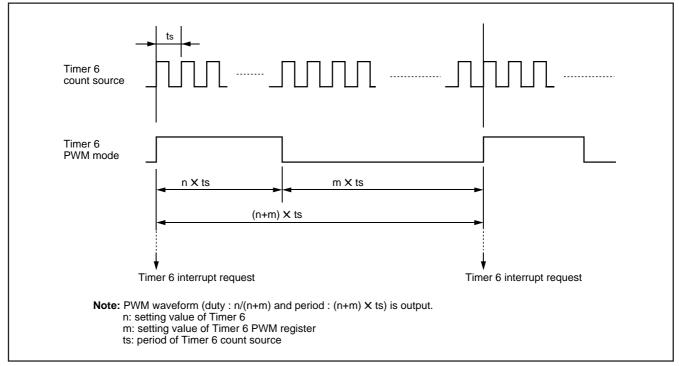


Fig. 20 Timing chart of timer 6 PWM1 mode

16-bit Timer

Timer A is a 16-bit timer that can be selected in one of four modes by the timer A mode register and the timer A control register.

●Timer A

The timer A operates as down-count. When the timer contents reach "000016", an underflow occurs at the next count pulse and the timer latch contents are reloaded. After that, the timer continues count-down. When the timer underflows, the interrupt request bit corresponding to the timer A is set to "1".

(1) Timer mode

The count source can be selected by setting the timer A mode register.

(2) Pulse output mode

Pulses of which polarity is inverted each time the timer underflows are output from the TAOUT pin. Except for that, this mode operates just as in the timer mode.

When using this mode, set port P50 sharing the TAOUT pin to output mode.

(3) IGBT output mode

After dummy output from the TAOUT pin, count starts with the INT0 pin input as a trigger. When the trigger is detected or the timer A underflows, "H" is output from the the TAOUT pin.

When the count value corresponds with the compare register value, the TAOUT output becomes "L". When the INTo signal becomes "H", the TAOUT output is forced to become "L".

After noise is cleared by noise filters, judging continuous 4-time same levels with sampling clocks to be signals, the INTo signal can use 4

types of delay time by a delay circuit.

When using this mode, set port P55 sharing the INTo pin to input mode and set port P50 sharing the TAOUT pin to output mode. It is possible to force the timer A output to be "L" using pins INT1 and INT2 by the timer A control register.

(4) PWM mode

IGBT dummy output, an external trigger with the INTo pin and output control with pins INT1 and INT2 are not used. Except for those, this mode operates just as in the IGBT output mode.

The period of PWM waveform is specified by the timer A set value. The "H" term is specified by the compare register set value.

When using this mode, set port P50 sharing the TAOUT pin to output mode.

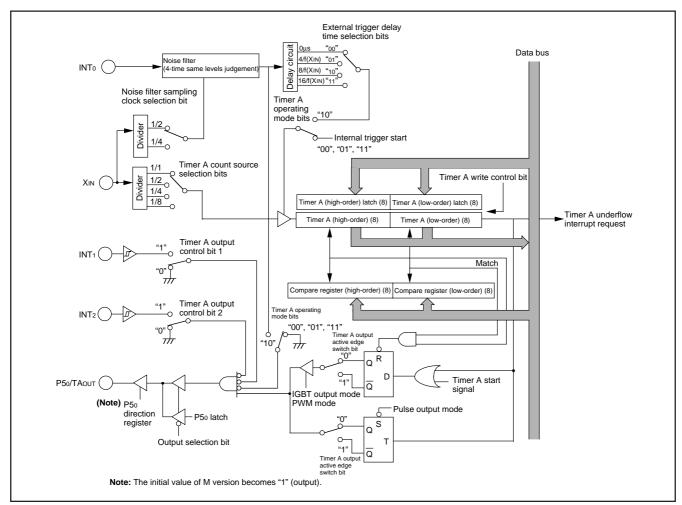


Fig. 21 Block diagram of timer A

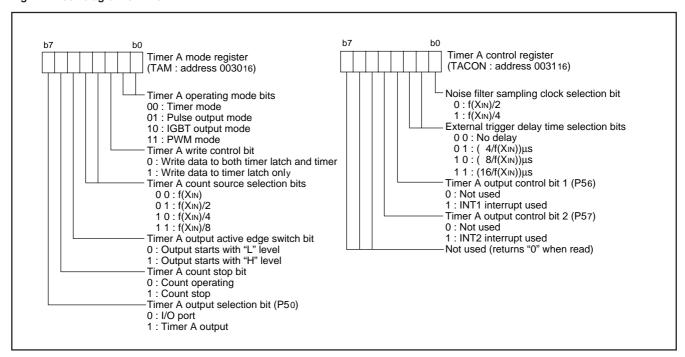


Fig. 22 Structure of timer A related registers

Fig. 23 Timing chart of timer A PWM, IGBT output modes

■Notes on Timer A

(1) Write order to timer A

- In the timer and pulse output modes, write to the timer A register (low-order) first and to the timer A register (high-order) next. Do not write to only one side.
- In the IGBT and PWM modes, write to the registers as follows: the compare register (high- and low-order)

the timer A register (low-order)

the timer A register (high-order).

It is possible to use whichever order to write to the compare register (high- and low-order). However, write both the compare register and the timer A register at the same time.

(2) Read order to timer A

- In all modes, read to the timer A register (high-order) first and to the timer A register (low-order) next. Read order to the compare register is not specified.
- If reading to the timer A register during write operation or writing to it during read operation, normal operation will not be performed.

(3) Write to timer A

- When writing a value to the timer A address to write to the latch only, the value is set into the reload latch and the timer is updated at the next underflow. Normally, when writing a value to the timer A address, the value is set into the timer and the timer latch at the same time, because they are written at the same time.
 - When writing to the latch only, if the write timing to the high-order reload latch and the underflow timing are almost the same, an expected value may be set in the high-order counter.
- Do not switch the timer count source during timer count operation.
 Stop the timer count before switching it. Additionally, when performing write to the latch and the timer at the same time, the timer count value may change large.

(4) Set of timer A mode register

Set the write control bit to "1" (write to the latch only) when setting the IGBT and PWM modes.

Output waveform simultaneously reflects the contents of both registers at the next underflow after writing to the timer A register (high-order).

(5) Output control function of timer A

When using the output control function (INT1 and INT2) in the IGBT mode, set the levels of INT1 and INT2 to "H" in the falling edge active or to "L" in the rising edge active before switching to the IGBT mode.

SERIAL I/O

The 38C3 group has a built-in 8-bit clock synchronous serial I/O. The

I/O pins of serial I/O also operate as I/O port P4, and their function is selected by the serial I/O control register 1 (address 001916).

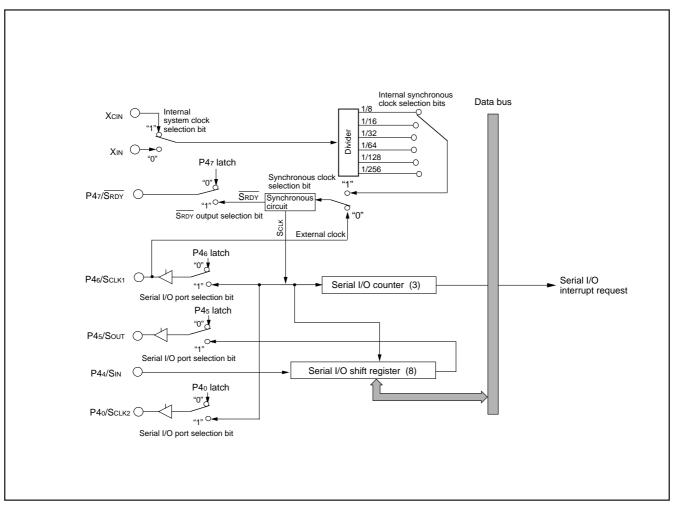


Fig. 24 Block diagram of serial I/O

[Serial I/O Control Registers 1, 2 (SIOCON1, SIOCON2)] 001916, 001A16

Each of the serial I/O control registers 1, 2 contains 8 bits that select various control parameters of serial I/O.

Operation in serial I/O mode

Either an internal clock or an external clock can be selected as the synchronous clock for serial I/O transfer. A dedicated divider is built-in as the internal clock, giving a choice of six clocks.

When internal clock is selected, serial I/O starts to transfer by a write signal to the serial I/O register (address 001B16). After 8 bits have been transferred, the SOUT pin goes to high impedance.

When external clock is selected, the clock must be controlled externally because the contents of the serial I/O register continue to shift while the transfer clock is input. In this case, the SOUT pin does not go to high impedance at the completion of data transfer.

The interrupt request bit is set at the end of the transfer of 8 bits, regardless of whether the internal or external clock is selected.

When selecting internal clock and setting "1" to SIOCON20, the P40 pin can be also used as synchronous clock output pin SCLK2. At this time, the SCLK1 pin can be used as I/O port.

Table 9 Function of P46/Sclk1 and P40/Sclk2

SIOCON16	SIOCON13	SIOCON20	P46/SCLK1	P40/SCLK2
4	4	0	SCLK ₁	P40
1	1	1	P46	SCLK2

SIOCON13: Serial I/O port selection bit SIOCON16: Synchronous clock selection bit

SIOCON20: Synchronous clock output pin selection bit

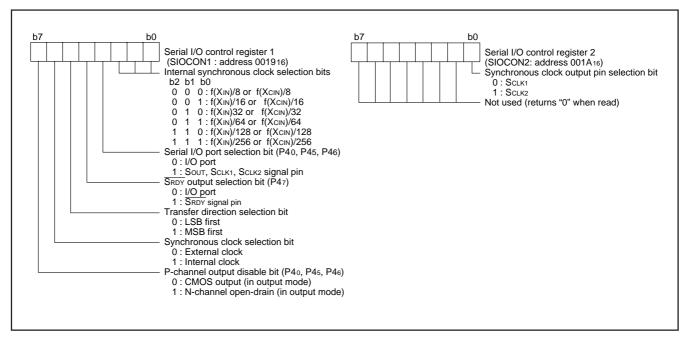


Fig. 25 Structure of serial I/O control register

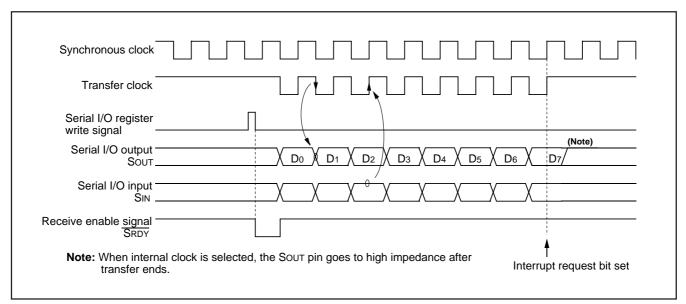


Fig. 26 Serial I/O timing (for LSB first)

FUNCTIONAL DESCRIPTION

A-D CONVERTER

The 38C3 group has a 10-bit A-D converter. The A-D converter performs successive approximation conversion.

[A-D Conversion Register (AD)] 003316, 003416

One of these registers is a high-order register, and the other is a low-order register. The high-order 8 bits of a conversion result is stored in the A-D conversion register (high-order) (address 003416), and the low-order 2 bits of the same result are stored in bit 7 and bit 6 of the A-D conversion register (low-order) (address 003316).

During A-D conversion, do not read these registers.

[A-D Control Register (ADCON)] 003216

This register controls A-D converter. Bits 2 to 0 are analog input pin selection bits. Bit 4 is an AD conversion completion bit and "0" during A-D conversion. This bit is set to "1" upon completion of A-D conversion.

A-D conversion is started by setting "0" in this bit.

[Comparison Voltage Generator]

The comparison voltage generator divides the voltage between AVss and VREF, and outputs the divided voltages.

[Channel Selector]

The channel selector selects one of the input ports P67/AN7–P60/AN0 and inputs it to the comparator.

[Comparator and Control Circuit]

The comparator and control circuit compares an analog input voltage with the comparison voltage and stores the result in the A-D conversion register. When an A-D conversion is completed, the control circuit sets the AD conversion completion bit and the AD conversion interrupt request bit to "1."

Note that the comparator is constructed linked to a capacitor, so set f(XIN) to at least 500 kHz during A-D conversion. Use a CPU system clock dividing the main clock XIN as the internal system clock.

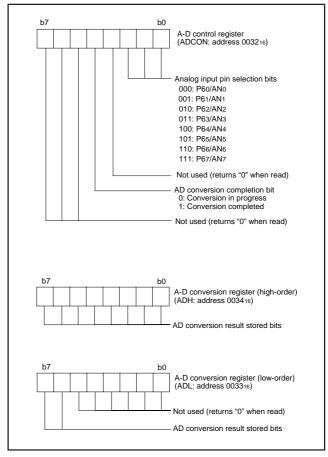


Fig. 27 Structure of A-D control register



Fig. 28 Block diagram of A-D converter

LCD DRIVE CONTROL CIRCUIT

The 38C3 group has the built-in Liquid Crystal Display (LCD) drive control circuit consisting of the following.

- · LCD display RAM
- · Segment output enable register
- · LCD mode register
- Selector
- Timing controller
- Common driver
- Segment driver
- · Bias control circuit

A maximum of 32 segment output pins and 4 common output pins can be used.

Up to 128 pixels can be controlled for a LCD display. When the LCD enable bit is set to "1" after data is set in the LCD mode register, the

segment output enable register, and the LCD display RAM, the LCD drive control circuit starts reading the display data automatically, performs the bias control and the duty ratio control, and displays the data on the LCD panel.

Table 10 Maximum number of display pixels at each duty ratio

Duty ratio	Maximum number of display pixels
1	32 dots or 8 segment LCD 4 digits
2	64 dots or 8 segment LCD 8 digits
3	96 dots or 8 segment LCD 12 digits
4	128 dots or 8 segment LCD 16 digits

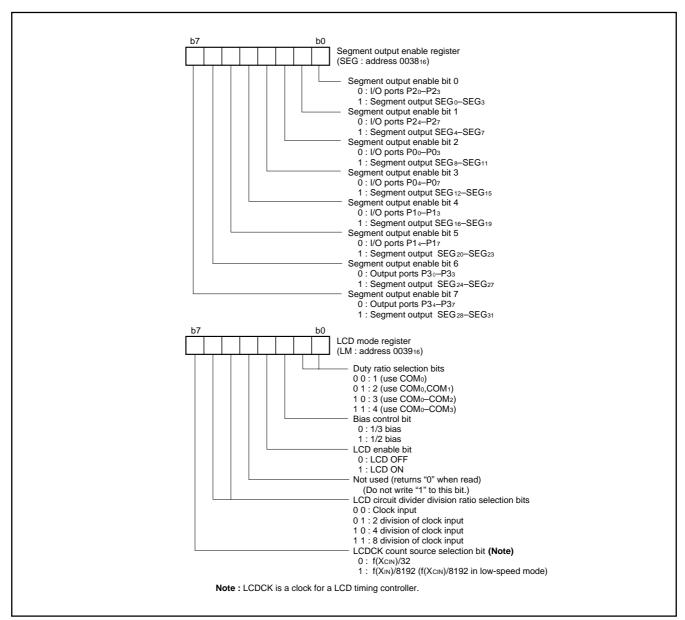


Fig. 29 Structure of LCD related registers

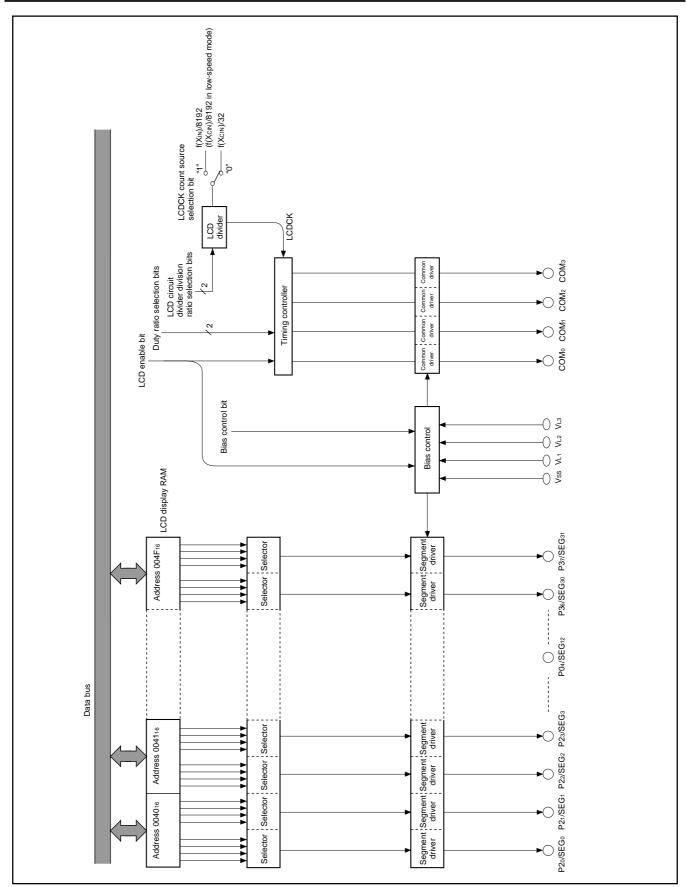


Fig. 30 Block diagram of LCD controller/driver

Bias Control and Applied Voltage to LCD Power Input Pins

To the LCD power input pins (VL1-VL3), apply the voltage value shown in Table 11 according to the bias value.

Select a bias value by the bias control bit (bit 2 of the LCD mode register).

Common Pin and Duty Ratio Control

The common pins (COMo–COM3) to be used are determined by duty ratio.

Select duty ratio by the duty ratio selection bits (bits 0 and 1 of the LCD mode register).

When selecting 1-duty ratio, 1/1 bias can be used.

Table 11 Bias control and applied voltage to VL1-VL3

Bias value	Voltage value
1/3 bias	VL3=VLCD VL2=2/3 VLCD VL1=1/3 VLCD
1/2 bias	VL3=VLCD VL2=VL1=1/2 VLCD
1/1 bias (1-duty ratio)	VL3=VLCD VL2=VL1=VSS

Note 1: VLCD is the maximum value of supplied voltage for the LCD panel.

Table 12 Duty ratio control and common pins used

Duty	Duty ratio s	selection bit	Common pins used
ratio	Bit 1 Bit 0		Common pins useu
1	0	0	COMo (Note 1)
2	0	1	COMo, COM1 (Note 2)
3	1	0	COM0-COM2 (Note 3)
4	1	1	COM0-COM3

Notes 1: COM1, COM2, and COM3 are open.

2: COM2 and COM3 are open.

3: COM3 is open.

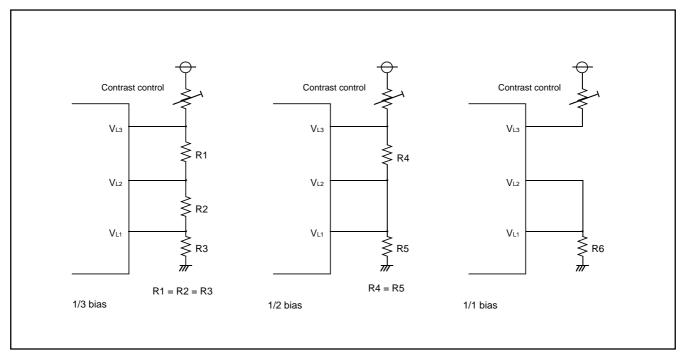


Fig. 31 Example of circuit at each bias

FUNCTIONAL DESCRIPTION

LCD Display RAM

Address 004016 to 004F16 is the designated RAM for the LCD display. When "1" are written to these addresses, the corresponding segments of the LCD display panel are turned on.

LCD Drive Timing

The LCDCK timing frequency (LCD drive timing) is generated internally and the frame frequency can be determined with the following equation;

$$f(LCDCK) = \frac{(frequency of count source for LCDCK)}{(divider division ratio for LCD)}$$

$$\label{eq:flower} \textit{Frame frequency=} \frac{\textit{f(LCDCK)}}{\textit{duty ratio}}$$

Bit	7	6	5	4	3	2	1	0	
Address	-			-	-	_			
004016		SE	G ₁		SEG ₀				
004116		SE	G ₃			SE	G ₂		
004216		SE	G ₅			SE	G4		
004316		SE	G ₇			SE	G ₆		
004416		SE	G ₉		SEG8				
004516		SE	G11		SEG ₁₀				
004616		SE	G13		SEG ₁₂				
004716		SE	G15		SEG ₁₄				
004816		SE	G17			SE	G16		
004916		SE	G 19			SE	G18		
004A ₁₆		SE	G21		SEG ₂₀				
004B ₁₆		SE	G23		SEG ₂₂				
004C ₁₆		SE	G25		SEG ₂₄				
004D ₁₆		SE	G27		SEG ₂₆				
004E ₁₆		SE	G29	•	SEG ₂₈			•	
004F ₁₆		SEG31				SEG ₃₀			
	СОМз	COM ₂	COM ₁	COM ₀	СОМз	COM ₂	COM ₁	COM ₀	

Fig. 32 LCD display RAM map

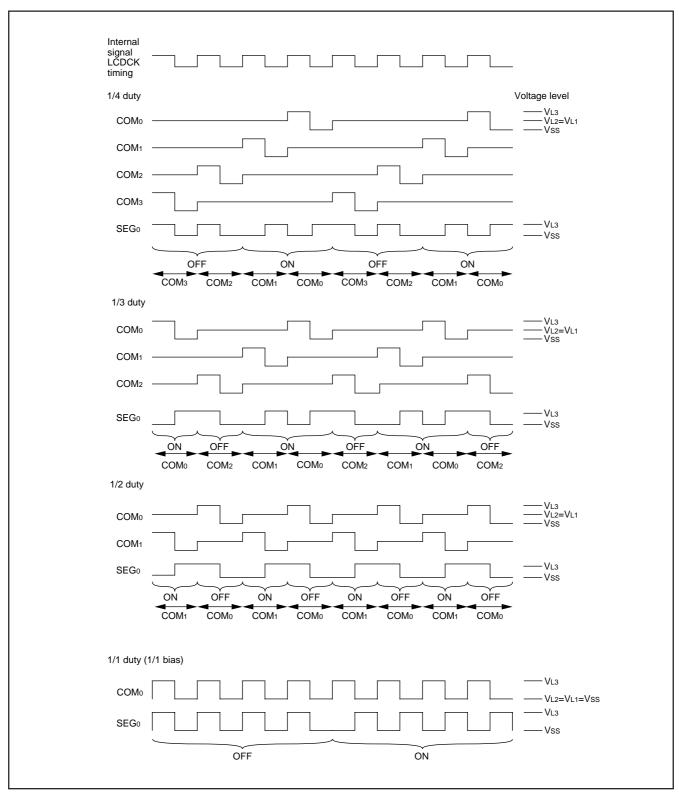


Fig. 33 LCD drive waveform (1/2 bias)

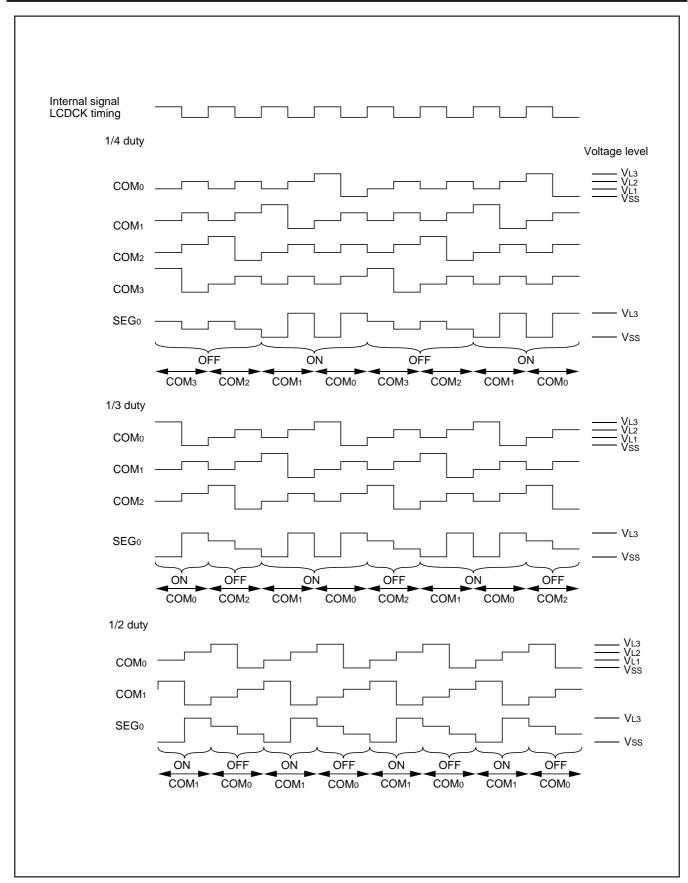


Fig. 34 LCD drive waveform (1/3 bias)

¢ CLOCK OUTPUT FUNCTION

The internal system clock ϕ can be output from port P43 by setting the ϕ output control register. Set "1" to bit 3 of the port P4 direction register when outputting ϕ clock.

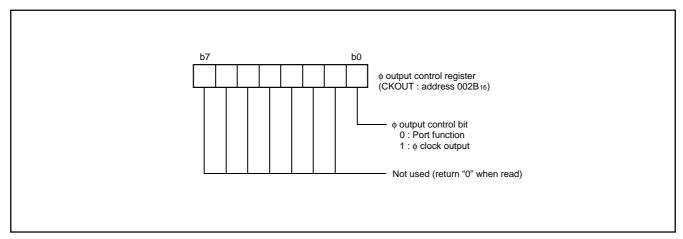


Fig. 35 Structure of ϕ output control register

ROM CORRECTION FUNCTION (Mask ROM version only)

The 38C3 group has the ROM correction function correcting data at the arbitrary addresses in the ROM area.

[ROM correct address register] 0F0216 - 0F1116

This is the register to store the address performing ROM correction. There are two types of registers to correct up to 8 addresses: one is the register to store the high-order address and the other is to store the low-order address.

[ROM correct enable register 1 (RC1)] 0F0116

This is the register to enable the ROM correction function. When setting the bit corresponding to the ROM correction address to "1", the ROM correction function is enabled.

It becomes invalid to the addresses of which corresponding bit is "0". All bits are "0" at the initial state.

[ROM correct data]

This is the register to store a correct data for the address specified by the ROM correct address register.

■Notes on ROM correction function

- To use the ROM correction function, transfer data to each ROM correct data register in the initial setting.
- Do not specify the same addresses in the ROM correct address register.

0F02 ₁₆	ROM correct high-order address register 1
0F03 ₁₆	ROM correct low-order address register 1
0F04 ₁₆	ROM correct high-order address register 2
0F05 ₁₆	ROM correct low-order address register 2
0F06 ₁₆	ROM correct high-order address register 3
0F07 ₁₆	ROM correct low-order address register 3
0F08 ₁₆	ROM correct high-order address register 4
0F09 ₁₆	ROM correct low-order address register 4
0F0A ₁₆	ROM correct high-order address register 5
0F0B ₁₆	ROM correct low-order address register 5
0F0C ₁₆	ROM correct high-order address register 6
0F0D16	ROM correct low-order address register 6
0F0E ₁₆	ROM correct high-order address register 7
0F0F16	ROM correct low-order address register 7
0F10 ₁₆	ROM correct high-order address register 8
0F11 ₁₆	ROM correct low-order address register 8

Fig. 36 Structure of ROM correct address register

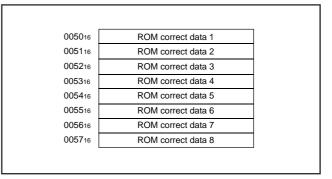


Fig. 37 Structure of ROM correct data

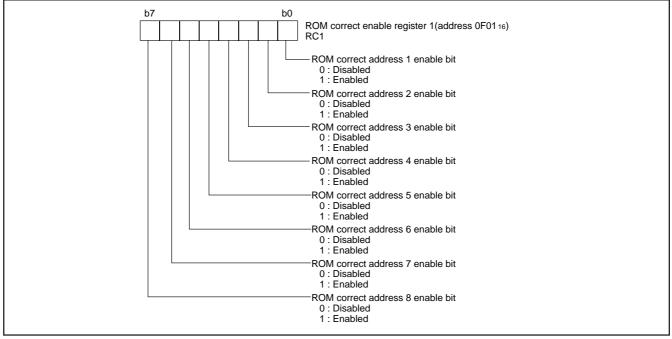


Fig. 38 Structure of ROM correct enable register 1

RESET CIRCUIT

To reset the microcomputer, \overline{RESET} pin should be held at an "L" level for 2 μs or more. Then the RESET pin is returned to an "H" level (the power source voltage should be between 2.5 V and 5.5 V (M version: 2.2* V to 5.5 V), and the oscillation should be stable), reset is released. After the reset is completed, the program starts from the address contained in address FFFD16 (high-order byte) and address FFFC16 (low-order byte). Make sure that the reset input voltage is less than 0.5 V for Vcc of 2.5 V (M version: less than 0.44 V for Vcc of 2.2* V) when switching to the high-speed mode, a power source voltage must be between 4.0 V and 5.5 V.

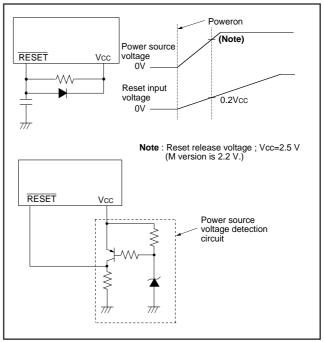


Fig. 39 Reset circuit example

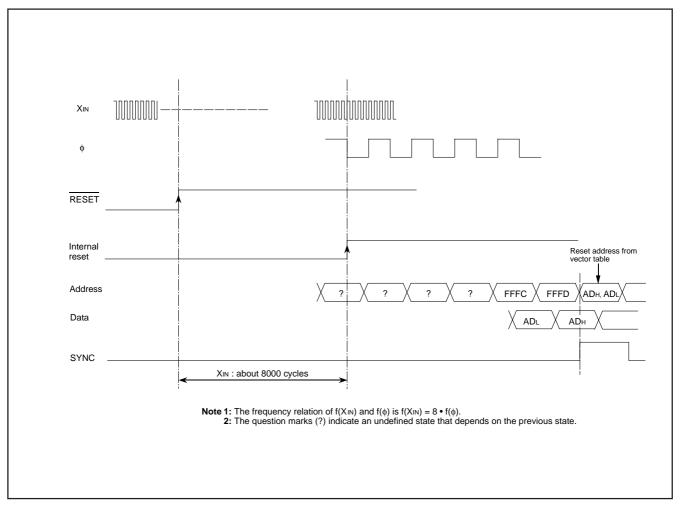


Fig. 40 Reset sequence

FUNCTIONAL DESCRIPTION

(1) Port P0	000016	Register contents 0016	(34) Timer A register (high-order)	002D ₁₆	Register contents FF ₁₆
			, , , , ,		
(2) Port P0 direction register	000116	0016	(35) Compare register (low-order)	002E ₁₆ [0016
(3) Port P1	000216	0016	(36) Compare register (high-order)	002F ₁₆ [0016
(4) Port P1 direction register	000316	0016	(37) Timer A mode register	003016	0016
(5) Port P2	000416	0016	(38) Timer A control register	003116	0016
(6) Port P2 direction register	000516	0016	(39) A-D control register	003216	1016
(7) Port P3	000616	0016	(40) Segment output enable register	003816	0016
(8) Port P4	000816	0016	(41) LCD mode register	003916	0016
(9) Port P4 direction register	000916	0016	(42) Interrupt edge selection register	003A ₁₆	0016
(10) Port P5	000A16	0016	(43) CPU mode register	003B ₁₆	0 1 0 0 1 0 0 0
(11) Port P5 direction register	000B ₁₆	0016	(44) Interrupt request register 1	003C16	0016
(12) Port P6	000C16	0016	(45) Interrupt request register 2	003D ₁₆	0016
(13) Port P6 direction register	000D16	0016	(46) Interrupt control register 1	003E16 [0016
(14) Port P7	000E16	0016	(47) Interrupt control register 2	003F ₁₆ [0016
(15) Port P7 direction register	000F16	0016	(48) ROM correct enable register 1	0F01 ₁₆ [0016
(16) Port P8	001016	0016	(49) ROM correct high-order address	0F02 ₁₆ [FF16
(17) Port P8 direction register	001116	0016	register 1 (50) ROM correct low-order address	0F03 ₁₆ [FF16
(18) PULL register A	001616	0F16	register 1 (51) ROM correct high-order address	0F04 ₁₆ [FF16
(19) PULL register B	001716	0016	register 2 (52) ROM correct low-order address	0F05 ₁₆ [FF16
(20) Port P8 output selection register	001816	0016	register 2 (53) ROM correct high-order address	0F06 ₁₆ [FF16
(21) Serial I/O control register 1	001916	0016	register 3 (54) ROM correct low-order address	0F07 ₁₆ [FF16
(22) Serial I/O control register 2	001A ₁₆	0016	register 3 (55) ROM correct high-order address	0F08 ₁₆	FF16
(23) Timer 1	002016	FF16	register 4 (56) ROM correct low-order address	0F09 ₁₆ [FF16
(24) Timer 2	002116	0116	register 4 (57) ROM correct high-order address	0F0A ₁₆	FF16
(25) Timer 3	002216	FF16	register 5 (58) ROM correct low-order address	0F0B ₁₆	FF ₁₆
(26) Timer 4	002316	FF16	register 5 (59) ROM correct high-order address	0F0C ₁₆	FF16
(27) Timer 5	002416	FF16	register 6 (60) ROM correct low-order address	0F0D16	FF16
(28) Timer 6	002516	FF16	register 6 (61) ROM correct high-order address	0F0E ₁₆	FF16
(29) Timer 12 mode register	002816	0016	register 7 (62) ROM correct low-order address	0F0F ₁₆	FF16
(30) Timer 34 mode register	002916	0016	register 7 (63) ROM correct high-order address	0F10 ₁₆	FF16
(31) Timer 56 mode register	002A ₁₆	0016	register 8 (64) ROM correct low-order address	0F11 ₁₆	FF ₁₆
(32) ϕ output control register	002B ₁₆	0016	register 8 (65) Processor status register	_	x x x x 1 x x
(33) Timer A register (low-order)	002C ₁₆	FF16	(66) Program counter	(PCH)	FFFD ₁₆ contents
(00) Tilliel A register (IOM-OLUEL)	332010	1 1 10	(/ i rogiam codinei	(PCL)	FFFC ₁₆ contents
X: Not fixed				(1 OL) [. 11 Old contents

Fig. 41 Internal status at reset

CLOCK GENERATING CIRCUIT

The 38C3 group has two built-in oscillation circuits. An oscillation circuit can be formed by connecting a resonator between XIN and XOUT (XCIN and XCOUT). Use the circuit constants in accordance with the resonator manufacturer's recommended values. No external resistor is needed between XIN and XOUT since a feedback resistor exists on-chip. However, an external feedback resistor is needed between XCIN and XCOUT.

Immediately after power on, only the XIN oscillation circuit starts oscillating, and XCIN and XCOUT pins function as I/O ports.

Frequency control

(1) Middle-speed mode

The internal system clock is the frequency of XIN divided by 8. After reset, this mode is selected.

(2) High-speed mode

The internal system clock is the frequency of XIN divided by 2.

(3) Low-speed mode

The internal system clock is the frequency of XCIN divided by 2.

■Notes on clock generating circuit

If you switch the mode between middle/high-speed and low-speed, stabilize both XIN and XCIN oscillations. The sufficient time is required for the sub clock to stabilize, especially immediately after power on and at returning from stop mode. When switching the mode between middle/high-speed and low-speed, set the frequency on condition that f(XIN) > 3f(XCIN).

Oscillation control

(1) Stop mode

If the STP instruction is executed, the internal system clock stops at an "H" level, and XIN and XCIN oscillators stop. Timer 1 is set to "FF16" and timer 2 is set to "0116."

Either XIN divided by 16 or XCIN divided by 16 is input to timer 1 as count source, and the output of timer 1 is connected to timer 2. The bits of the timer 12 mode register are cleared to "0." Set the interrupt enable bits of the timer 1 and timer 2 to disabled ("0") before executing the STP instruction. Oscillator restarts when an external interrupt is received, but the internal system clock is not supplied to the CPU until timer 2 underflows. This allows time for the clock circuit oscillation to stabilize.

(2) Wait mode

If the WIT instruction is executed, the internal system clock stops at an "H" level. The states of XIN and XCIN are the same as the state before executing the WIT instruction. The internal system clock restarts at reset or when an interrupt is received. Since the oscillator does not stop, normal operation can be started immediately after the clock is restarted.

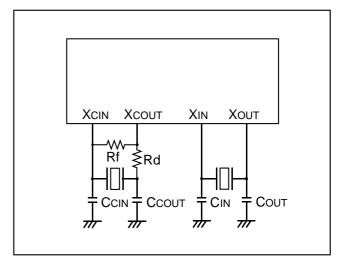


Fig. 42 Ceramic resonator circuit

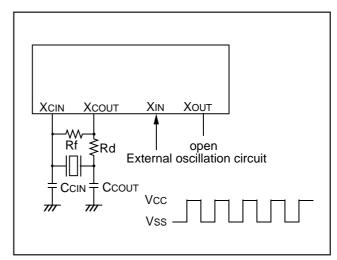


Fig. 43 External clock input circuit

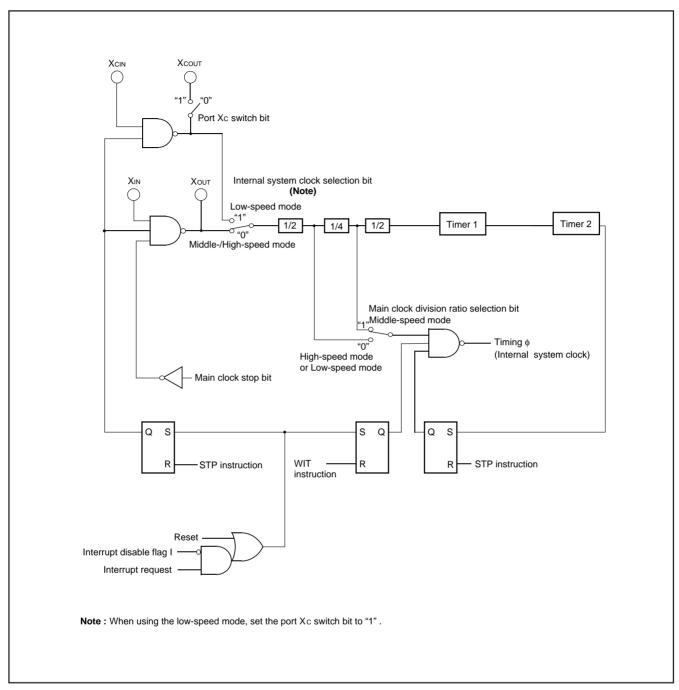


Fig. 44 Clock generating circuit block diagram

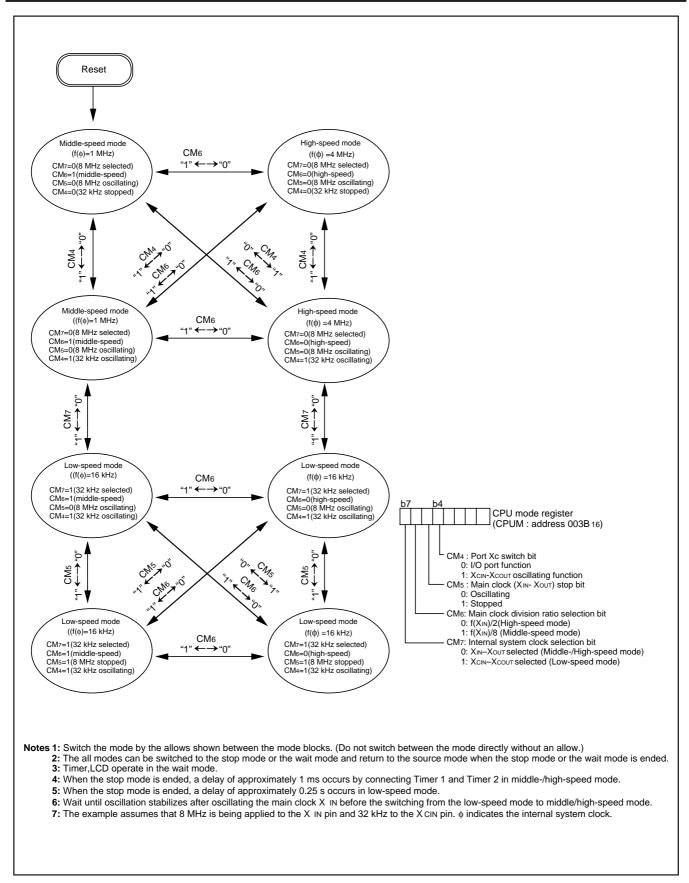


Fig. 45 State transitions of system clock

NOTES ON PROGRAMMING/NOTES ON USE

NOTES ON PROGRAMMING Processor Status Register

The contents of the processor status register (PS) after a reset are undefined, except for the interrupt disable flag (I) which is "1." After a reset, initialize flags which affect program execution. In particular, it is essential to initialize the index X mode (T) and the decimal mode (D) flags because of their effect on calculations.

Interrupts

The contents of the interrupt request bits do not change immediately after they have been written. After writing to an interrupt request register, execute at least one instruction before performing a BBC or BBS instruction.

Decimal Calculations

- To calculate in decimal notation, set the decimal mode flag (D) to "1," then execute an ADC or SBC instruction. After executing an ADC or SBC instruction, execute at least one instruction before executing a SEC, CLC, or CLD instruction.
- In decimal mode, the values of the negative (N), overflow (V), and zero (Z) flags are invalid.

Timers

If a value n (between 0 and 255) is written to a timer latch, the frequency division ratio is 1/(n+1).

Multiplication and Division Instructions

- The index X mode (T) and the decimal mode (D) flags do not affect the MUL and DIV instruction.
- The execution of these instructions does not change the contents of the processor status register.

Ports

The contents of the port direction registers cannot be read. The following cannot be used:

- The data transfer instruction (LDA, etc.)
- The operation instruction when the index X mode flag (T) is "1"
- The addressing mode which uses the value of a direction register
- The bit-test instruction (BBC or BBS, etc.) to a direction register
- The read-modify-write instructions (ROR, CLB, or SEB, etc.) to a direction register.

Use instructions such as LDM and STA, etc., to set the port direction registers.

Serial I/O

• Using an external clock

When using an external clock, input "H" to the external clock input pin and clear the serial I/O interrupt request bit before executing serial I/O transfer and serial I/O automatic transfer.

• Using an internal clock

When using an internal clock, set the synchronous clock to the internal clock, then clear the serial I/O interrupt request bit before executing a serial I/O transfer and serial I/O automatic transfer.

A-D Converter

The comparator uses internal capacitors whose charge will be lost if the clock frequency is too low.

Therefore, make sure that f(XIN) is at least on 500 kHz during an A-D conversion.

Do not execute the STP or WIT instruction during an A-D conversion.

Instruction Execution Time

The instruction execution time is obtained by multiplying the frequency of the internal system clock by the number of cycles needed to execute an instruction.

The number of cycles required to execute an instruction is shown in the list of machine instructions.

The frequency of the internal system clock is the same half of the XIN frequency in high-speed mode.

At STP Instruction Release

At the STP instruction release, all bits of the timer 12 mode register are cleared.

NOTES ON USE Notes on Built-in EPROM Version

The P51 pin of the One Time PROM version or the EPROM version functions as the power source input pin of the internal EPROM.

Therefore, this pin is set at low input impedance, thereby being affected easily by noise.

To prevent a malfunction due to noise, insert a resistor (approx. 5 k Ω) in series with the P51 pin.

DATA REQUIRED FOR MASK ORDERS AND ROM WRITING ORDERS/ROM PROGRAMMING METHOD

DATA REQUIRED FOR MASK ORDERS

The following are necessary when ordering a mask ROM production:

- 1. Mask ROM Order Confirmation Form
- 2. Mark Specification Form
- 3. Data to be written to ROM, in EPROM form (three identical copies)

DATA REQUIRED FOR ROM WRITING ORDERS

The following are necessary when ordering a ROM writing:

- 1. ROM Writing Confirmation Form
- 2. Mark Specification Form
- 3. Data to be written to ROM, in EPROM form (three identical copies)

ROM PROGRAMMING METHOD

The built-in PROM of the blank One Time PROM version and built-in EPROM version can be read or programmed with a general-purpose PROM programmer using a special programming adapter.

Table 13 Programming adapter

Package	Name of Programming Adapter
80P6N-A	PCA4738F-80A
80D0	PCA4738L-80A

The PROM of the blank One Time PROM version is not tested or screened in the assembly process and following processes. To ensure proper operation after programming, the procedure shown in Figure 46 is recommended to verify programming.

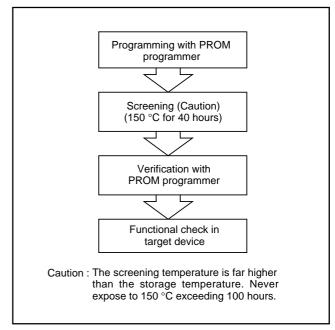


Fig. 46 Programming and testing of One Time PROM version

FUNCTIONAL DESCRIPTION SUPPLEMENT

FUNCTIONAL DESCRIPTION SUPPLEMENT

Interrupt

38C3 group permits interrupts on the basis of 16 sources. It is vector interrupts with a fixed priority system. Accordingly, when two or more interrupt requests occur during the same sampling, the

higher-priority interrupt is accepted first. This priority is determined by hardware, but various priority processing can be performed by software, using an interrupt enable bit and an interrupt disable flag. For interrupt sources, vector addresses and interrupt priority, refer to Table 14.

Table 14 Interrupt sources, vector addresses and interrupt priority

Interrupt Source	Driority	Vector Addresses (Note 1)		Interrupt Request	Remarks	
interrupt Source	Filolity	High	Low	Generating Conditions	IVEITIAINS	
Reset (Note 2)	1	FFFD16	FFFC16	At reset	Non-maskable	
INT ₀	2	FFFB16	FFFA16	At detection of either rising or falling edge of INTo input	External interrupt (active edge selectable)	
INT1	3	FFF916	FFF816	At detection of either rising or falling edge of INT1 input	External interrupt (active edge selectable)	
INT2	4	FFF716	FFF616	At detection of either rising or falling edge of INT2 input	External interrupt (active edge selectable)	
Serial I/O	5	FFF516	FFF416	At completion of serial I/O data transmit/receive	Valid when serial I/O is selected	
Timer A	6	FFF316	FFF216	At timer A underflow		
Timer 1	7	FFF116	FFF016	At timer 1 underflow		
Timer 2	8	FFEF16	FFEE16	At timer 2 underflow	STP release timer underflow	
Timer 3	9	FFED16	FFEC16	At timer 3 underflow		
Timer 4	10	FFEB16	FFEA16	At timer 4 underflow		
Timer 5	11	FFE916	FFE816	At timer 5 underflow		
Timer 6	12	FFE716	FFE616	At timer 6 underflow		
CNTR ₀	13	FFE516	FFE416	At detection of either rising or falling edge of CNTR0 input	External interrupt (active edge selectable)	
CNTR ₁	14	FFE316	FFE216	At detection of either rising or falling edge of CNTR1 input	External interrupt (active edge selectable)	
Key input (Key- on wake-up)	15	FFE116	FFE016	At falling of port P8 (at input) input logical level AND	External interrupt (falling valid)	
A-D conversion	16	FFDF16	FFDE16	At completion of A-D conversion	Valid when A-D conversion interrupt is selected	
BRK instruction	17	FFDD16	FFDC16	At BRK instruction execution	Non-maskable software interrupt	

Notes 1: Vector addresses contain interrupt jump destination addresses.

^{2:} Reset function in the same way as an interrupt with the highest priority.

Timing After Interrupt

The interrupt processing routine begins with the machine cycle following the completion of the instruction that is currently in execution. Figure 47 shows a timing chart after an interrupt occurs, and Figure 48 shows the time up to execution of the interrupt processing routine.

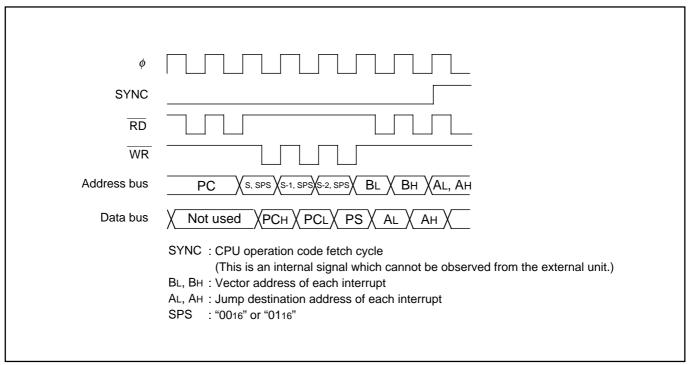


Fig. 47 Timing chart after interrupt occurs

Fig. 48 Time up to execution of interrupt processing routine

FUNCTIONAL DESCRIPTION SUPPLEMENT

A-D Converter

A-D conversion is started by setting AD conversion completion bit to "0." During A-D conversion, internal operations are performed as follows

- 1. After the start of A-D conversion, A-D conversion register goes to "0016."
- 2. The highest-order bit of A-D conversion register is set to "1," and the comparison voltage Vref is input to the comparator. Then, Vref is compared with analog input voltage VIN.
- 3. As a result of comparison, when Vref < VIN, the highest-order bit of A-D conversion register becomes "1." When Vref > VIN, the highest-order bit becomes "0."

By repeating the above operations up to the lowest-order bit of the A-D conversion register, an analog value converts into a digital value. A-D conversion completes at 61 clock cycles (15.25 μs at f(XIN) = 8 MHz) after it is started, and the result of the conversion is stored into the A-D conversion register.

Concurrently with the completion of A-D conversion, A-D conversion interrupt request occurs, so that the AD conversion interrupt request bit is set to "1."

Table 15 Relative formula for a reference voltage VREF of A-D converter and Vref

When $n = 0$	Vref = 0
When n = 1 to 1023	$V_{ref} = \frac{V_{REF}}{1024} \times n$

n: Value of A-D converter (decimal numeral)

Table 16 Change of A-D conversion register during A-D conversion

Table 10 Offarige of A D convers	ton register during A-D conversion				
	Change of A-D conversion register	Value of comparison voltage (Vref)			
At start of conversion	0 0 0 0 0 0 0 0 0	0			
First comparison	1 0 0 0 0 0 0 0 0 0	VREF 2			
Second comparison	*1 1 0 0 0 0 0 0 0 0	$\frac{\text{VREF}}{2} \pm \frac{\text{VREF}}{4}$			
Third comparison	*1 *2 1 0 0 0 0 0 0 0	$\frac{\text{VREF}}{2} \pm \frac{\text{VREF}}{4} \pm \frac{\text{VREF}}{8}$			
	3	*			
After completion of tenth comparison	A result of A-D conversion *1 *2 *3 *4 *5 *6 *7 *8 *9 *10	$\frac{\text{VREF}}{2} \pm \frac{\text{VREF}}{4} \pm \frac{\bullet \bullet \bullet \bullet}{1024}$			

*1-*10: A result of the first comparison to the tenth comparison

Figures 49 shows the A-D conversion equivalent circuit, and Figure 50 shows the A-D conversion timing chart.

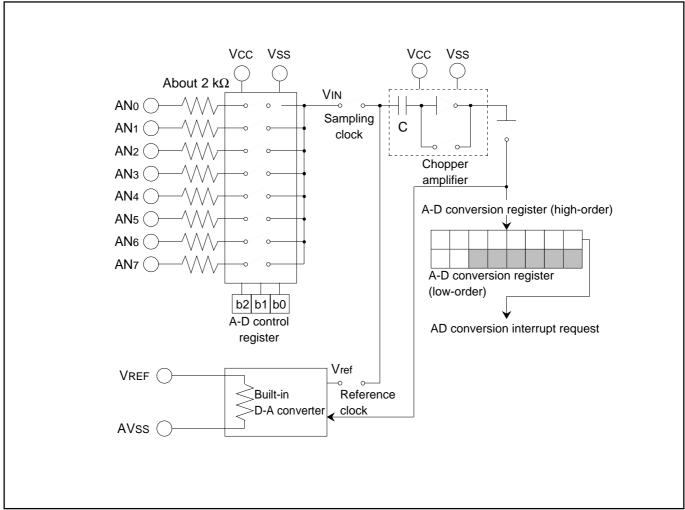


Fig. 49 A-D conversion equivalent circuit

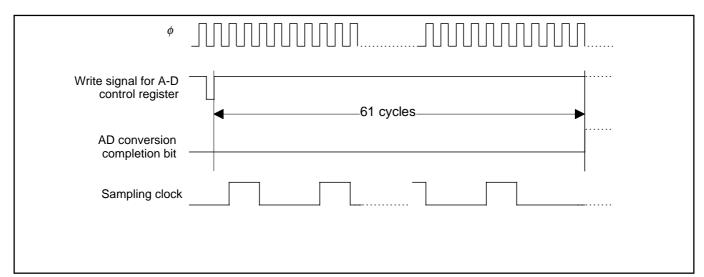


Fig. 50 A-D conversion timing chart

FUNCTIONAL DESCRIPTION SUPPLEMENT

MEMORANDUM

CHAPTER 2 APPLICATION

- 2.1 I/O port
- 2.2 Timer
- 2.3 Serial I/O
- 2.4 LCD controller
- 2.5 A-D converter
- 2.6 ROM correct function
- 2.7 Reset circuit
- 2.8 Clock generating circuit

APPLICATION

2.1 I/O port

2.1 I/O port

This paragraph describes the setting method of I/O port relevant registers, notes etc.

2.1.1 Memory map

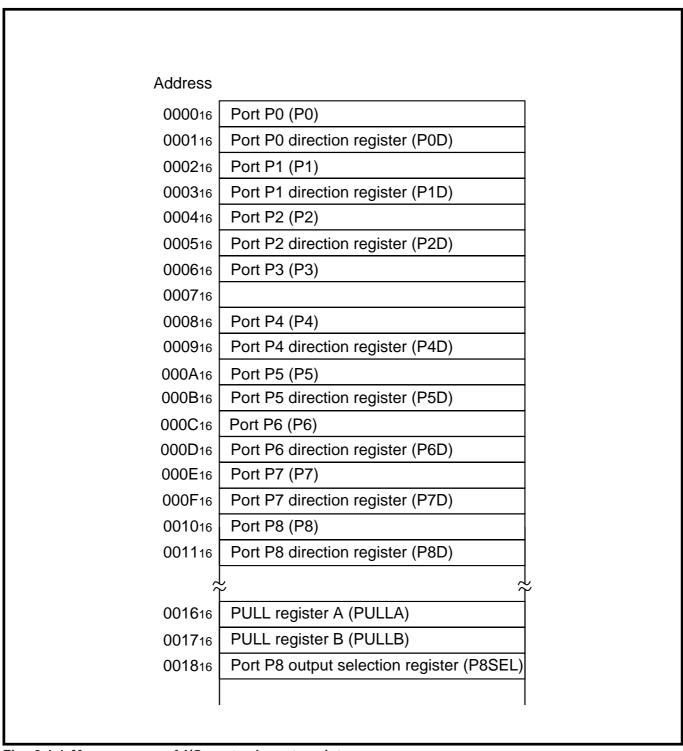


Fig. 2.1.1 Memory map of I/O port relevant registers

2.1.2 Relevant registers

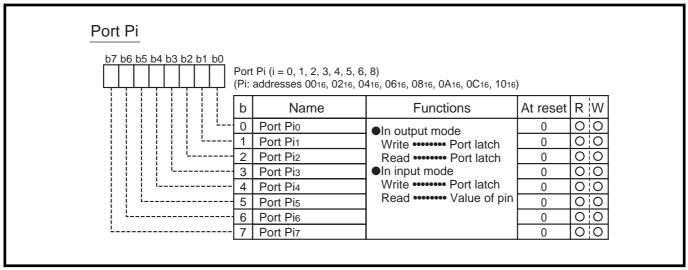


Fig. 2.1.2 Structure of port Pi (i = 0, 1, 2, 3, 4, 5, 6, 8)

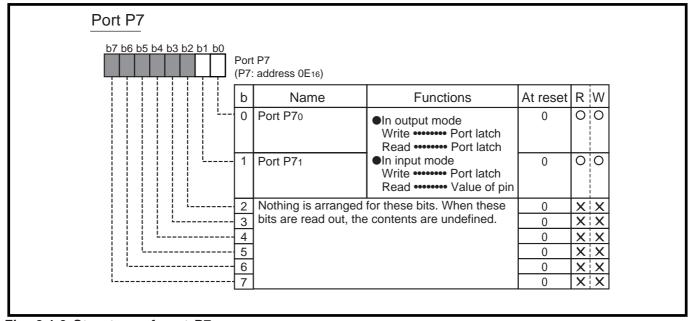


Fig. 2.1.3 Structure of port P7

2.1 I/O port

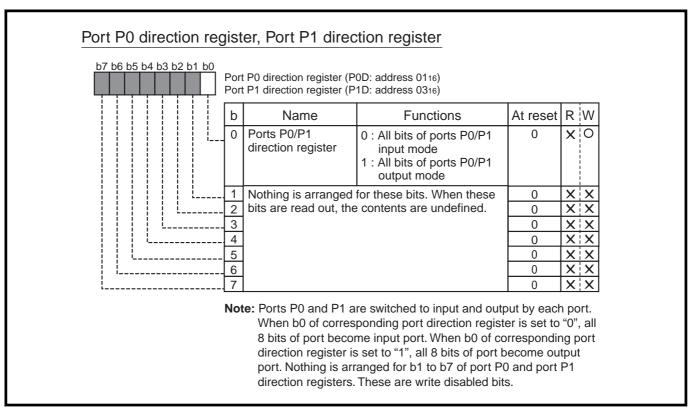


Fig. 2.1.4 Structure of Port P0 direction register and port P1 direction register

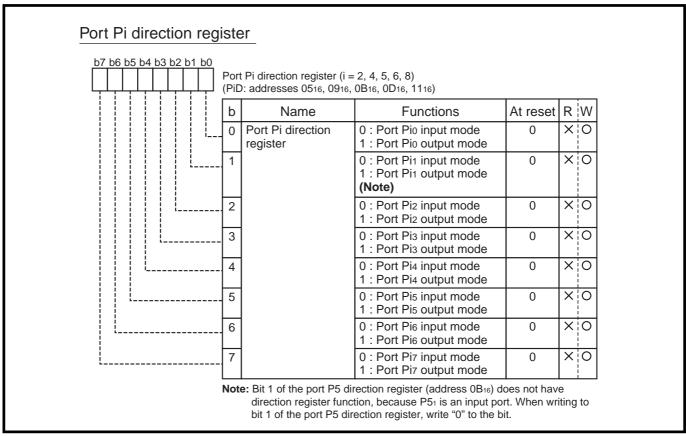


Fig. 2.1.5 Structure of Port Pi direction register (i = 2, 4, 5, 6, 8)

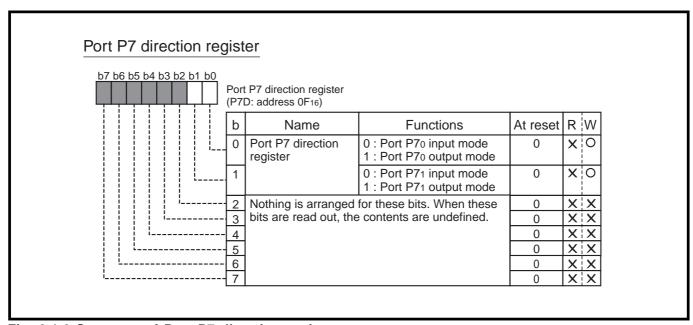


Fig. 2.1.6 Structure of Port P7 direction register

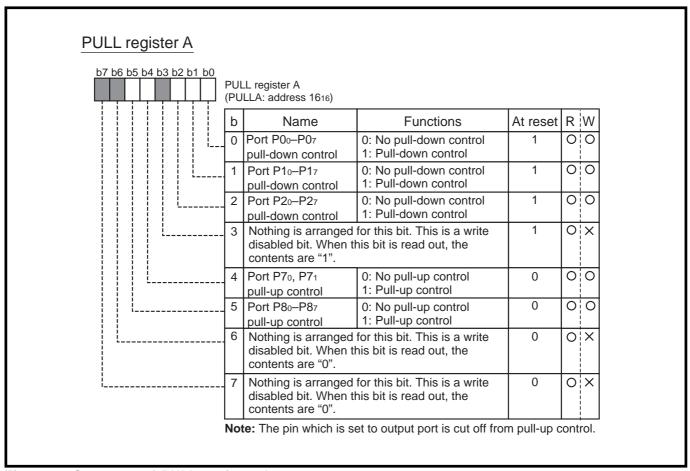


Fig. 2.1.7 Structure of PULL register A

2.1 I/O port

PULL register B					
b7 b6 b5 b4 b3 b2 b1 b0		LL register B ILLB: address 1716)			
	b	Name	Functions	At reset	RW
	0	Port P40-P43 pull-up control	0: No pull-up control 1: Pull-up control	0	00
	1	Port P44–P47 pull-up control	0: No pull-up control 1: Pull-up control	0	00
	2	Port P50, P52, P53 pull-up control	0: No pull-up control 1: Pull-up control	0	00
	3	Port P54–P57 pull-up control	0: No pull-up control 1: Pull-up control	0	00
	4	Port P60–P63 pull-up control	0: No pull-up control 1: Pull-up control	0	00
	5	Port P64–P67 pull-up control	0: No pull-up control 1: Pull-up control	0	0 0
	6	Nothing is arranged disabled bit. When the contents are "0".	for this bit. This is a write his bit is read out, the	0	O X
<u> </u>	7		for this bit. This is a write his bit is read out, the	0	Ο×
	No	te: The pin which is se	et to output port is cut off from	n pull-up c	ontrol.

Fig. 2.1.8 Structure of PULL register B

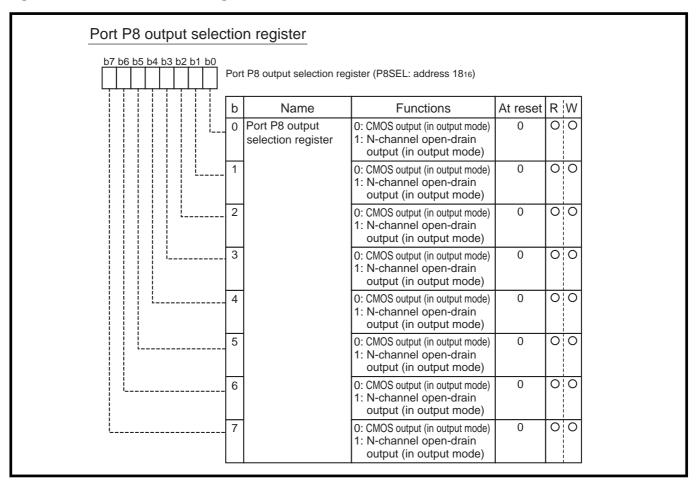


Fig. 2.1.9 Structure of Port P8 output selection register

APPLICATION

2.1 I/O port

2.1.3 Terminate unused pins

Table 2.1.1 Termination of unused pins

Pins	Termination
P3	Open at "H" output state.
P0, P1, P2, P4,	$ullet$ Set to the input mode and connect each to Vcc or Vss through a resistor of 1 k Ω to
P5 ₀ , P5 ₂ –P5 ₇ , P6,	10 kΩ.
P7, P8	• Set to the output mode and open at "L" or "H" output state.
P5 ₁	Connect to V_{CC} or V_{SS} through a resistor of 1 k Ω to 10 k Ω .
VL ₁ –VL ₃	Connect to Vss (GND).
COM ₀ –COM ₃	Open
V _{REF}	Open
Хоит	Open (only when using external clock)
AVss	Connect to Vss (GND).

APPLICATION

2.1 I/O port

2.1.4 Notes on I/O port

(1) Notes in standby state

In standby state ¹ for low-power dissipation, do not make input levels of an input port and an I/O port "undefined".

Pull-up (connect the port to VCC) or pull-down (connect the port to Vss) these ports through a resistor.

When determining a resistance value, note the following points:

- External circuit
- Variation of output levels during the ordinary operation

When using built-in pull-up resistor, note on varied current values:

- When setting as an input port : Fix its input level
- When setting as an output port : Prevent current from flowing out to external

Reason

The potential which is input to the input buffer in a microcomputer is unstable in the state that input levels of a input port and an I/O port are "undefined". This may cause power source current.

1 standby state: stop mode by executing **STP** instruction wait mode by executing **WIT** instruction

(2) Modifying port latch of I/O port with bit managing instruction

When the port latch of an I/O port is modified with the bit managing instruction ², the value of the unspecified bit may be changed.

Reason

The bit managing instructions are read-modify-write form instructions for reading and writing data by a byte unit. Accordingly, when these instructions are executed on a bit of the port latch of an I/O port, the following is executed to all bits of the port latch.

•As for bit which is set for input port:

The pin state is read in the CPU, and is written to this bit after bit managing.

•As for bit which is set for output port:

The bit value is read in the CPU, and is written to this bit after bit managing.

Note the following:

- •Even when a port which is set as an output port is changed for an input port, its port latch holds the output data.
- •As for a bit of which is set for an input port, its value may be changed even when not specified with a bit managing instruction in case where the pin state differs from its port latch contents.
 - 2 Bit managing instructions: SEB and CLB instructions

(3) Pull-up/Pull-down control

When each port which has built-in pull-up/pull-down resistor (P0, P1, P2, P4, P5₀, P5₂–P5₇, P6, P7, P8) is set to output port, pull-up/pull-down control of corresponding port become invalid. (Pull-up/Pull-down cannot be set.)

Reason

Pull-up control is valid only when each direction register is set to the input mode.

2.1.5 Termination of unused pins

(1) Terminate unused pins

① Output ports : Open

2 Input ports:

Connect each pin to VCC or Vss through each resistor of 1 k Ω to 10 k Ω .

As for pins whose potential affects to operation modes such as pin INT or others, select the VCC pin or the Vss pin according to their operation mode.

3 I/O ports:

• Set the I/O ports for the input mode and connect them to Vcc or Vss through each resistor of 1 k Ω to 10 k Ω .

Ports that permit the selecting of a built-in pull-up resistor can also use this resistor. Set the I/O ports for the output mode and open them at "L" or "H".

- When opening them in the output mode, the input mode of the initial status remains until the
 mode of the ports is switched over to the output mode by the program after reset. Thus, the
 potential at these pins is undefined and the power source current may increase in the input
 mode. With regard to an effects on the system, thoroughly perform system evaluation on the user
 side.
- Since the direction register setup may be changed because of a program runaway or noise, set direction registers by program periodically to increase the reliability of program.

(2) Termination remarks

① Input ports and I/O ports:

Do not open in the input mode.

Reason

- The power source current may increase depending on the first-stage circuit.
- An effect due to noise may be easily produced as compared with proper termination ② and ③ shown on the above.

2 I/O ports:

When setting for the input mode, do not connect to VCC or VSS directly.

Reason

If the direction register setup changes for the output mode because of a program runaway or noise, a short circuit may occur between a port and Vcc (or Vss).

3 I/O ports:

When setting for the input mode, do not connect multiple ports in a lump to VCC or Vss through a resistor.

Reason

If the direction register setup changes for the output mode because of a program runaway or noise, a short circuit may occur between ports.

• At the termination of unused pins, perform wiring at the shortest possible distance (20 mm or less) from microcomputer pins.

2.2 Timer

2.2 Timer

This paragraph explains the registers setting method and the notes relevant to the timers.

2.2.1 Memory map

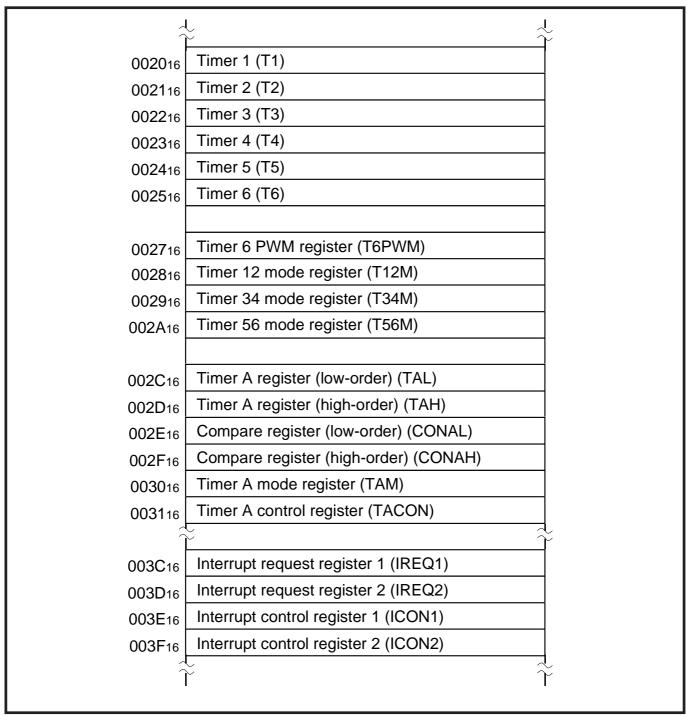


Fig. 2.2.1 Memory map of registers relevant to timers

2.2.2 Relevant registers

(1) 8-bit timer

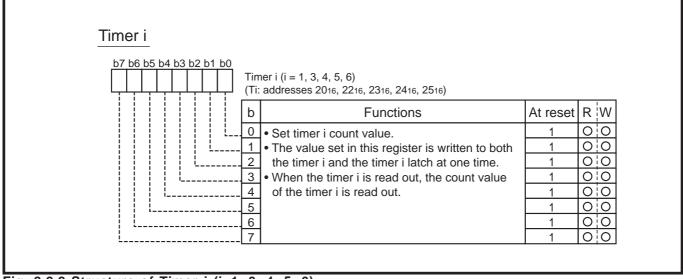


Fig. 2.2.2 Structure of Timer i (i=1, 3, 4, 5, 6)

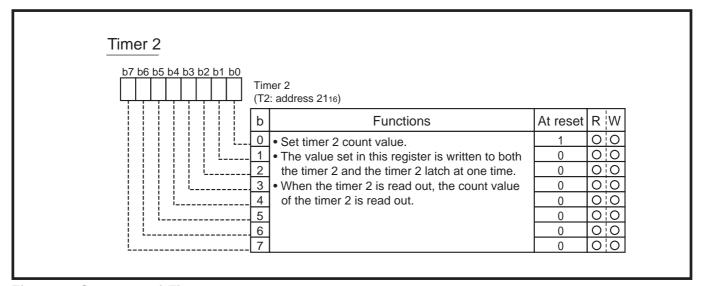


Fig. 2.2.3 Structure of Timer 2

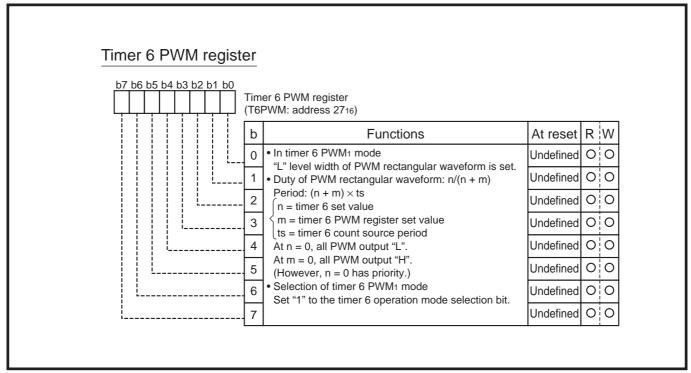


Fig. 2.2.4 Structure of Timer 6 PWM register

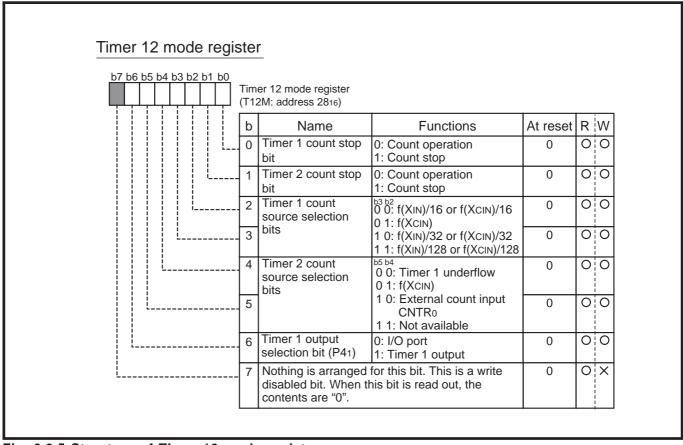


Fig. 2.2.5 Structure of Timer 12 mode register

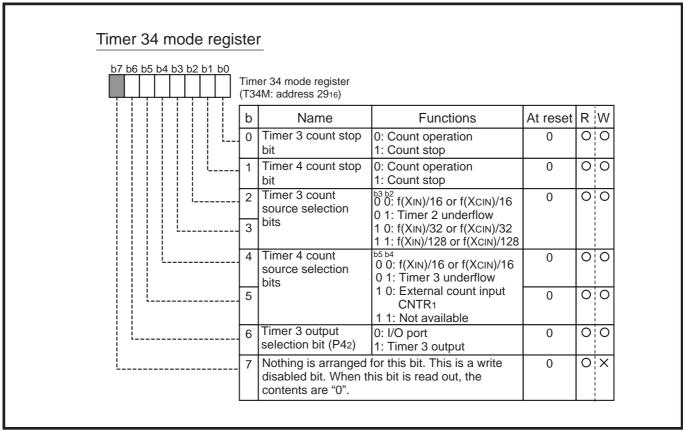


Fig. 2.2.6 Structure of Timer 34 mode register

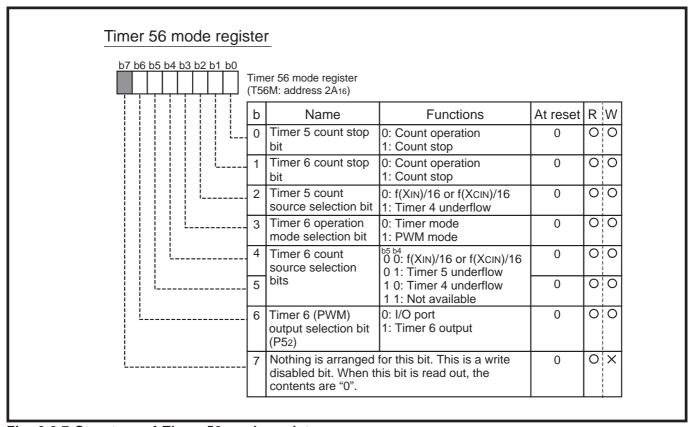


Fig. 2.2.7 Structure of Timer 56 mode register

(2) 16-bit timer

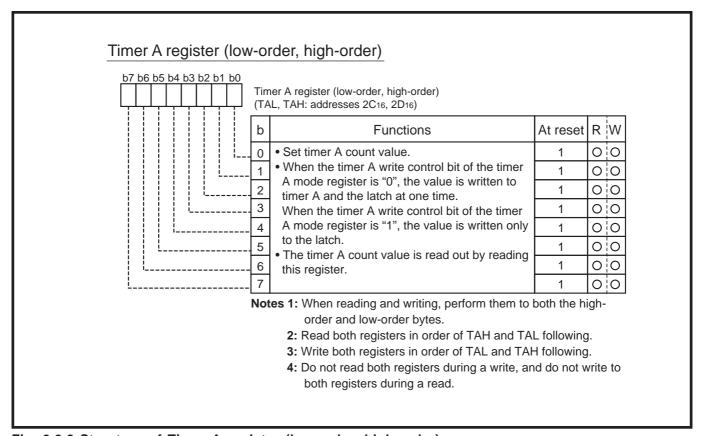


Fig. 2.2.8 Structure of Timer A register (low-order, high-order)

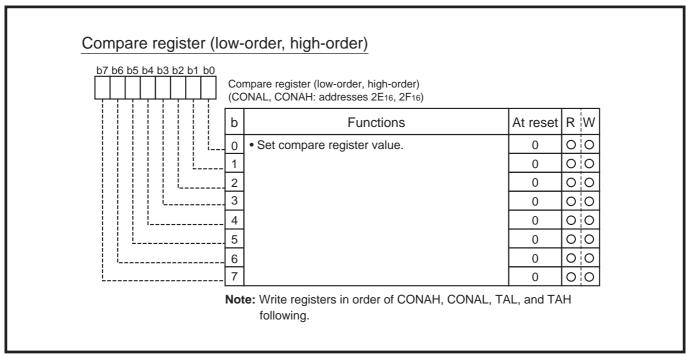


Fig. 2.2.9 Structure of Compare register (low-order, high-order)

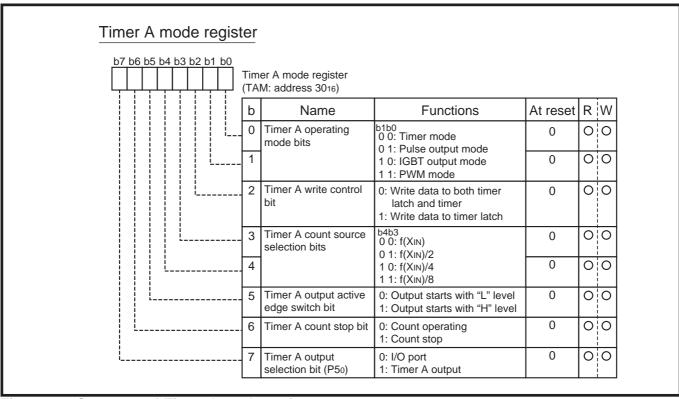


Fig. 2.2.10 Structure of Timer A mode register

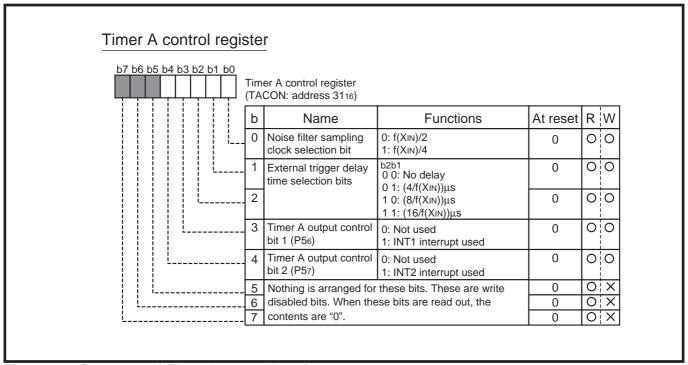


Fig. 2.2.11 Structure of Timer A control register

2.2 Timer

(3) 8-bit timer, 16-bit timer

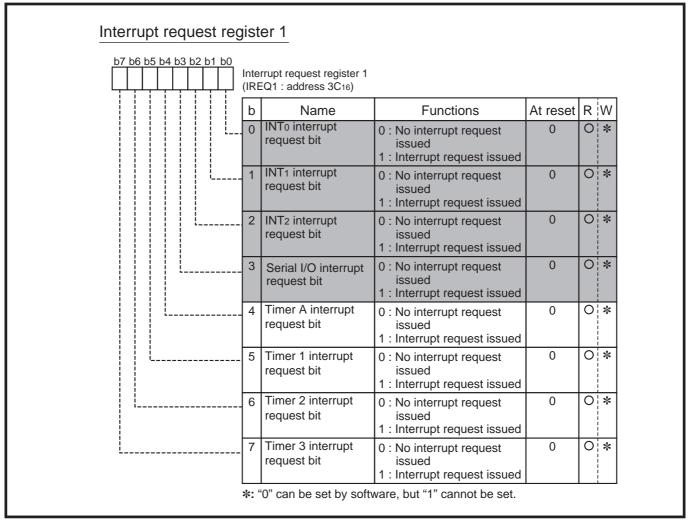


Fig. 2.2.12 Structure of Interrupt request register 1

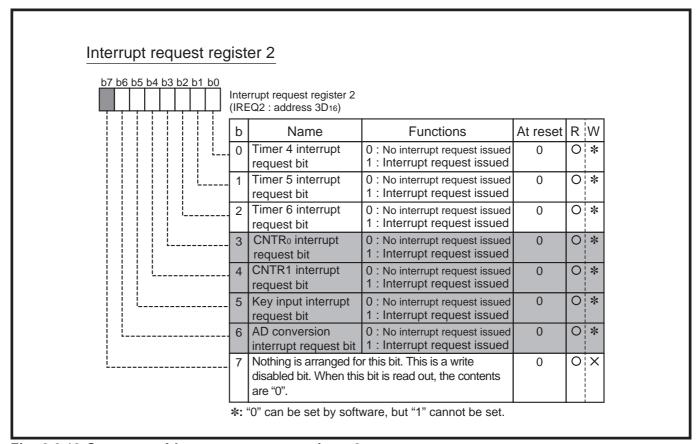


Fig. 2.2.13 Structure of Interrupt request register 2

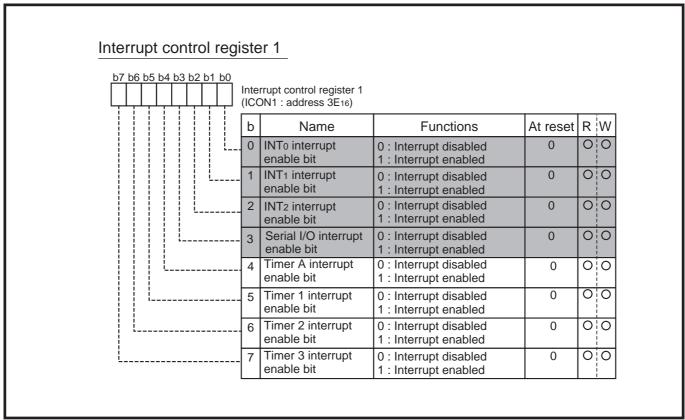


Fig. 2.2.14 Structure of Interrupt control register 1

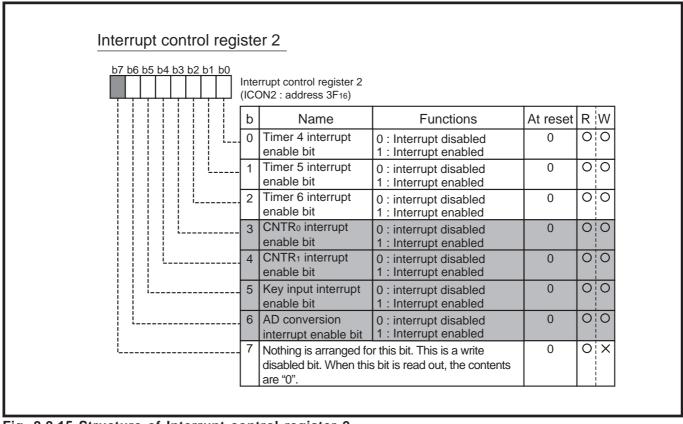


Fig. 2.2.15 Structure of Interrupt control register 2

2.2.3 Timer application examples

(1) Basic functions and uses

[Function 1] Control of event interval (Timer 1 to Timer 6, Timer A: timer mode)

When a certain time, by setting a count value to each timer, has passed, the timer interrupt request occurs. <Use>

- Generating of an output signal timing
- •Generating of a wait time

[Function 2] Control of cyclic operation (Timer 1 to Timer 6, Timer A: timer mode)

The value of the timer latch is automatically written to the corresponding timer each time the timer underflows, and each timer interrupt request occurs in cycles.

- <Use>
- Generating of cyclic interrupts
- •Clock function (measurement of 1 s); see "(2) Timer application example 1"
- •Control of a main routine cycle

[Function 3] Output of rectangular waveform

(Timer 1, Timer 3, Timer 6, Timer A: pulse output mode)

The output level of the T1out pin, T3out pin, PWM₁ pin or TAout pin is inverted each time the timer underflows.

- <Use>
- •Piezoelectric buzzer output; see "(3) Timer application example 2"
- •Generating of the remote control carrier waveforms

[Function 4] Count of external pulses (Timer 2, Timer 4)

External pulses input to the CNTR₀ pin, CNTR₁ pin are counted as the timer count source (in the event counter mode).

- <Use>
- •Frequency measurement; see "(4) Timer application example 3"
- Division of external pulses
- •Generating of interrupts due to a cycle using external pulses as the count source; count of a reel pulse

[Function 5] Output of PWM signal (Timer 6)

"H" interval and "L" interval are specified, respectively, and the output of pulses from P5₂/PWM₁ pin is repeated.

- <Use>
- •Control of electric volume

[Function 6] Output of IGBT control signal (Timer A: IGBT output mode)

The external signal which is input to INT_0 pin is used as trigger, and the period and "H" interval are specified, respectively, and the output of pulses from P5₀/TA_{0UT} pin is repeated.

- <Use>
- •IGBT control of IH heat equipment; see "(5) Timer application example 4"
- •IGBT control to magnetron

[Function 7] Output of PWM signal (Timer A: PWM mode)

The cycle and "H" interval are specified, respectively, and the output of pulses from P5₀/TA_{OUT} pin is repeated.

- <Use>
- •Control of electric volume
- •IGBT control of IH heat equipment

2.2 Timer

(2) Timer application example 1: Clock function (measurement of 1 s)

Outline: The input clock is divided by the timer so that the clock can count up at 1 s intervals. **Specifications**: •The clock $f(X_{IN}) = 4.19$ MHz (2^{22} Hz) is divided by the timer.

- •The timer 3 interrupt request bit is checked in main routine, and if the interrupt request is issued, the clock is counted up.
- The timer 1 interrupt occurs every 244 µs to execute processing of other interrupts.

Figure 2.2.16 shows the timers connection and setting of division ratios; Figure 2.2.17 shows the relevant registers setting; Figure 2.2.18 shows the control procedure.

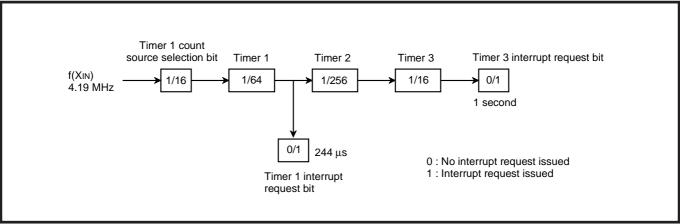


Fig. 2.2.16 Timers connection and setting of division ratios

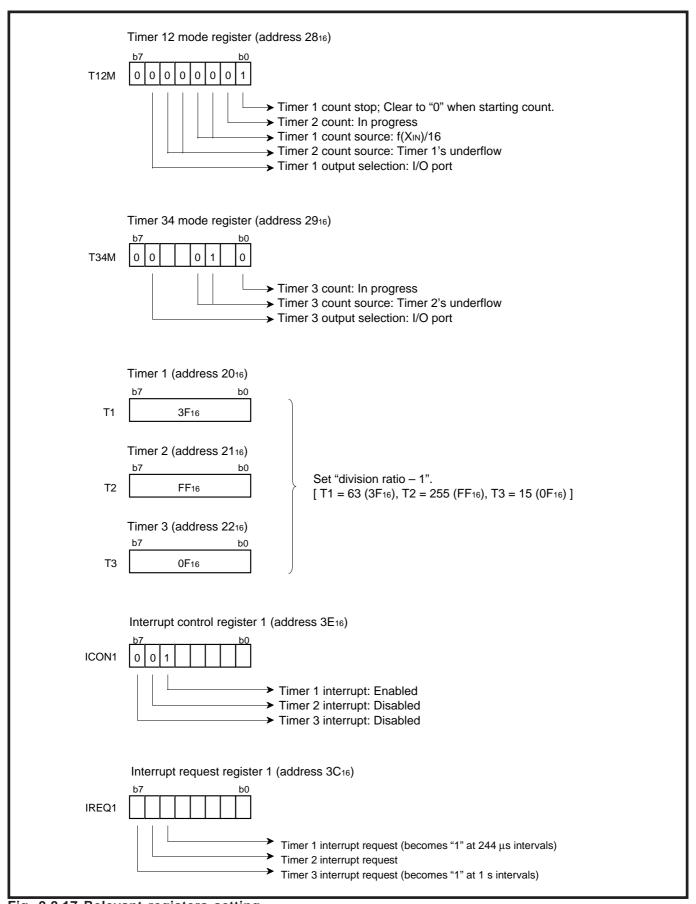


Fig. 2.2.17 Relevant registers setting

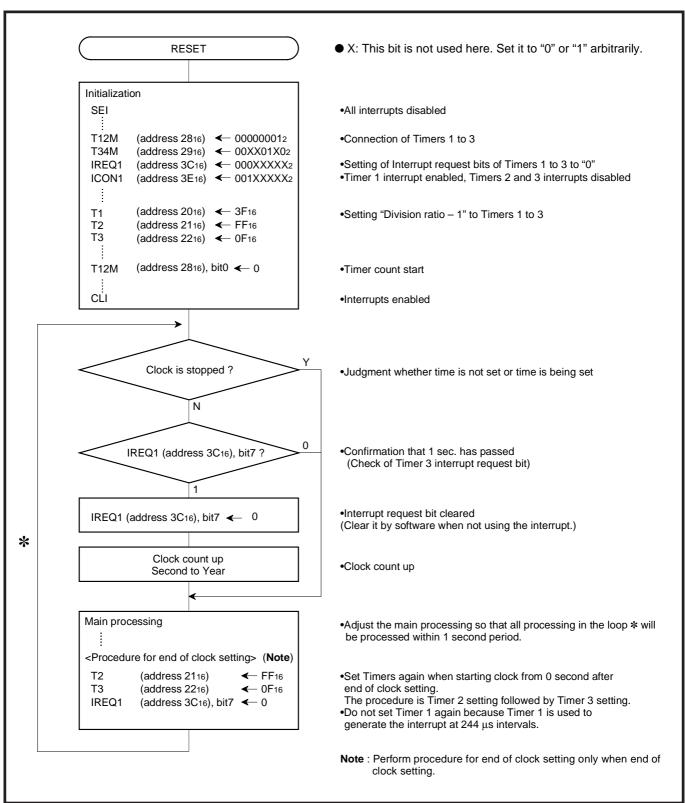


Fig. 2.2.18 Control procedure

(3) Timer application example 2: Piezoelectric buzzer output

Outline: The rectangular waveform output function of the timer is applied for a piezoelectric buzzer output.

- **Specifications**: •The rectangular waveform, dividing the clock $f(X_{IN}) = 4.19$ MHz (2^{22} Hz) into about 2 kHz (2048 Hz), is output from the $P4_2/T3_{OUT}$ pin.
 - •The level of the P4₂/T3_{OUT} pin is fixed to "H" while a piezoelectric buzzer output stops.

Figure 2.2.19 shows a peripheral circuit example, and Figure 2.2.20 shows the timers connection and setting of division ratios. Figures 2.2.21 shows the relevant registers setting, and Figure 2.2.22 shows the control procedure.

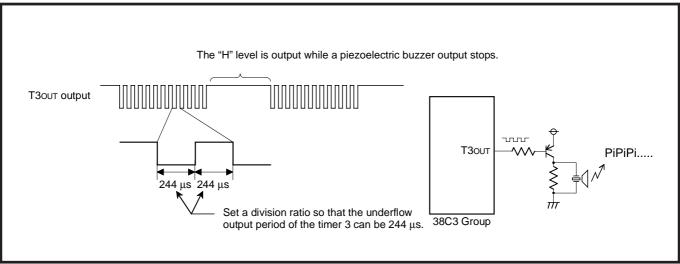


Fig. 2.2.19 Peripheral circuit example

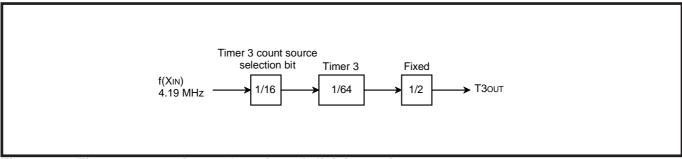


Fig. 2.2.20 Timers connection and setting of division ratios

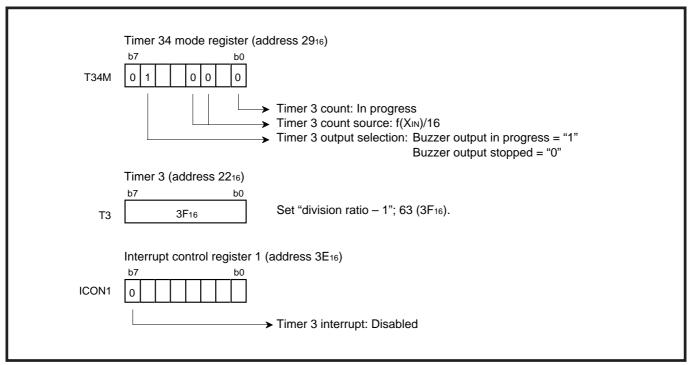


Fig. 2.2.21 Relevant registers setting

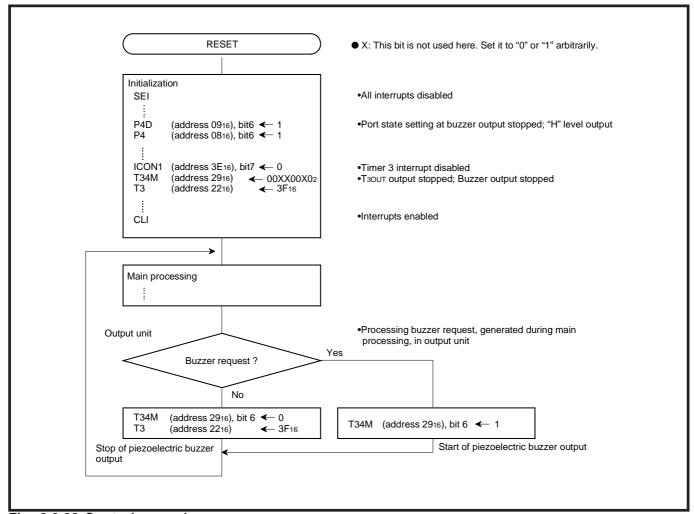


Fig. 2.2.22 Control procedure

(4) Timer application example 3: Frequency measurement

Outline: The following two values are compared to judge whether the frequency is within a valid range.

- •A value by counting pulses input to P54/CNTR1 pin with the timer.
- •A reference value

Specifications: •The pulse is input to the P54/CNTR1 pin and counted by the timer 4.

- •A count value of timer 4 is read out at about 2 ms intervals, the timer 1 interrupt interval. When the count value is 28 to 40, it is judged that the input pulse is valid.
- •Because the timer is a down-counter, the count value is compared with 227 to 215 (Note).

Note: 227 to $215 = \{255 \text{ (initial value of counter)} - 28\}$ to $\{255 - 40\}$; 28 to 40 means the number of valid count.

Figure 2.2.23 shows the judgment method of valid/invalid of input pulses; Figure 2.2.24 shows the relevant registers setting; Figure 2.2.25 shows the control procedure.

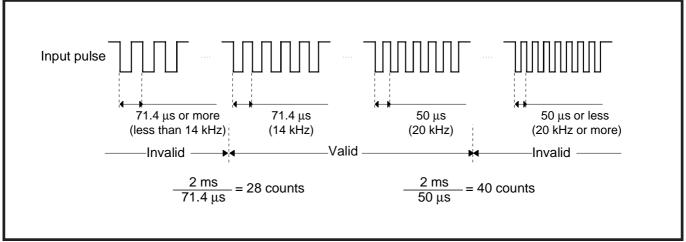


Fig. 2.2.23 Judgment method of valid/invalid of input pulses

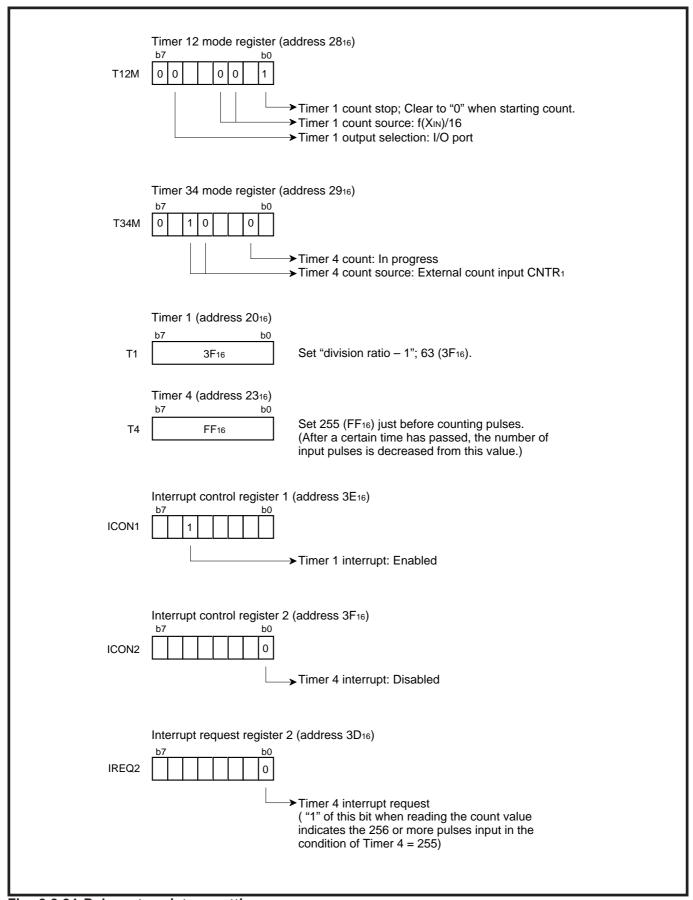


Fig. 2.2.24 Relevant registers setting

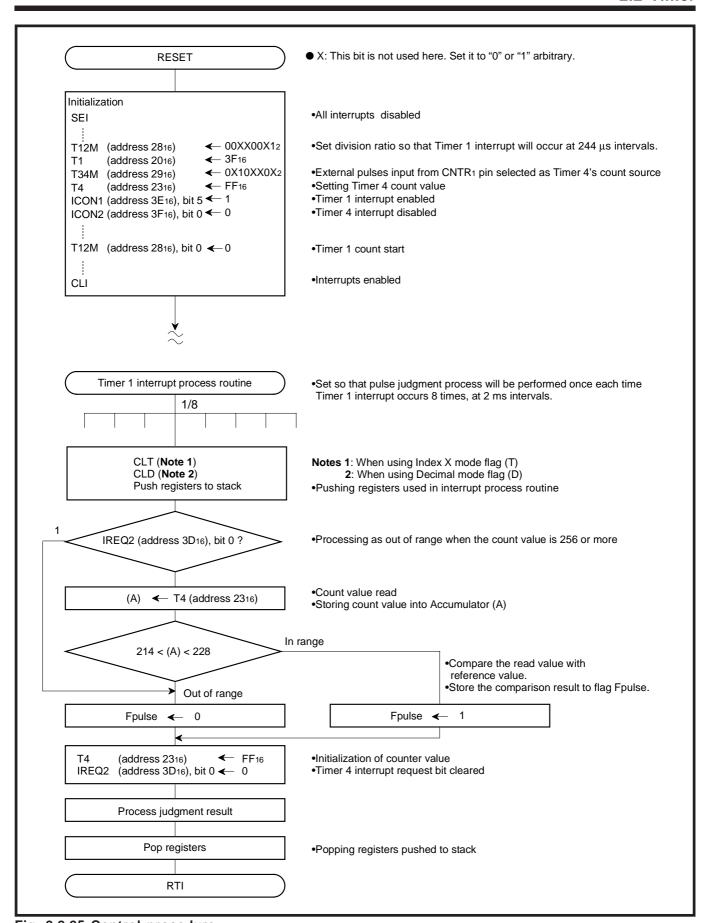


Fig. 2.2.25 Control procedure

2.2 Timer

(5) Timer application example 4: Output of IGBT control signal

Outline: Synchronized variable PWM signal is output in "H" term.

When a signal is input to INTo pin before timer underflow during "L" output, timer restarts.

Specifications: •The signal, of which "H" level width is 5 μ s and cycle is 20 μ s, is output from the P5₀/TA_{OUT} pin.

However, if "H" is input to INT₀ pin during "L" output, timer restarts from "H" output.

<Example>

When $f(X_{IN}) = 8$ MHz, the count source is 125 ns.

Figure 2.2.26 shows the timers connection and setting of division ratio; Figure 2.2.27 shows the relevant registers setting; Figure 2.2.28 shows the control procedure.

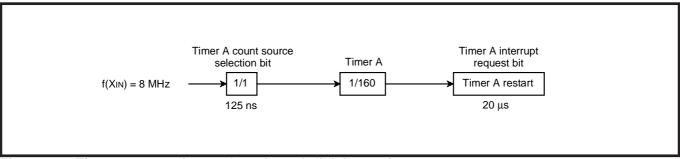


Fig. 2.2.26 Timers connection and setting of division ratios

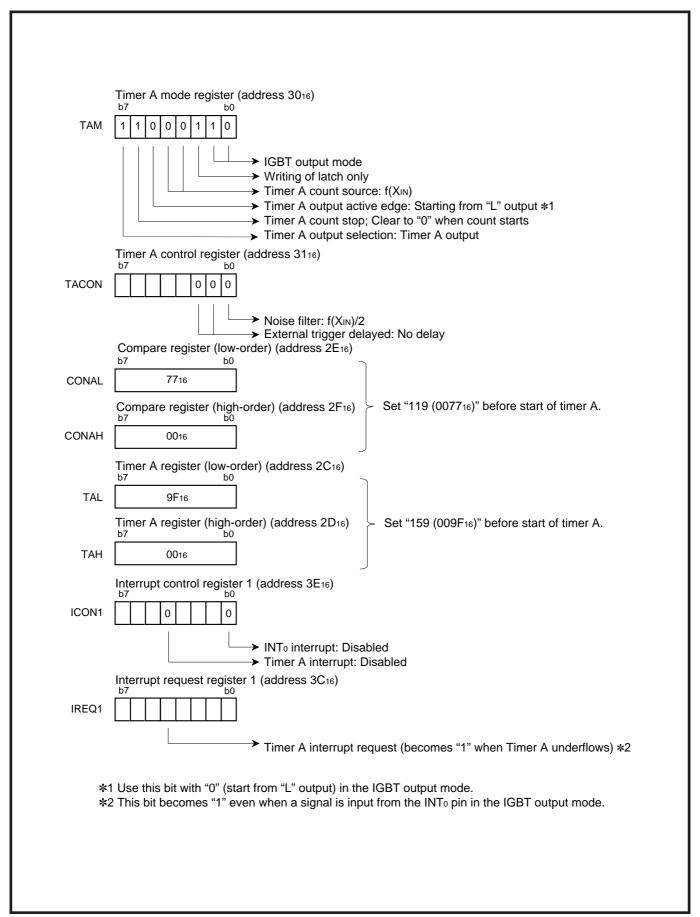


Fig. 2.2.27 Relevant registers setting

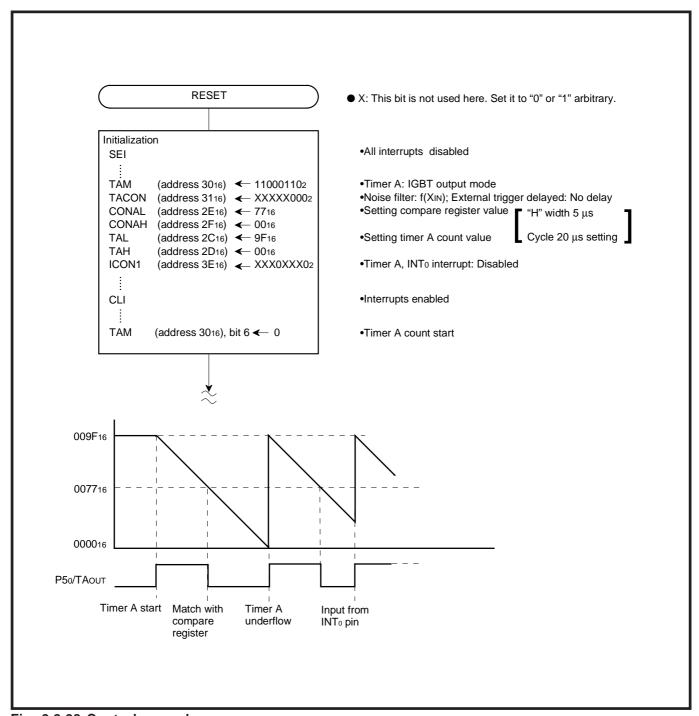


Fig. 2.2.28 Control procedure

2.2.4 Notes on timer A (PWM mode and IGBT output mode)

(1) When timer starts first or last value of compare register is "000016"

After "L" level (timer A output active edge switch bit is "0"; when starting from "L" output) is output during 2 cycles (until timer underflows two times), PWM output or IGBT output starts.

Reason: When data is written to timer A and compare register, value of timer A and value of compare register are renewed at timer underflow. In case of this, compare register value and timer value are compared before renewal, so that they are judged to be equal, and TAOUT output becomes "L". (Timer A output active edge switch bit = "0": when starting from "L" output)

Timer A underflow should cause "H" output, but the match have the priority. (see "Figure 2.2.29")

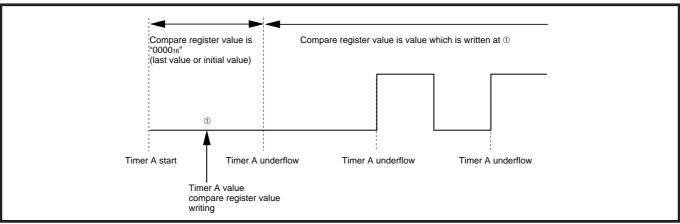


Fig. 2.2.29 PWM output and IGBT output (1)

(2) When compare register is set to "000016" (last value is except "000016")

Next 1 cycle of the cycle in which data is written to timer A and compare register is output "H", and "L" is output from the next cycle. (timer A output active edge switch bit = "0": when starting from "L" output)

(see "Figure 2.2.30")

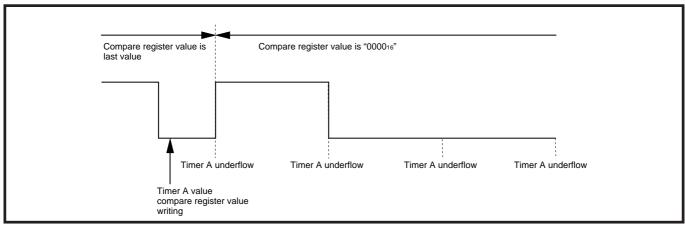


Fig. 2.2.30 PWM output and IGBT output (2)

2.2 Timer

(3) When timer A and compare register have same value

TAOUT output becomes "H" with underflow immediately after data is written to timer A and compare register. TAOUT output becomes "L" when timer A is reloaded and the value matches with compare register. This "H" output width becomes 1 count of timer A count source. (timer A output active edge switch bit ="0": when starting from "L" output) (see "Figure 2.2.31")

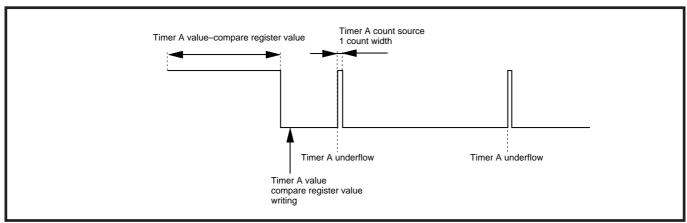


Fig. 2.2.31 PWM output and IGBT output (3)

2.3 Serial I/O

This paragraph explains the registers setting method and the notes relevant to the serial I/O.

2.3.1 Memory map

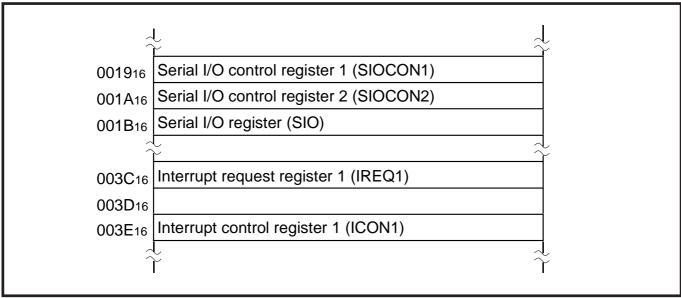


Fig. 2.3.1 Memory map of registers relevant to Serial I/O

2.3.2 Relevant registers

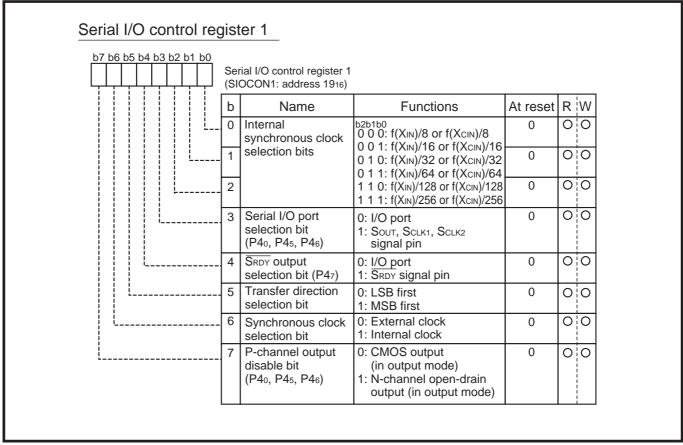


Fig. 2.3.2 Structure of Serial I/O control register 1

2.3 Serial I/O

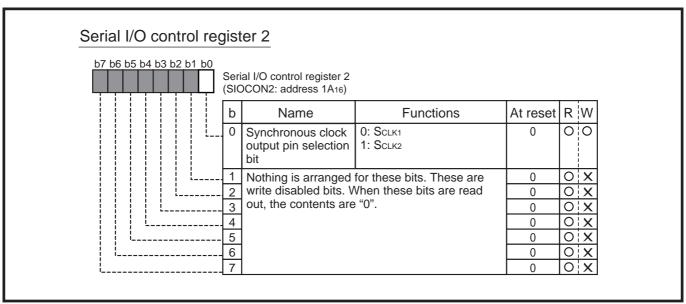


Fig. 2.3.3 Structure of Serial I/O control register 2

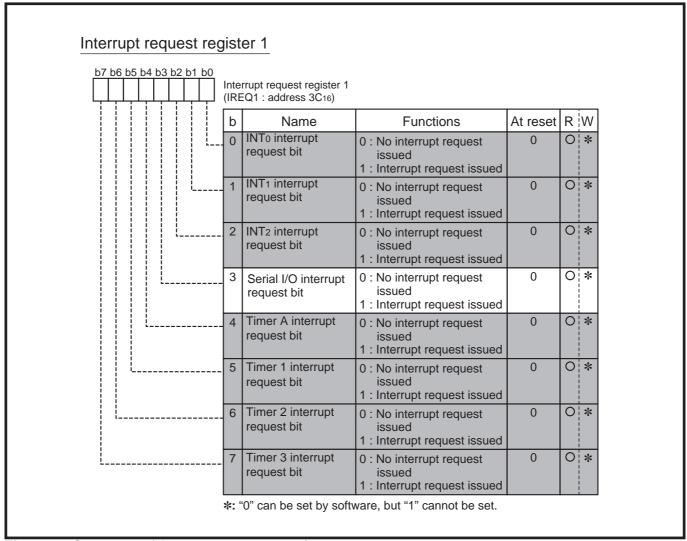


Fig. 2.3.4 Structure of Interrupt request register 1

2.3 Serial I/O

morrap	t control reg	ote	<u>/ </u>			
b7 b6 b5	b4 b3 b2 b1 b0		rrupt control register 1 DN1 : address 3E ₁₆)			
		b	Name	Functions	At reset	RW
		0	INTo interrupt enable bit	0 : Interrupt disabled 1 : Interrupt enabled	0	00
		1	INT1 interrupt enable bit	0 : Interrupt disabled 1 : Interrupt enabled	0	00
		2	INT2 interrupt enable bit	0 : Interrupt disabled 1 : Interrupt enabled	0	00
		3	Serial I/O interrupt enable bit	0 : Interrupt disabled 1 : Interrupt enabled	0	0 0
		. 4	Timer A interrupt enable bit	0 : Interrupt disabled 1 : Interrupt enabled	0	00
		5	Timer 1 interrupt enable bit	0 : Interrupt disabled 1 : Interrupt enabled	0	00
		6	Timer 2 interrupt enable bit	0 : Interrupt disabled 1 : Interrupt enabled	0	00
<u> </u>		7	Timer 3 interrupt enable bit	0 : Interrupt disabled 1 : Interrupt enabled	0	00

Fig. 2.3.5 Structure of Interrupt control register 1

2.3 Serial I/O

2.3.3 Serial I/O connection examples

(1) Control of peripheral IC equipped with CS pin

Figure 2.3.6 shows connection examples with peripheral ICs equipped with the CS pin.

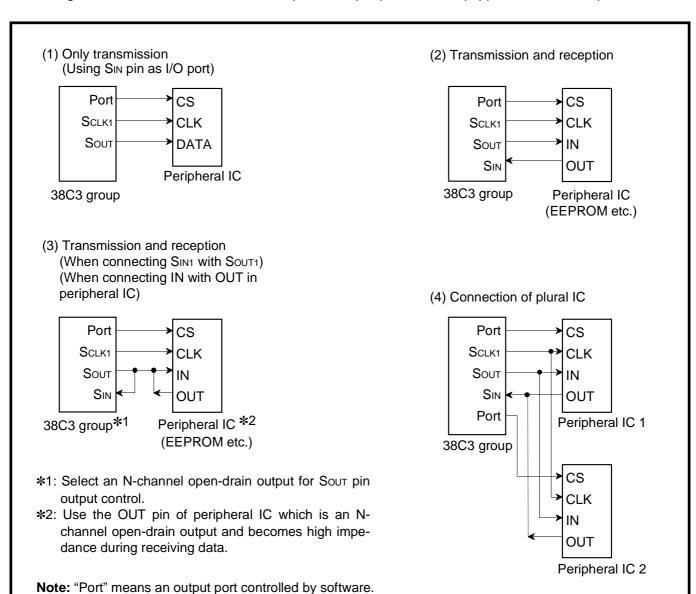


Fig. 2.3.6 Serial I/O connection examples (1)

(2) Connection with microcomputer

Figure 2.3.7 shows connection examples with another microcomputer.

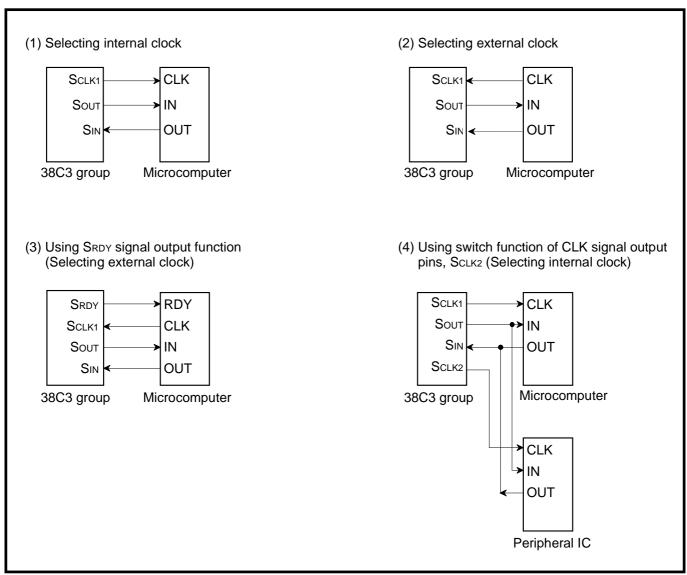


Fig. 2.3.7 Serial I/O connection examples (2)

2.3 Serial I/O

2.3.4 Serial I/O's modes

38C3 Group can use clock synchronous serial I/O.

Figure 2.3.8 shows the serial I/O's modes.

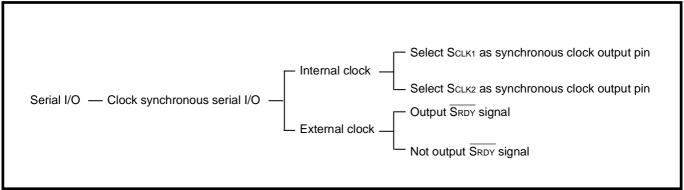


Fig. 2.3.8 Serial I/O's modes

2.3.5 Serial I/O application examples

(1) Communication (transmission/reception) using clock synchronous serial I/O

Outline: 2-byte data is transmitted and received, using the clock synchronous serial I/O. The Srdy signal is used for communication control.

Figure 2.3.9 shows a connection diagram, and Figure 2.3.10 shows a timing chart.

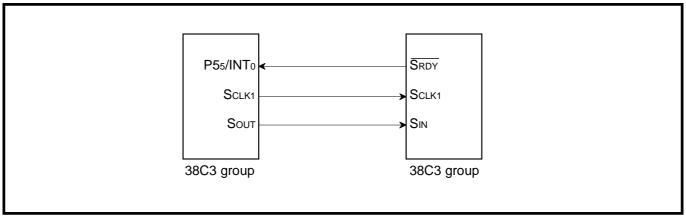


Fig. 2.3.9 Connection diagram

Specifications: • Use of serial I/O in clock synchronous serial I/O

- Synchronous clock frequency: 125 kHz ($f(X_{IN}) = 4$ MHz is divided by 32)
- Use of SRDY (receivable signal)
- The reception side outputs the S_{RDY} signal at intervals of 2 ms (generated by the timer), and 2-byte data is transferred from the transmission side to the reception side.

2.3 Serial I/O

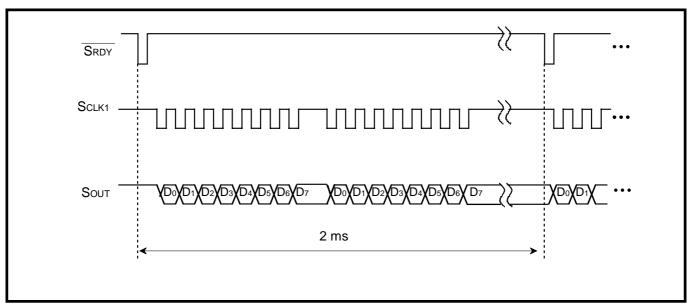


Fig. 2.3.10 Timing chart

2.3 Serial I/O

Figure 2.3.11 shows the registers setting relevant to the transmission side, and Figure 2.3.12 shows the registers setting relevant to the reception side.

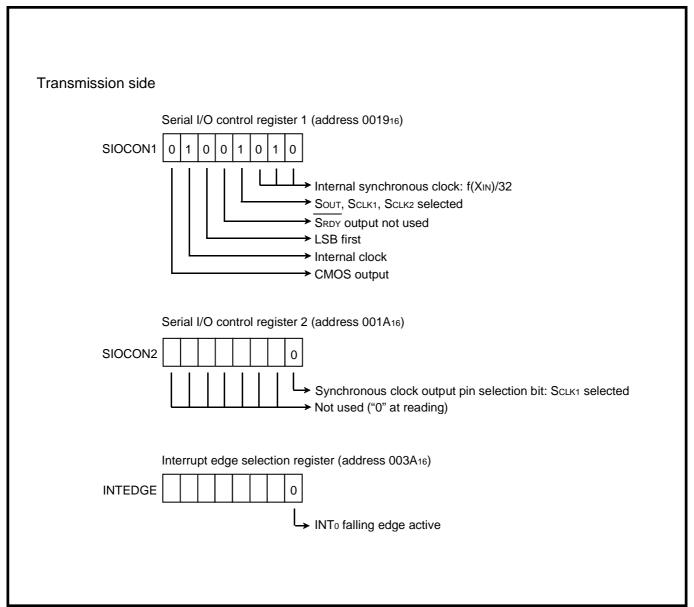


Fig. 2.3.11 Registers setting relevant to transmission side

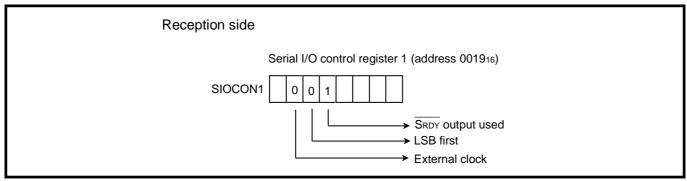


Fig. 2.3.12 Registers setting relevant to reception side

Figure 2.3.13 shows a control procedure of the transmission side, and Figure 2.3.14 shows a control procedure of the reception side.

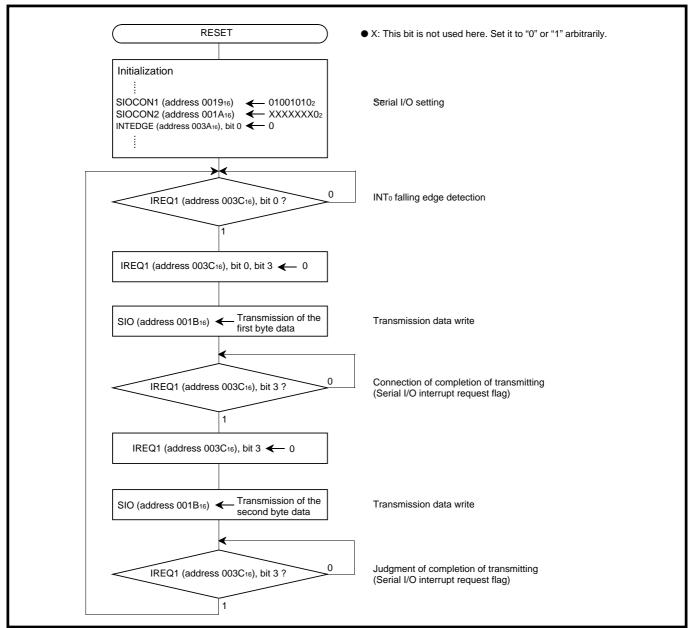


Fig. 2.3.13 Control procedure of transmission side

2.3 Serial I/O

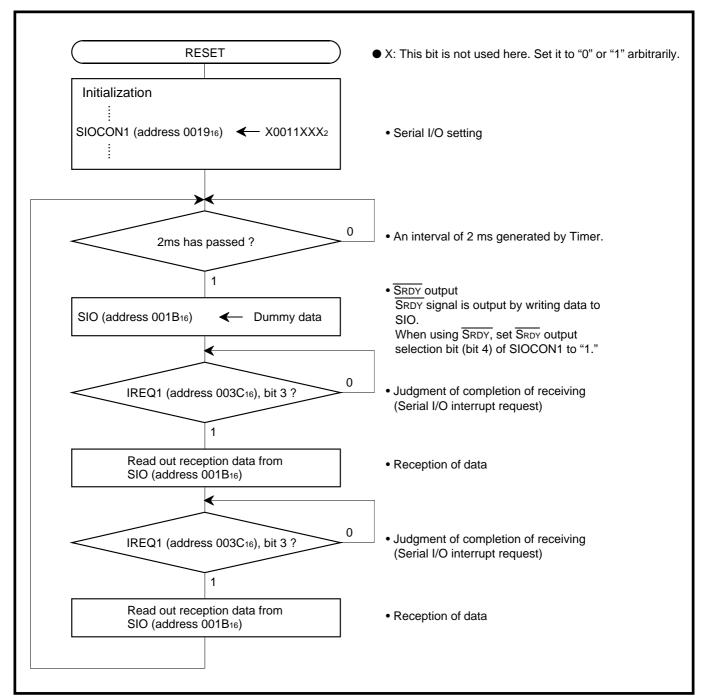


Fig. 2.3.14 Control procedure of reception side

(2) Output of serial data (control of peripheral IC)

Outline: Serial communication is performed, connecting port P57 with the CS pin of a peripheral IC.

Figure 2.3.15 shows a connection diagram, and Figure 2.3.16 shows a timing chart.

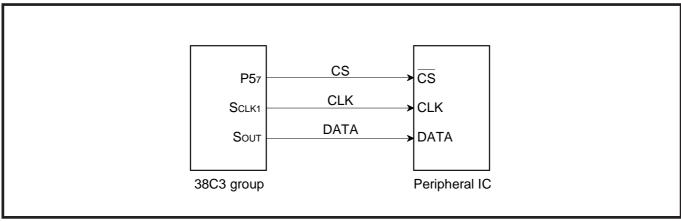


Fig. 2.3.15 Connection diagram

Specifications: • Use of serial I/O in clock synchronous serial I/O

• Synchronous clock frequency : 125 kHz ($f(X_{IN}) = 4$ MHz is divided by 32)

• Transfer direction : LSB first

Not use of serial I/O interrupt

• Port P57 is connected with the $\overline{\text{CS}}$ pin ("L" active) of the peripheral IC for transmission control; the output level of port P57 is controlled by software.

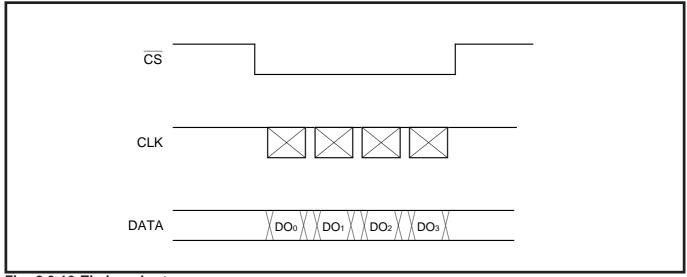


Fig. 2.3.16 Timing chart

2.3 Serial I/O

Figure 2.3.17 shows the relevant registers setting and Figure 2.3.18 shows the setting of transmission data.

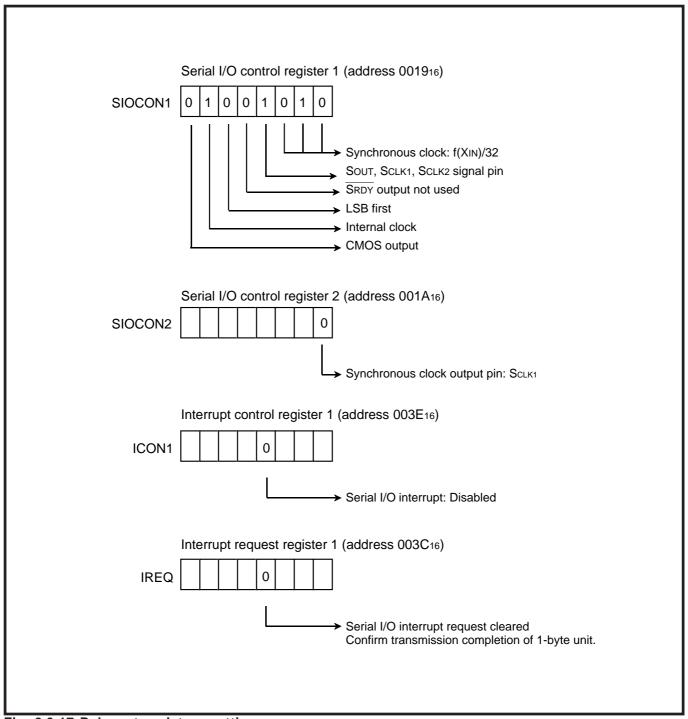


Fig. 2.3.17 Relevant registers setting

	Serial I/O register (001B ₁₆)	
SIO		Set a transmission data. Confirm that transmission of the previous data is completed, where bit 3, the serial I/O interrupt request bit of the interrupt request register, is "1"; before writing data.

Fig. 2.3.18 Setting of transmission data

Figure 2.3.19 shows a control procedure.

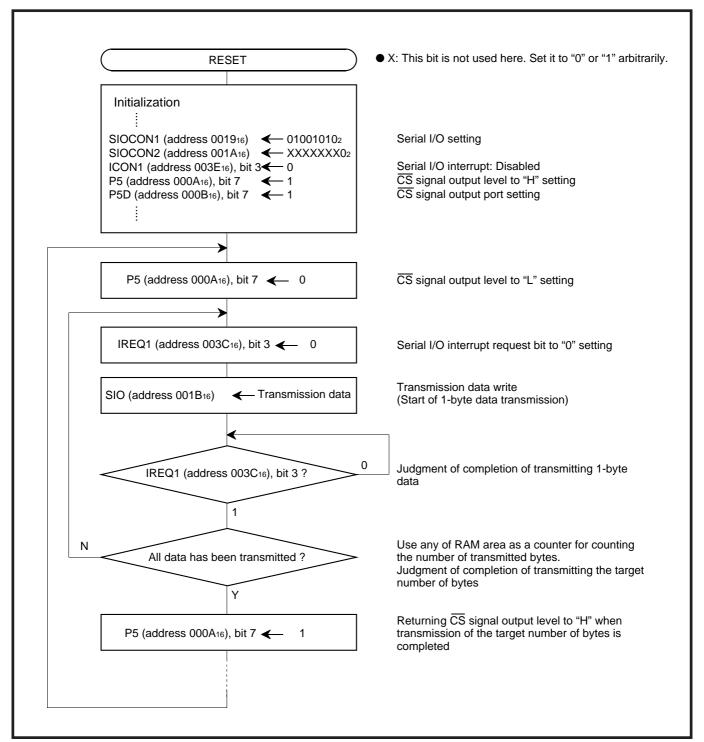


Fig. 2.3.19 Control procedure

2.3 Serial I/O

(3) Cyclic transmission or reception of block data (data of specified number of bytes) between two microcomputers

Outline: When the clock synchronous serial I/O is used for communication, synchronization of the clock and the data between the transmitting and receiving sides may be lost because of noise included in the synchronous clock. It is necessary to correct that constantly, using "heading adjustment".

This "heading adjustment" is carried out by using the interval between blocks in this example.

Figure 2.3.20 shows a connection diagram.

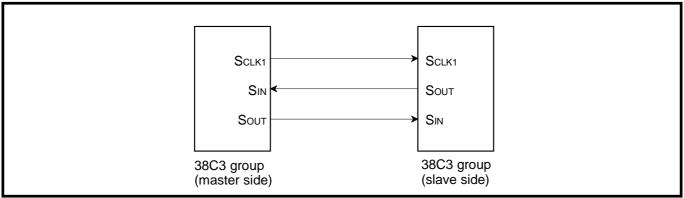


Fig. 2.3.20 Connection diagram

Specifications: • Synchronous clock frequency: 131 kHz ($f(X_{IN}) = 4.19$ MHz is divided by 32.)

• Byte cycle: 488 μs

• Number of bytes for transmission or reception: 8 bytes/block each

Block transfer cycle: 16 ms
Block transfer term: 3.5 ms
Interval between blocks: 12.5 ms
Heading adjustment time: 8 ms
Transfer direction: LSB first

Limitations of the specifications:

- Reading of the reception data and setting of the next transmission data must be completed within the time obtained from "byte cycle time for transferring 1-byte data" (in this example, the time taken from generating of the serial I/O interrupt request to input of the next synchronous clock is 431 μs).
- "Heading adjustment time < interval between blocks" must be satisfied.

2.3 Serial I/O

The communication is performed according to the timing shown in Figure 2.3.21. In the slave unit, when a synchronous clock is not input within a certain time (heading adjusment time), the next clock input is processed as the beginning (heading) of a block.

When a clock is input again after one block (8 bytes) is received, the clock is ignored.

Figure 2.3.22 shows the relevant registers setting in the master unit and Figure 2.3.23 shows the relevant registers setting in the slave unit.

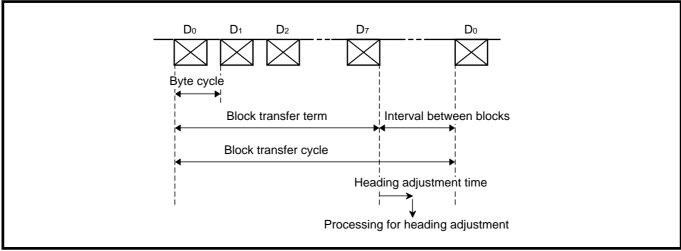


Fig. 2.3.21 Timing chart

2.3 Serial I/O

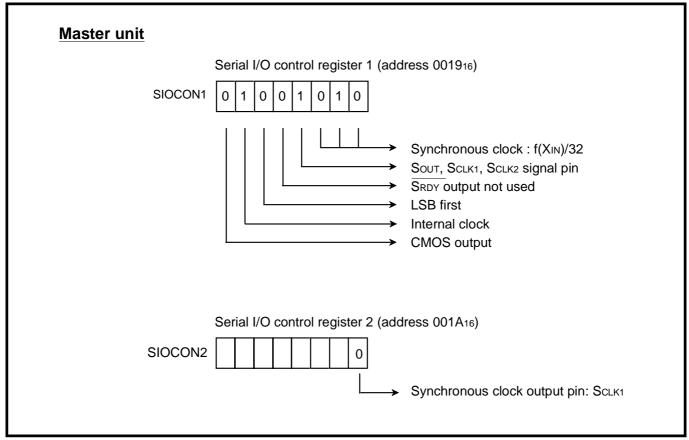


Fig. 2.3.22 Relevant registers setting in master unit

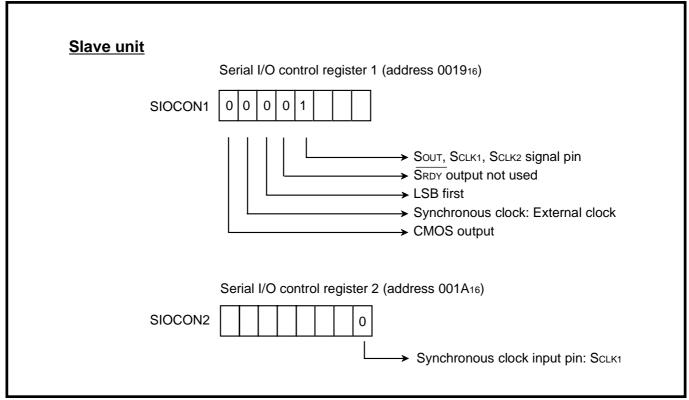


Fig. 2.3.23 Relevant registers setting in slave unit

Control procedure by software:

Control in the master unit

After setting the relevant registers shown in Figure 2.3.22, the master unit starts transmission or reception of 1-byte data by writing transmission data to the serial I/O register.

To perform the communication in the timing shown in Figure 2.3.21, take the timing into account and write transmission data. Additionally, read out the reception data when the serial I/O interrupt request bit is set to "1," or before the next transmission data is written to the serial I/O register. Figure 2.3.24 shows a control procedure of the master unit using timer interrupts.

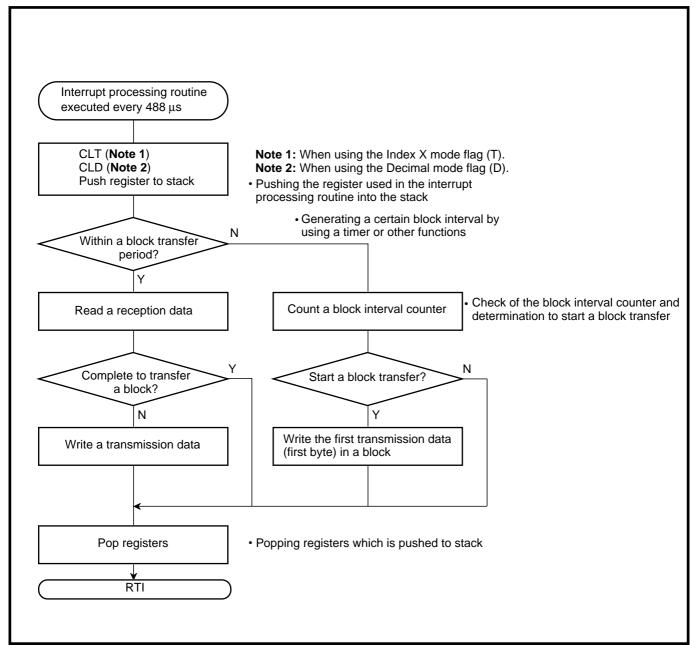


Fig. 2.3.24 Control procedure of master unit

2.3 Serial I/O

Control in the slave unit

After setting the relevant registers as shown in Figure 2.3.23, the slave unit becomes the state where a synchronous clock can be received at any time, and the serial I/O interrupt occurs each time an 8-bit synchronous clock is received.

In the serial I/O interrupt processing routine, the data to be transmitted next is written to the serial I/O register after the received data is read out.

However, if no serial I/O interrupt occurs for a certain time (heading adjustment time or more), the following processing will be performed.

- 1. The first 1-byte data of the transmission data in the block is written into the serial I/O register.
- 2. The data to be received next is processed as the first 1 byte of the received data in the block. Figure 2.3.25 shows a control procedure of the slave unit using the serial I/O interrupt and any timer interrupt (for heading adjustment).

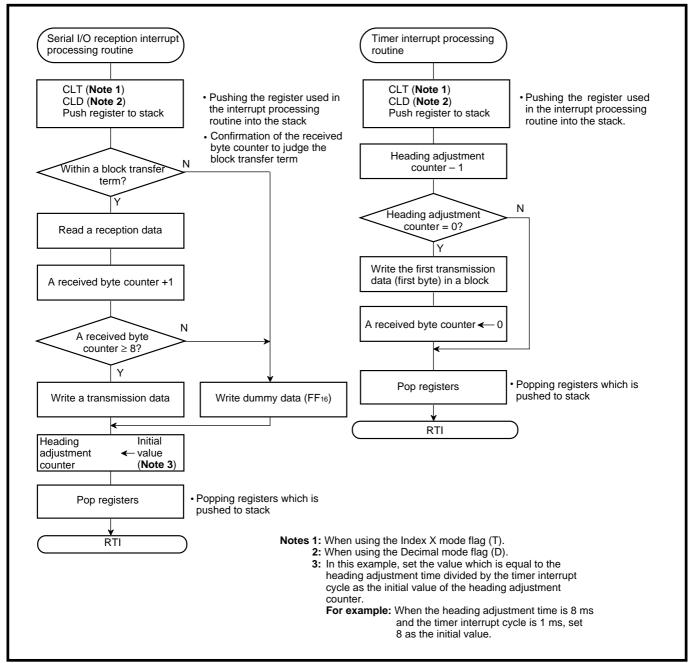


Fig. 2.3.25 Control procedure of slave unit

2.3 Serial I/O

2.3.6 Notes on serial I/O

(1) Selecting external synchronous clock

When an external synchronous clock is selected, the contents of serial I/O register are being shifted continually while the transfer clock is input to the serial I/O1 clock pin. In this case, control the clock externally.

(2) Transmission data wiritng

When an external clock is used as the synchronous clock, write the transmit data to the serial I/O shift register at "H" level of transfer clock input.

2.4 LCD controller

2.4 LCD controller

This paragraph explains the registers setting method and the notes relevant to the LCD controller.

2.4.1 Memory map

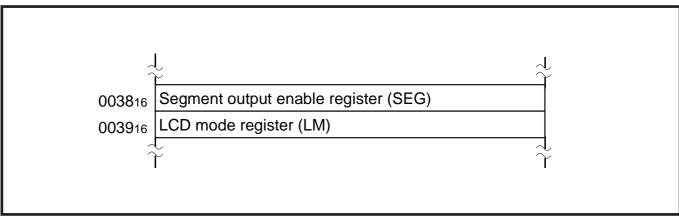


Fig. 2.4.1 Memory map of registers relevant to LCD controller

2.4.2 Relevant registers

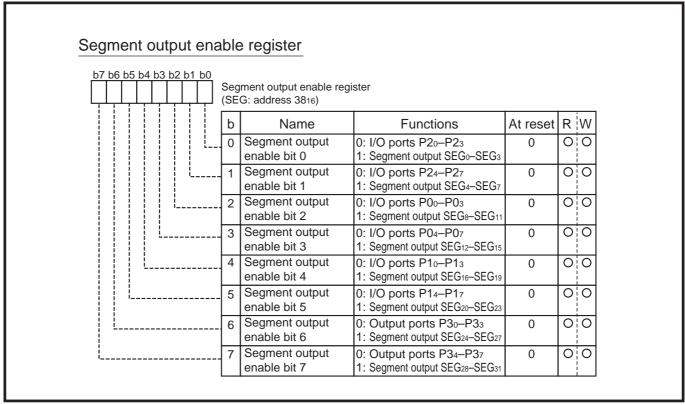


Fig. 2.4.2 Structure of Segment output enable register

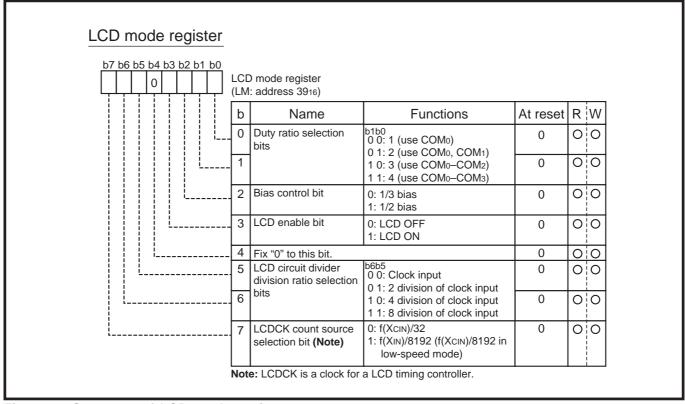


Fig. 2.4.3 Structure of LCD mode register

2.4 LCD controller

2.4.3 LCD controller application examples

Outline: A LCD panel display data by using the LCD controller.

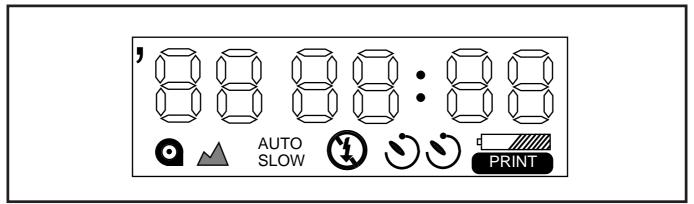


Fig. 2.4.4 LCD panel

Specifications: •Use of segment output SEG0 to SEG13

•Setting of port P1 to I/O port, setting of port P3 to output

•Frame frequency = 61 Hz

•Duty ratio number = 4, Bias value = 1/3

Figure 2.4.5 shows the segment allocation example.

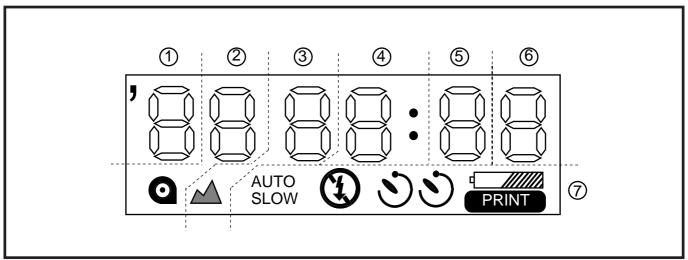


Fig. 2.4.5 Segment allocation example

Setting of LCD display RAM:

Bit	7	6	5	4	3	2	1	0
Address	СОМз	COM ₂	COM ₁	COMo	СОМз	COM ₂	COM ₁	COMo
004016	SEG1				SEG ₀			
004116	SEG3				SEG ₂			
004216	SEG ₅				SEG4			
004316	SEG7				SEG ₆			
004416	SEG ₉				SEG8			
004516	SEG11				SEG10			
004616	SEG13				SEG ₁₂			
004716	SEG ₁₅				SEG14			
004816	SEG17				SEG16			
004916	SEG19				SEG18			
004A16	SEG21				SEG20			
004B16	SEG23				SEG22			
004C16	SEG25				SEG24			
004D16	SEG27				SEG26			
004E16	SEG29				SEG28			
004F16	SEG31				SEG30			

Fig. 2.4.6 LCD display RAM map

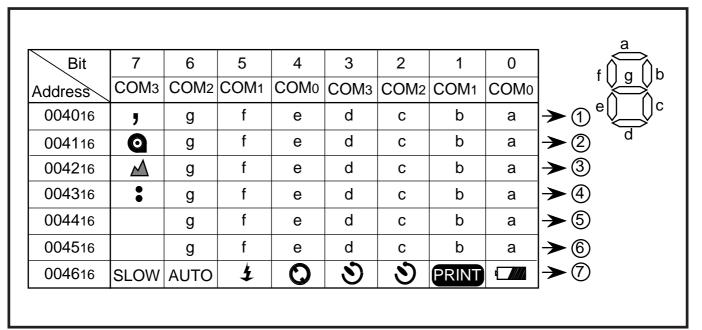


Fig. 2.4.7 LCD display RAM setting

2.4 LCD controller

Figure 2.4.8 shows the relevant registers setting.

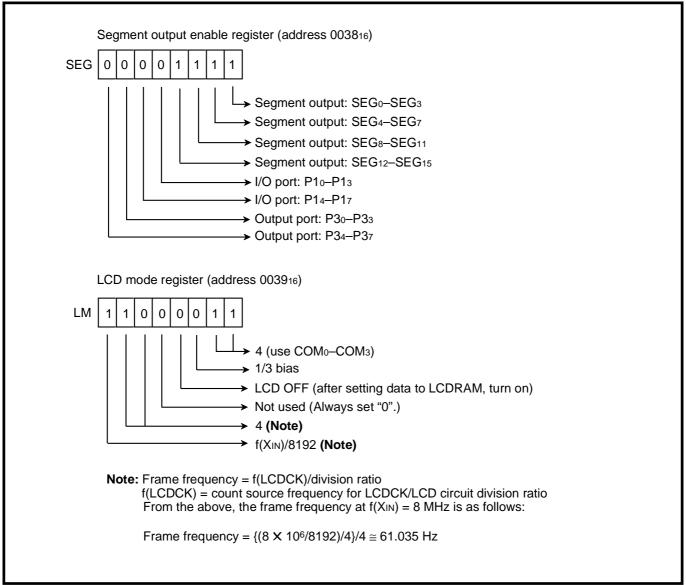


Fig. 2.4.8 Relevant registers setting

Control procedure: Figure 2.4.9 shows the control procedure of relevant registers to turn on all the LCD display in Figure 2.4.4.

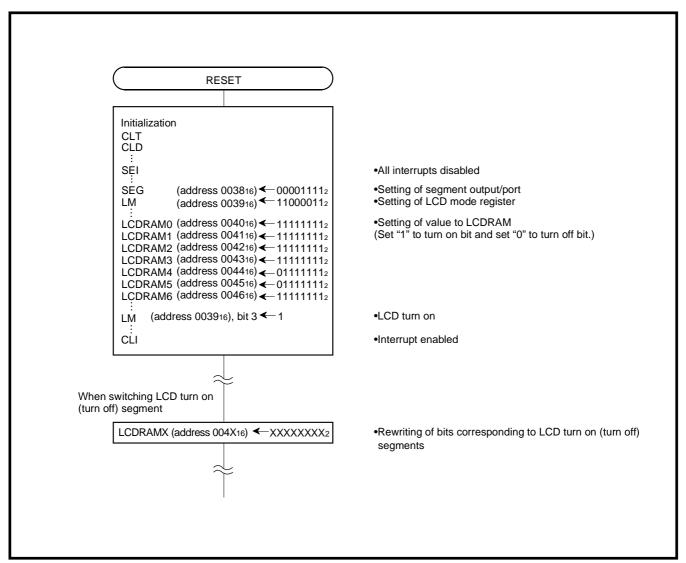


Fig. 2.4.9 Control procedure

2.4 LCD controller

2.4.4 Notes on LCD controller

- •When switching from the high-speed or middle-speed mode to the low-speed mode, switch the mode in the following order:
 - (1) 32 kHz oscillation selected (bit 4 of CPU mode register (address 003B₁₆) = "1")
 - (2) Count source for LCDCK = $f(X_{CIN})/32$ (bit 7 of LCD mode register (address $0039_{16}) = "0"$)
 - (3) Internal system clock: Xcin-Xcout selected (bit 7 of CPU mode register (address 003B₁₆) = "1")
 - (4) Main clock X_{IN}-X_{OUT} stopped (bit 5 of CPU mode register (address 003B₁₆) = "1")

Execute the setting (2) after the oscillation at 32 kHz (setting (1)) becomes completely stable.

- •If the STP instruction is executed while the LCD is turned on by setting bit 3 of the LCD mode register (address 0039₁₆) to "1", a DC voltage is applied to the LCD. For this reason, do not execute the STP instruction while the LCD is lighting.
- •When the LCD is not used, open the segment and the common pins. Connect V_{L1}−V_{L3} to V_{SS}.
- ●For the following products, if the LCD enable bit of the LCD mode register (bit 3 of address 0039₁6) is set to "0", all LCDs cannot be turned off. To turn off all LCDs, set "0" (turn off) to all corresponding LCD display RAM.

Corresponding products: M38C34M6AXXXFP, M38C34M6MXXXFP, M38C37ECAXXXFP,

M38C37ECMXXXFP, M38C37ECAFP, M38C37ECMFP, M38C37ECAFS,

M38C3ECMFS, M38C37RFS, M38C37RMFS

2.5 A-D converter

This paragraph describes the setting method of A-D converter relevant registers, notes etc.

2.5.1 Memory map

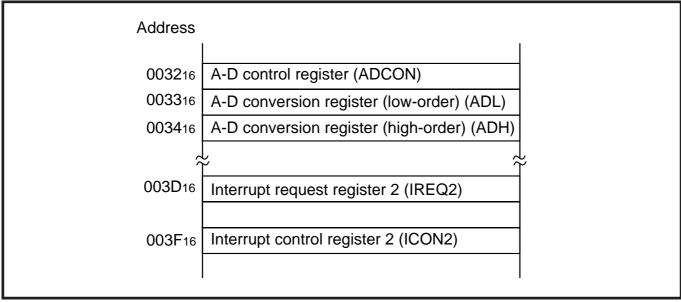


Fig. 2.5.1 Memory map of A-D converter relevant registers

2.5.2 Relevant registers

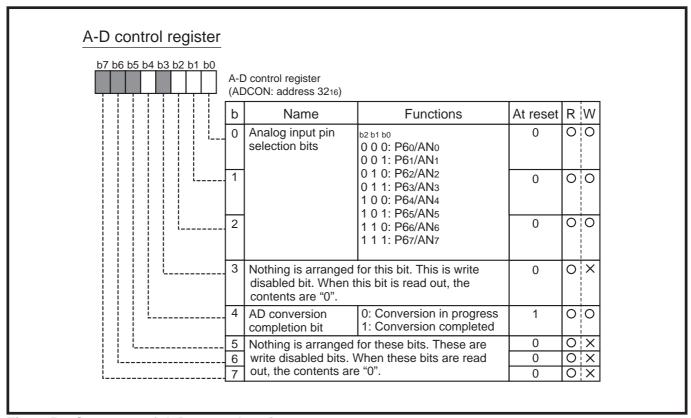


Fig. 2.5.2 Structure of A-D control register

2.5 A-D converter

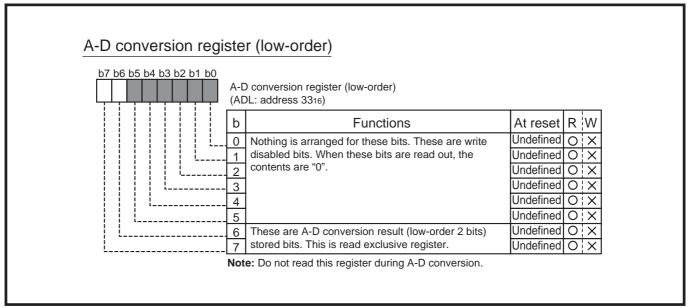


Fig. 2.5.3 Structure of A-D conversion register (low-order)

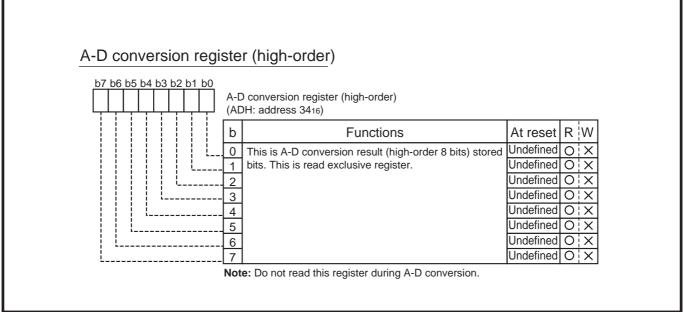


Fig. 2.5.4 Structure of A-D conversion register (high-order)

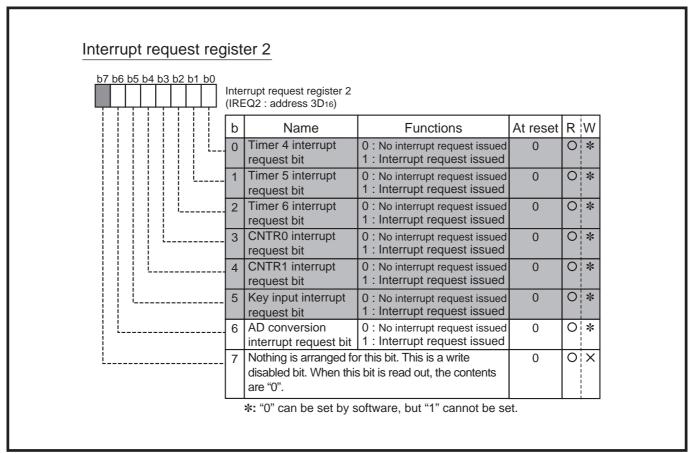


Fig. 2.5.5 Structure of Interrupt request register 2

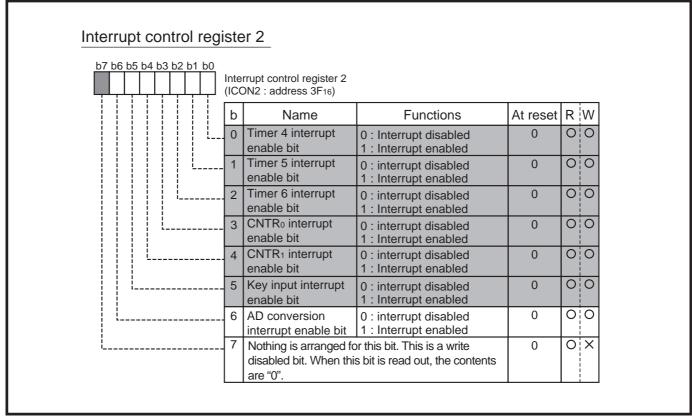


Fig. 2.5.6 Structure of Interrupt control register 2

2.5 A-D converter

2.5.3 A-D converter application examples

(1) Read-in of analog signal

Outline: The analog input voltage from a sensor is converted to digital values.

Figure 2.5.7 shows a connection diagram, and Figure 2.5.8 shows the setting of relevant registers.

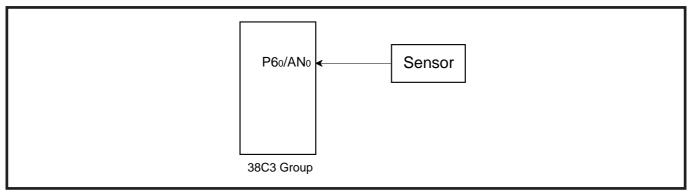


Fig. 2.5.7 Connection diagram

Specifications: •Conversion of analog input voltage input from sensor to digital values
•Use of P6₀/AN₀ pin as analog input pin

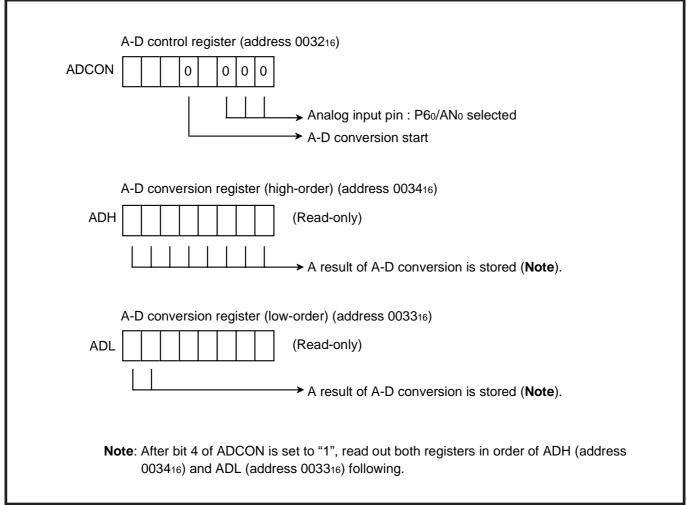


Fig. 2.5.8 Setting of relevant registers

2.5 A-D converter

Control procedure: A-D converter is started by performing register setting shown Figure 2.5.8. Figure 2.5.9 shows the control procedure.

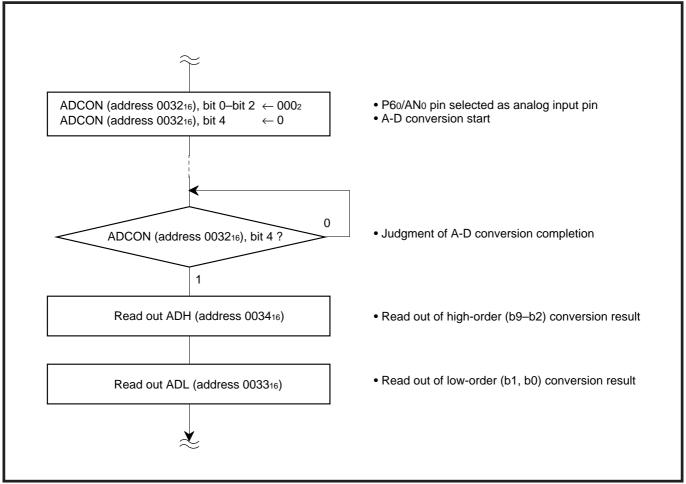


Fig. 2.5.9 Control procedure

2.5 A-D converter

2.5.4 Notes on A-D converter

(1) Analog input pin

■ Make the signal source impedance for analog input low, or equip an analog input pin with an external capacitor of 0.01 μ F to 1 μ F. Further, be sure to verify the operation of application products on the user side.

Reason

An analog input pin includes the capacitor for analog voltage comparison. Accordingly, when signals from signal source with high impedance are input to an analog input pin, charge and discharge noise generates. This may cause the A-D conversion precision to be worse.

(2) A-D converter power source pin

The AVss pin is A-D converter power source pin. Regardless of using the A-D conversion function or not, connect it as following:

• AVss: Connect to the Vss line.

Reason

If the AVss pin is opened, the microcomputer may have a failure because of noise or others.

(3) Clock frequency during A-D conversion

The comparator consists of a capacity coupling, and a charge of the capacity will be lost if the clock frequency is too low. Thus, make sure the following during an A-D conversion.

- f(XIN) is 500 kHz or more.
- Use clock divided by main clock (f(X_{IN})) as internal system clock.
- Do not execute the STP instruction and WIT instruction.

2.6 ROM correct function

This paragraph describes the setting method of ROM correct function relevant registers, notes etc.

2.6.1 Memory map

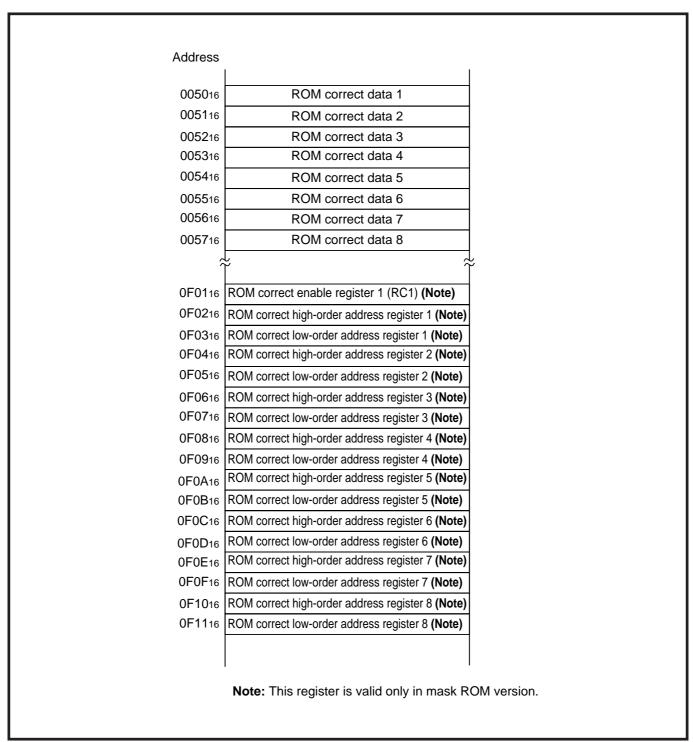


Fig. 2.6.1 Memory map of ROM correct function relevant registers

2.6 ROM correct function

2.6.2 Relevant registers

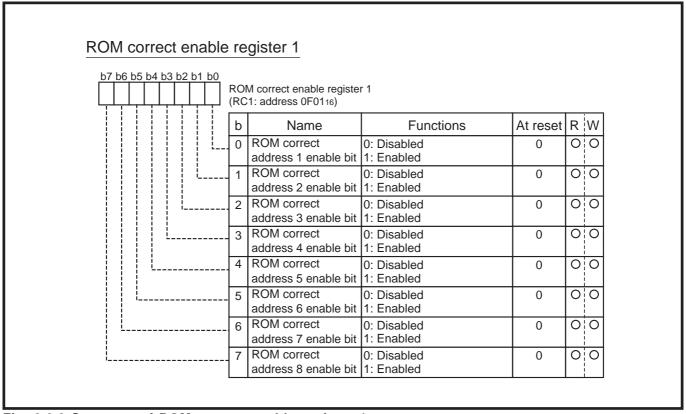


Fig. 2.6.2 Structure of ROM correct enable register 1

2.6.3 ROM correct function application examples

Outline: When the contents of ROM would be corrected, the contents of ROM can be changed artificially by connecting E²PROM to the externals and storing the contents (correct address, correct data) to the ROM correct function relevant registers.

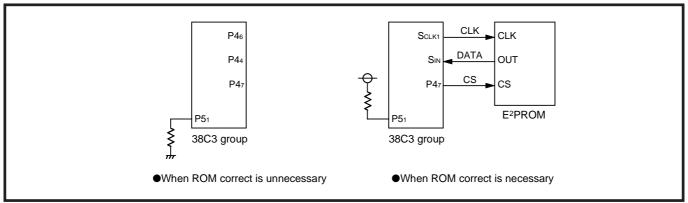


Fig. 2.6.3 Connection diagram

Specifications: ●If ROM correct is necessary, make P5₁ pull-up. If ROM correct is unnecessary, make P5₁ pull-down.

- ●Use of serial I/O as communication with E2PROM
- ●Connection of clock and Sclk1, connection of CS pin and P47

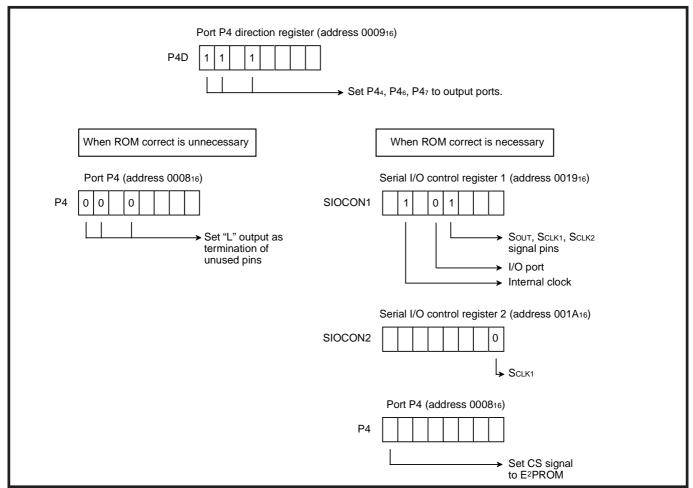


Fig. 2.6.4 Setting of relevant registers

2.6 ROM correct function

Control procedure:

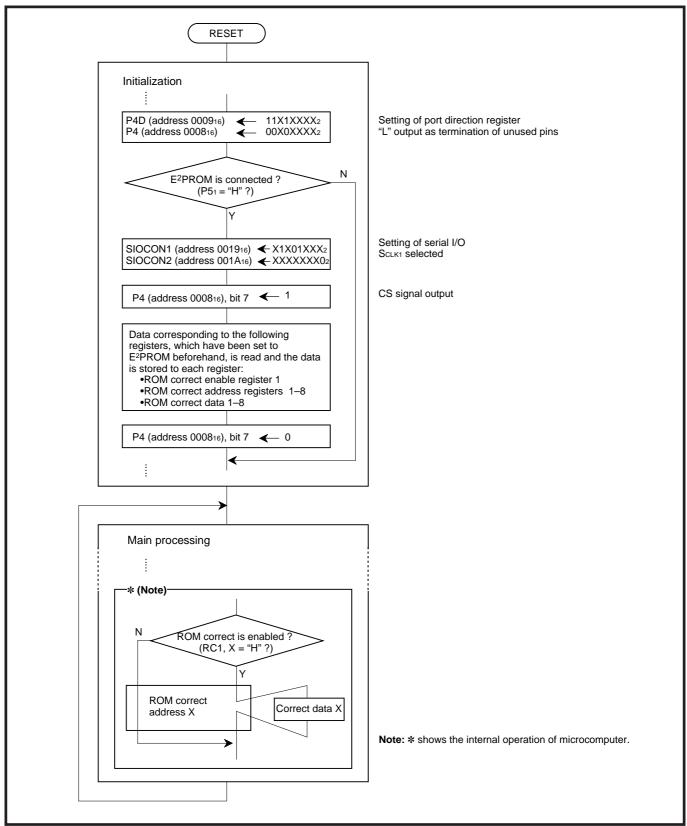


Fig. 2.6.5 Control procedure

2.7 Reset circuit

The reset state is caused by applying an "L" level to the RESET pin. After that, the reset state is released by applying an "H" level to the RESET pin, so that the program is executed in the middle-speed mode from the contents of the reset vector address.

2.7.1 Connection example of reset IC

Figure 2.7.1 shows the example of power-on reset circuit. Figure 2.7.2 shows the system example which switches to the RAM backup mode by detecting a drop of the system power source voltage with the INT interrupt.

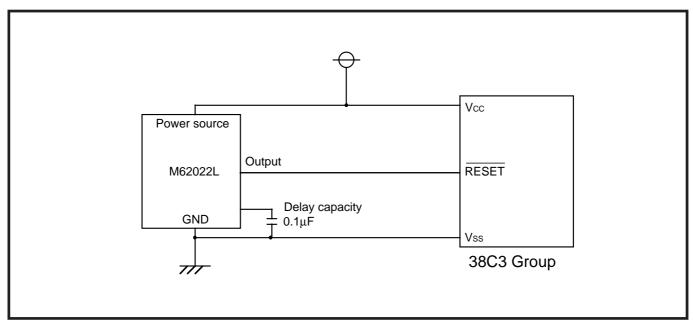


Fig. 2.7.1 Example of power-on reset circuit

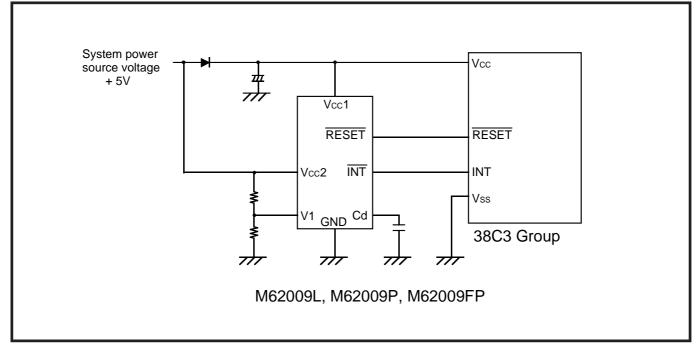


Fig. 2.7.2 RAM backup system example

2.7 Reset circuit

2.7.2 Notes on reset circuit

(1) Reset input voltage control

Make sure that the reset input voltage is 0.5 V or less for Vcc of 2.5 V (Note). Perform switch to the high-speed mode when power source voltage is within 4.0 to 5.5 V. Note: M version of mask ROM version is 2.2 V.

(2) Countermeasure when \overline{RESET} signal rise time is long

In case where the $\overline{\text{RESET}}$ signal rise time is long, connect a ceramic capacitor or others across the $\overline{\text{RESET}}$ pin and the Vss pin. And use a 1000 pF or more capacitor for high frequency use. When connecting the capacitor, note the following :

- Make the length of the wiring which is connected to a capacitor as short as possible.
- Be sure to verify the operation of application products on the user side.

Reason

If the several nanosecond or several ten nanosecond impulse noise enters the RESET pin, it may cause a microcomputer failure.

2.8 Clock generating circuit

This paragraph describes the setting method of clock generating circuit relevant registers, application examples etc.

2.8.1 Relevant register

Figure 2.8.1 shows the structure of the CPU mode register.

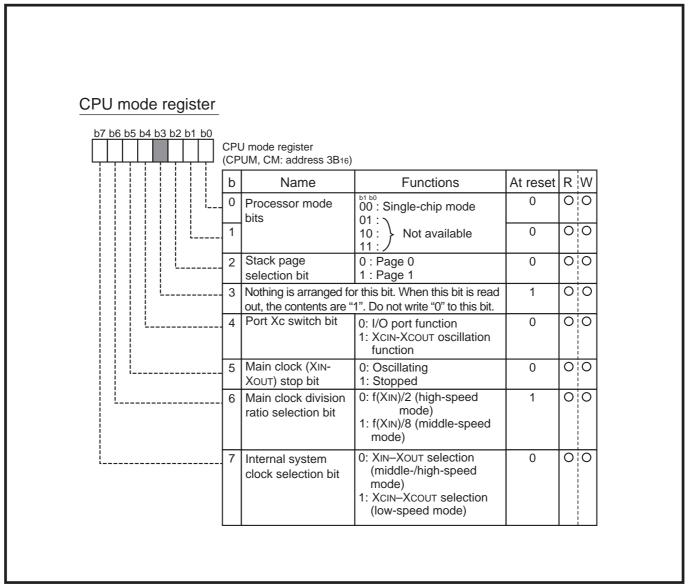


Fig. 2.8.1 Structure of CPU mode register

2.8 Clock generating circuit

2.8.2 Clock generating circuit application examples

(1) Status transition during power failure

Outline: The clock is counted up every one second by using the timer interrupt during a power failure.

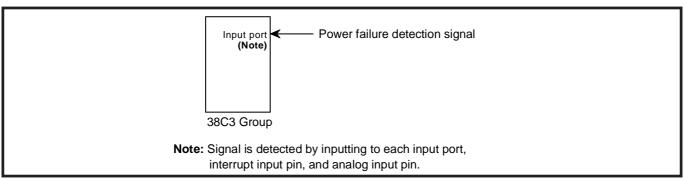


Fig. 2.8.2 Connection diagram

Specifications: •Reducing power dissipation as low as possible while maintaining clock function

•Clock: $f(X_{IN}) = 8 \text{ MHz}, f(X_{CIN}) = 32.768 \text{ kHz}$

Port processing

Input port: Fixed to "H" or "L" level on the external

Output port: Fixed to output level that does not cause current flow to the external (Example) When a circuit turns on LED at "L" output level, fix the

output level to "H".

I/O port: Input port \rightarrow Fixed to "H" or "L" level on the external

Output port \rightarrow Output of data that does not consume current

VREF: Stop to supply to reference voltage input pin by external circuit

Figure 2.8.3 shows the status transition diagram during power failure and Figure 2.8.4 shows the setting of relevant registers.

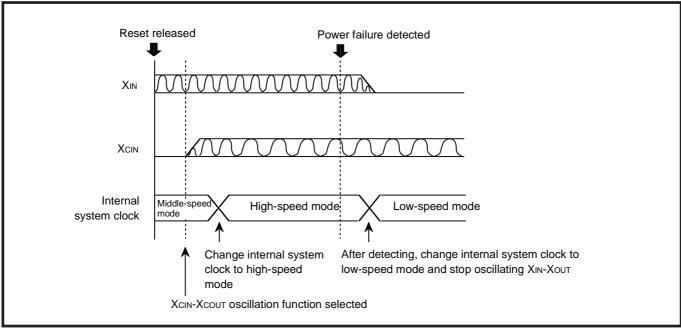


Fig. 2.8.3 Status transition diagram during power failure

2.8 Clock generating circuit

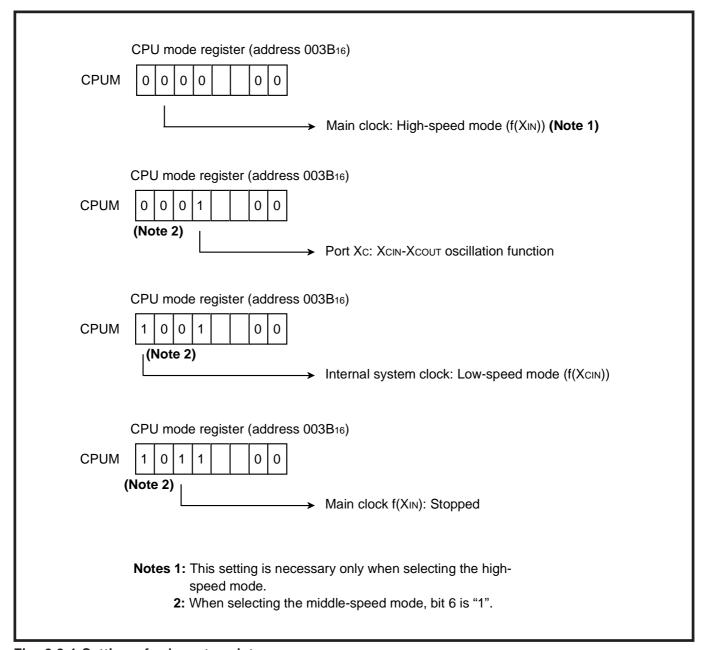


Fig. 2.8.4 Setting of relevant registers

Control procedure: Set the relevant registers in the order shown below to prepare for a power failure.

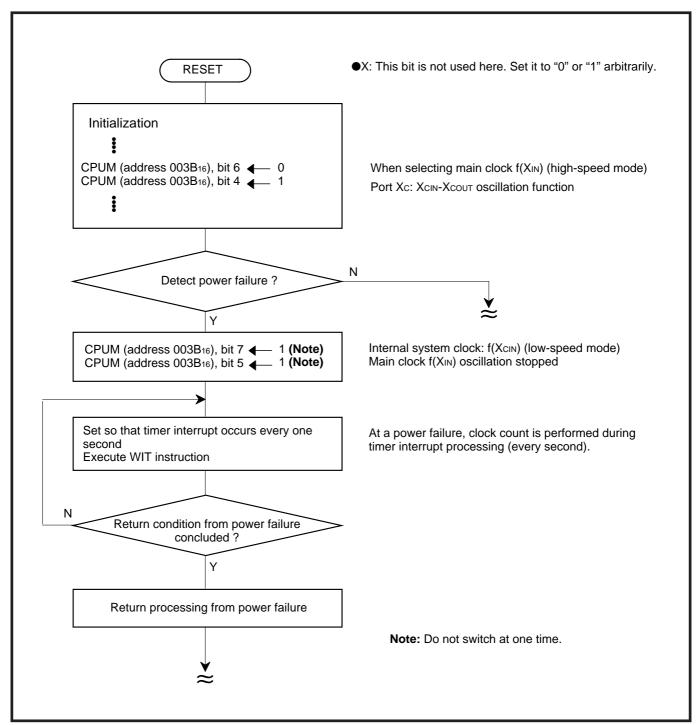


Fig. 2.8.5 Control procedure

2.8 Clock generating circuit

(2) Counting without clock error during power failure

Outline: It keeps counting without clock error during a power failure.

Specifications: •Reducing power consumption as low as possible while maintaining clock function

•Clock: $f(X_{IN}) = 4.19 \text{ MHz}$

•Sub clock: $f(X_{CIN}) = 32.768 \text{ kHz}$

•Use of Timer 3 interrupt

For the peripheral circuit and the status transition during a power failure, refer to "Figures 2.8.2 and 2.8.3".

Figure 2.8.6 shows the structure of clock counter, Figures 2.8.7 and 2.8.8 show the setting of relevant registers.

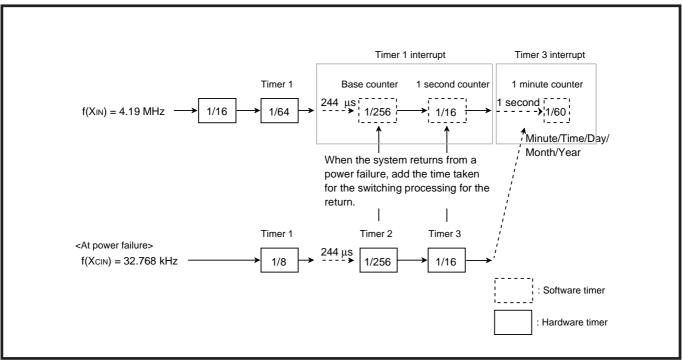


Fig. 2.8.6 Structure of clock counter

2-76

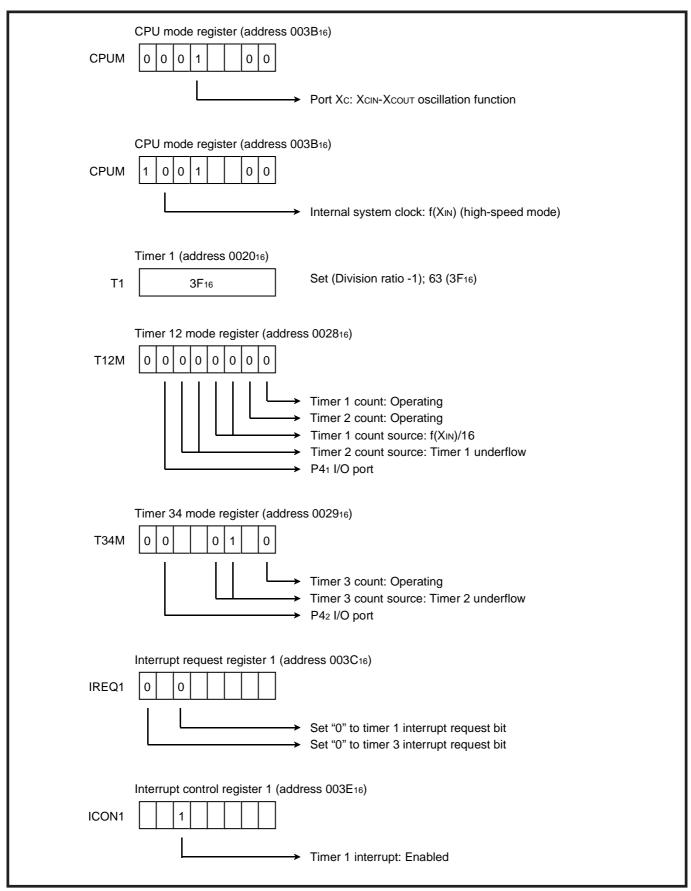


Fig. 2.8.7 Initial setting of relevant registers

2.8 Clock generating circuit

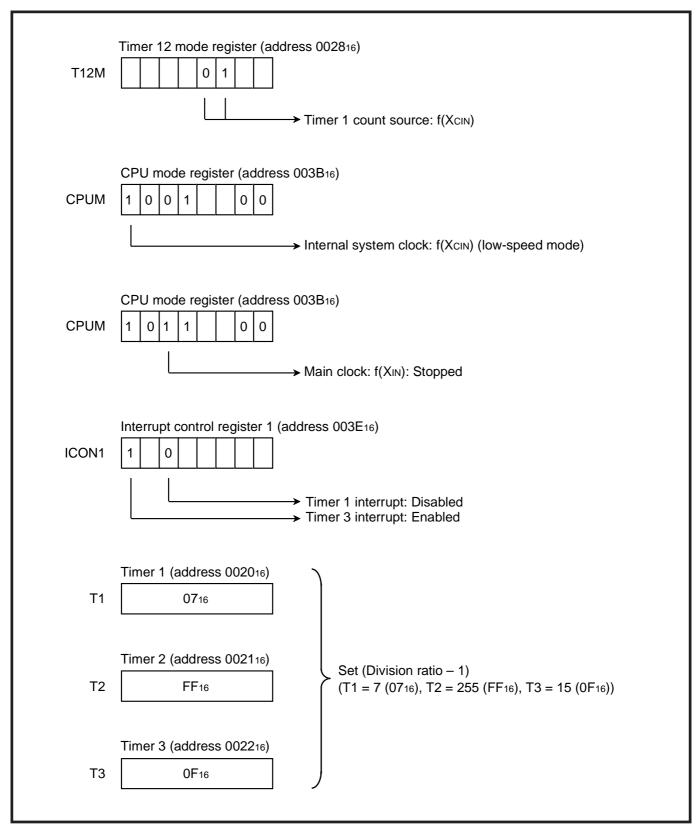


Fig. 2.8.8 Setting of relevant registers after detecting power failure

Control procedure: Set the relevant registers in the order shown below to prepare for a power failure.

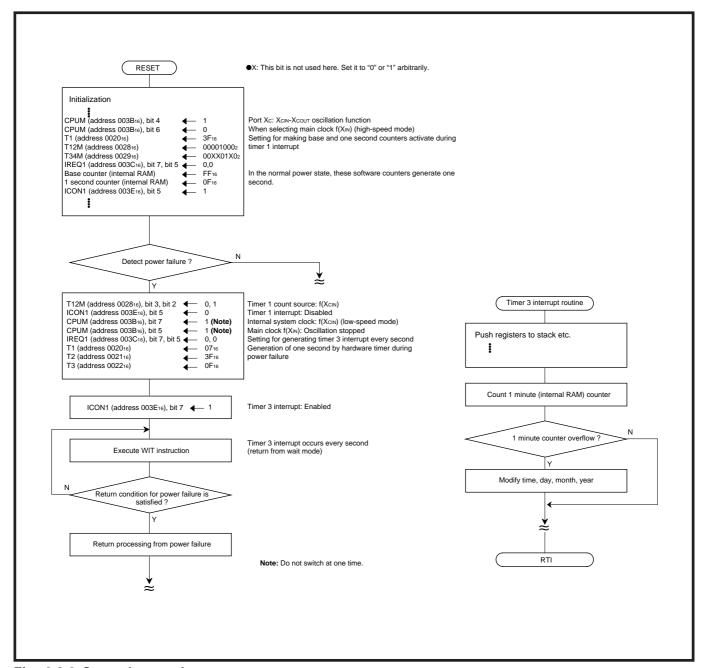


Fig. 2.8.9 Control procedure

2.8 Clock generating circuit

MEMORANDUM

CHAPTER 3

APPENDIX

- 3.1 Electrical characteristics
- 3.2 Standard characteristics
- 3.3 Notes on use
- 3.4 Countermeasures against noise
- 3.5 Control registers
- 3.6 Mask ROM confirmation form
- 3.7 ROM programming confirmation form
- 3.8 Mark specification form
- 3.9 Package outline
- 3.10 Machine instructions
- 3.11 List of instruction code
- 3.12 SFR memory map
- 3.13 Pin configuration

3.1 Electrical characteristics

3.1 Electrical characteristics

3.1.1 Absolute maximum ratings

Table 3.1.1 Absolute maximum ratings

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Power source voltage		-0.3 to 7.0	V
VI	Input voltage P00–P07, P10–P17, P20–P27, P40–P47, P50–P57, P60–P67, P70, P71, P80–P87	All voltages are based on	-0.3 to Vcc+0.3	V
VI	Input voltage VL1	Vss. Output transistors are cut off.	-0.3 to VL2	V
VI	Input voltage VL2	are cut oii.	VL1 to VL3	V
VI	Input voltage VL3		VL2 to VCC+0.3	V
VI	Input voltage RESET, XIN		-0.3 to Vcc+0.3	V
Vo	Output voltage P00-P07, P10-P17, P20-P27,	At output port	-0.3 to Vcc+0.3	V
	P30-P37	At segment output	-0.3 to VL3+0.3	V
Vo	Output voltage COMo-COM3		-0.3 to VL3+0.3	V
Vo	Output voltage P40-P47, P50, P52-P57, P60-P67, P70, P71, P80-P87		-0.3 to Vcc+0.3	V
Vo	Output voltage XouT		-0.3 to Vcc+0.3	V
Pd	Power dissipation	Ta = 25°C	300	mW
Topr	Operating temperature		-20 to 85	°C
Tstg	Storage temperature		-40 to 125	°C

3.1.2 Recommended operating conditions

Table 3.1.2 Recommended operating conditions

(Vcc = 2.5 to 5.5 V, Ta = -20 to 85°C, unless otherwise noted)

Symbol		Doromotor		Limits		Unit
Symbol		Parameter	Min.	Тур.	Max.	Unit
Vcc	Power source voltage	High-speed mode f(XIN) = 8 MHz	4.0	5.0	5.5	V
		Middle-speed mode f(XIN) = 8 MHz	2.5	5.0	5.5	V
		Low-speed mode	2.5	5.0	5.5	V
Vss	Power source voltage			0		V
VREF	A-D converter reference	e voltage	2.0		Vcc	V
AVss	Analog power source v	voltage		0		V
VIA	Analog input voltage A	N0-AN7	AVss		Vcc	V
VIH	"H" input voltage P	00–P07, P10–P17, P20–P27	0.7Vcc		Vcc	V
VIH	"H" input voltage P	40–P47, P50–P57, P60–P67, P70, P71 (CM4 = 0)	0.8Vcc		Vcc	V
VIH	"H" input voltage P	80-P87	0.4Vcc		Vcc	V
VIH	"H" input voltage R	ESET	0.8Vcc		Vcc	V
VIH	"H" input voltage X	IN	0.8Vcc		Vcc	V
VIL	"L" input voltage P	00–P07, P10–P17, P20–P27	0		0.3Vcc	V
VIL	"L" input voltage P	40–P47, P50–P57, P60–P67, P70, P71 (CM4 = 0)	0		0.2Vcc	V
VIL	"L" input voltage P	80–P87	0		0.16Vcc	V
VIL	"L" input voltage R	ESET	0		0.2Vcc	V
VIL	"L" input voltage X	IN	0		0.2Vcc	V

Table 3.1.3 Recommended operating conditions

(Vcc = 2.5 to 5.5 V, Ta = -20 to 85°C, unless otherwise noted)

Symbol	Parameter		Limits		Unit
Symbol	i didilietei	Min.	Тур.	Max.	Offic
ΣIOH(peak)	"H" total peak output current (Note 1) P00–P07, P10–P17, P20–P27, P30–P37 P80–P87, P50			-60	mA
ΣIOH(peak)	"H" total peak output current (Note 1) P40–P47, P52–P57, P60–P67, P70, P71			-30	mA
ΣIOL(peak)	"L" total peak output current (Note 1) P00–P07, P10–P17, P20–P27, P30–P37			40	mA
ΣIOL(peak)	"L" total peak output current (Note 1) P80–P87, P50			80	mA
ΣIOL(peak)	"L" total peak output current (Note 1) P40–P47, P52–P57, P60–P67, P70, P71			40	mA
ΣIOH(avg)	"H" total average output current (Note 1) P00–P07, P10–P17, P20–P27, P30–P37 P80–P87, P50			-30	mA
ΣIOH(avg)	"H" total average output current (Note 1) P40–P47, P52–P57, P60–P67, P70, P71			-15	mA
ΣIOL(avg)	"L" total average output current (Note 1) P00–P07, P10–P17, P20–P27, P30–P37			20	mA
ΣIOL(avg)	"L" total average output current (Note 1) P80–P87, P50			40	mA
ΣIOL(avg)	"L" total average output current (Note 1) P40–P47, P52–P57, P60–P67, P70, P71			20	mA
IOH(peak)	"H" peak output current (Note 2) P00–P07, P10–P17, P20–P27, P30–P37			-4.0	mA
IOH(peak)	"H" peak output current (Note 2) P40–P47, P50, P52–P57, P60–P67, P70, P71 P80–P87			-10	mA
IOL(peak)	"L" peak output current (Note 2) P00–P07, P10–P17, P20–P27, P30–P37			5.0	mA
IOL(peak)	"L" peak output current (Note 2) P40–P47, P52–P57, P60–P67, P70, P71			10	mA
IOL(peak)	"L" peak output current (Note 2) P80–P87, P50			30	mA
IOH(avg)	"H" average output current (Note 3) P00–P07, P10–P17, P20–P27, P30–P37			-2.0	mA
IOH(avg)	"H" average output current (Note 3) P40–P47, P50, P52–P57, P60–P67, P70, P71 P80–P87			-5.0	mA
IOL(avg)	"L" average output current (Note 3) P00–P07, P10–P17, P20–P27, P30–P37			2.5	mA
IOL(avg)	"L" average output current (Note 3) P40–P47, P52–P57, P60–P67, P70, P71			5.0	mA
IOL(avg)	"L" average output current (Note 3) P80–P87, P50			15	mA

Notes 1: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value measured over 100 ms. The total peak current is the peak value of all the currents.

^{2:} The peak output current is the peak current flowing in each port.

^{3:} The average output current is average value measured over 100 ms.

3.1 Electrical characteristics

Table 3.1.4 Recommended operating conditions

(Vcc = 2.5 to 5.5 V, Ta = -20 to 85°C, unless otherwise noted)

Symbol	Parameter			Unit		
Symbol	Parameter		Min.	Тур.	Max.	Offic
f(CNTR ₀)	Input frequency (duty cycle 50%)	(4.0 V ≤ VCC ≤ 5.5 V)			4.0	MHz
f(CNTR1)		(Vcc ≤ 4.0 V)			(2XVcc)-4	MHz
f(XIN)	Main clock input oscillation frequency (Note 4)	High-speed mode $(4.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V})$			8.0	MHz
		High-speed mode (Vcc ≤ 4.0 V)			(4XVcc)-8	MHz
		Middle-speed mode			8.0	MHz
f(XCIN)	Sub-clock input oscillation frequency (Notes 4, 5)			32.768	50	kHz

Notes 4: When the oscillation frequency has a duty cycle of 50%.

^{5:} When using the microcomputer in low-speed mode, set the sub-clock input oscillation frequency on condition that f(XCIN) < f(XIN)/3.

3.1.3 Electrical characteristics

Table 3.1.5 Electrical characteristics

(Vcc = 4.0 to 5.5 V, Ta = -20 to 85°C, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits		Unit
			Min.	Тур.	Max.	
Voн	"H" output voltage	IOH = −2.0 mA	Vcc-2.0			V
	P00–P07, P10–P17, P20–P27,	IOH = -0.6 mA	Vcc-1.0			V
	P30-P37	Vcc = 2.5 V				
Voн	"H" output voltage	IOH = -5 mA	Vcc-2.0			V
	P40-P47, P50, P52-P57,	IOH = −1.25 mA	Vcc-0.5			V
	P60–P67, P70, P71, (Note)	IOH = −1.25 mA	Vcc-1.0			V
	P80-P87	Vcc = 2.5 V				
VoL	"L" output voltage	IOL = 2.5 mA			2.0	V
	P00-P07, P10-P17, P20-P27,	IOL = 1.25 mA			0.5	V
	P30-P37	IOL = 1.25 mA			1.0	V
		Vcc = 2.5 V				
Vol	"L" output voltage	IOL = 5.0 mA			2.0	V
	P40-P47, P52-P57, P60-P67,	IOL = 2.5 mA			0.5	V
	P70, P71 (Note)	IOL = 2.5 mA			1.0	V
		Vcc = 2.5 V				
VoL	"L" output voltage P80-P87, P50	IOL = 15 mA			2.0	V
VT+-VT-	Hysteresis			0.5		V
	INT0-INT2, CNTR0, CNTR1, P80-P87					
VT+-VT-	Hysteresis SCLK1, SIN			0.5		V
VT+-VT-	Hysteresis RESET	RESET:		0.5		V
		Vcc = 2.5 V - 5.5 V				
Iн	"H" input current	VI = VCC			5.0	μА
	P00–P07, P10–P17, P20–P27	Pull-down "off"				"
		Vcc = 5.0 V, VI = Vcc	30	70	140	μА
		Pull-down "on"				"
		Vcc = 3.0 V, VI = Vcc	6.0	25	45	μА
		Pull-down "on"				, ,
IIН	"H" input current	VI = VCC			5.0	μА
	P40–P47, P50–P57, P60–P67,	VI = V00			0.0	μ
	P70, P71, P80–P87					
IIH	"H" input current RESET	VI = VCC			5.0	μА
lih	"H" input current XIN	VI = VCC		4.0	0.0	μΑ
lil.	"L" input current	VI = VCC		7.0	-5.0	μΑ
112	P00–P07, P10–P17, P20–P27, P51				3.0	μΑ
lil	"L" input current	VI = VSS			-5.0	μΑ
IIL	P40–P47, P50, P52–P57,	Pull-up "off"			_3.0	μ.
	P60–P67, P70, P71, P80–P87	VCC = 5.0 V, VI = VSS	-30	-70	-140	
	1 00-1 07, 1 70, 1 71, 500-507	Pull-up "on"	-30	-70	-140	μΑ
		· · · · · · · · · · · · · · · · · · ·	6	25	15	
		VCC = 3.0 V, VI = VSS	-6	-25	-45	μΑ
In .	"I " in a standard DECET	Pull-up "on"				
liL	"L" input current RESET	VI = VSS			-5	μΑ
liL	"L" input current XIN	VI = VSS		4		μΑ

Note: When "1" is set to the port Xc switch bit (bit 4 of address 003B16) of the CPU mode register, the drive ability of Port P71 is different from the value above mentioned.

3.1 Electrical characteristics

Table 3.1.6 Electrical characteristics

(Vcc = 2.5 to 5.5 V, Ta = -20 to 85°C, unless otherwise noted)

Cumbal	Doromotor	Toot conditions		Limits		
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
VRAM	RAM hold voltage	When clock is stopped	2.0		5.5	V
Icc	Power source current	High-speed mode, Vcc = 5 V f(XIN) = 8 MHz f(XCIN) = 32.768 kHz Output transistors "off", A-D converter in operating		6.4	13	mA
		High-speed mode, Vcc = 5 V f(XIN) = 8 MHz (in WIT state) f(XCIN) = 32.768 kHz Output transistors "off", A-D converter stopped		1.6	3.2	mA
		Low-speed mode, VCC = 3 V Ta \leq 55 °C f(XIN) = stopped f(XCIN) = 32.768 kHz Output transistors "off"	/,	15	22	μА
		Low-speed mode, Vcc = 3 V, Ta = 25 °C f(XIN) = stopped f(XCIN) = 32.768 kHz (in WIT state) Output transistors "off"		4.5	9.0	μА
		<u>'</u>	= 25 °C	0.1	1.0	μА
		Output transistors "off" Ta =	= 85 °C		10	μΑ

3.1.4 A-D converter characteristics

Table 3.1.7 A-D converter characteristics

 $(Vcc = 4.0 \text{ to } 5.5 \text{ V}, Vss = 0 \text{ V}, Ta = -20 \text{ to } 85^{\circ}C, 4 \text{ MHz} \le f(XIN) \le 8 \text{ MHz}, in middle-speed/high-speed mode)}$

Symbol	Parameter	Test conditions	Limits			Unit
Symbol	Farameter	rest conditions	Min.	Тур.	Max.	Offic
_	Resolution				10	Bits
_	Absolute accuracy (excluding quantization error)	VCC = VREF = 5.12 V		±1	±2.5	LSB
Tconv	Conversion time		61		62	tc(φ)
IVREF	Reference input current	VREF = 5 V	50	150	200	μА
lia	Analog port input current			0.5	5.0	μА
RLADDER	Ladder resistor			35		kΩ

3.1 Electrical characteristics

3.1.5 Timing requirements and switching characteristics

Table 3.1.8 Timing requirements 1

(Vcc = 4.0 to 5.5 V, Vss = 0 V, Ta = -20 to 85°C, unless otherwise noted)

Courada a l	Devenuetor		Limits		Lloit
Symbol	Parameter	Min.	Тур.	Max.	Unit
tw(RESET)	Reset input "L" pulse width	2			μs
tc(XIN)	Main clock input cycle time (XIN input)	125			ns
twH(XIN)	Main clock input "H" pulse width	45			ns
twL(XIN)	Main clock input "L" pulse width	40			ns
tc(CNTR)	CNTR ₀ , CNTR ₁ input cycle time	250			ns
twH(CNTR)	CNTR ₀ , CNTR ₁ input "H" pulse width	105			ns
twL(CNTR)	CNTR ₀ , CNTR ₁ input "L" pulse width	105			ns
twH(INT)	INT0-INT2 input "H" pulse width	80			ns
twL(INT)	INT0-INT2 input "L" pulse width	80			ns
tc(SCLK)	Serial I/O clock input cycle time	800			ns
twH(SCLK)	Serial I/O clock input "H" pulse width	370			ns
twL(SCLK)	Serial I/O clock input "L" pulse width	370			ns
tsu(SIN-SCLK)	Serial I/O input setup time	220			ns
th(SCLK-SIN)	Serial I/O input hold time	100			ns

Table 3.1.9 Timing requirements 2

(Vcc = 2.5 to 4.0 V, Vss = 0 V, $Ta = -20 \text{ to } 85^{\circ}\text{C}$, unless otherwise noted)

		Li	mits		
Symbol	Parameter	Min.	Тур.	Max.	Unit
tw(RESET)	Reset input "L" pulse width	2			μs
tc(XIN)	Main clock input cycle time (XIN input)	125			ns
twH(XIN)	Main clock input "H" pulse width	45			ns
twL(XIN)	Main clock input "L" pulse width	40			ns
tc(CNTR)	CNTR ₀ , CNTR ₁ input cycle time	500/(Vcc-2)			ns
twH(CNTR)	CNTR ₀ , CNTR ₁ input "H" pulse width	250/(Vcc-2)-20			ns
twL(CNTR)	CNTR ₀ , CNTR ₁ input "L" pulse width	250/(Vcc-2)-20			ns
twH(INT)	INT0-INT2 input "H" pulse width	230			ns
twL(INT)	INT0-INT2 input "L" pulse width	230			ns
tc(SCLK)	Serial I/O clock input cycle time	2000			ns
twH(SCLK)	Serial I/O clock input "H" pulse width	950			ns
twL(SCLK)	Serial I/O clock input "L" pulse width	950			ns
tsu(SIN-SCLK)	Serial I/O input setup time	400			ns
th(SCLK-SIN)	Serial I/O input hold time	200			ns

Table 3.1.10 Switching characteristics 1

(Vcc = 4.0 to 5.5 V, Vss = 0 V, Ta = -20 to 85°C, unless otherwise noted)

Cumbal	Parameter		Li	Unit		
Symbol	Farameter		Min.	Тур.	Max.	Unit
twH(SCLK)	Serial I/O clock output "H" pulse width		tc(SCLK)/2-30			ns
twL(SCLK)	Serial I/O clock output "L" pulse width		tc(SCLK)/2-30			ns
td(SCLK-SOUT)	Serial I/O output delay time	(Note 1)			140	ns
tv(Sclk-Sout)	Serial I/O output valid time	(Note 1)	-30			ns
tr(SCLK)	Serial I/O clock output rising time				30	ns
tf(SCLK)	Serial I/O clock output falling time				30	ns
tr(CMOS)	CMOS output rising time	(Note 2)		10	30	ns
tf(CMOS)	CMOS output falling time	(Note 2)		10	30	ns

Notes 1: When the P-channel output disable bit (bit 7 of address 001916) is "0."

2: The XOUT, XCOUT pins are excluded.

Table 3.1.11 Switching characteristics 2

(Vcc = 2.5 to 4.0 V, Vss = 0 V, Ta = -20 to 85°C, unless otherwise noted)

Cymbol	Parameter		Lii		Unit	
Symbol	Faranielei		Min.	Тур.	Max.	Unit
twH(SCLK)	Serial I/O clock output "H" pulse width		tc(Sclk)/2-50			ns
twL(SCLK)	Serial I/O clock output "L" pulse width		tc(Sclk)/2-50			ns
td(SCLK-SOUT)	Serial I/O output delay time	(Note 1)			350	ns
tv(Sclk-Sout)	Serial I/O output valid time	(Note 1)	-30			ns
tr(SCLK)	Serial I/O clock output rising time				50	ns
tf(SCLK)	Serial I/O clock output falling time				50	ns
tr(CMOS)	CMOS output rising time	(Note 2)		20	50	ns
tf(CMOS)	CMOS output falling time	(Note 2)		20	50	ns

Notes 1: When the P-channel output disable bit (bit 7 of address 001916) is "0."

^{2:} The XOUT, XCOUT pins are excluded.

3.1 Electrical characteristics

3.1.6 Absolute maximum ratings (M version)

Table 3.1.12 Absolute maximum ratings (M version)

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Power source voltage		-0.3 to 7.0	V
VI	Input voltage P00–P07, P10–P17, P20–P27, P40–P47, P50–P57, P60–P67, P70, P71, P80–P87	All voltages are based on	-0.3 to Vcc+0.3	V
VI	Input voltage VL1	Vss. Output transistors	-0.3 to VL2	V
VI	Input voltage VL2	are cut off.	VL1 to VL3	V
VI	Input voltage VL3		VL2 to VCC+0.3	V
VI	Input voltage RESET, XIN		-0.3 to Vcc+0.3	V
Vo	Output voltage P00-P07, P10-P17, P20-P27,	At output port	-0.3 to Vcc+0.3	V
	P30-P37	At segment output	-0.3 to VL3+0.3	V
Vo	Output voltage COMo-COM3		-0.3 to VL3+0.3	V
Vo	Output voltage P40–P47, P50, P52–P57, P60–P67, P70, P71, P80–P87		-0.3 to Vcc+0.3	V
Vo	Output voltage Xout		-0.3 to Vcc+0.3	V
Pd	Power dissipation	Ta = 25°C	300	mW
Topr	Operating temperature		-20 to 85	°C
Tstg	Storage temperature		-40 to 125	°C

3.1.7 Recommended operating conditions (M version)

Table 3.1.13 Recommended operating conditions (M version)

(Vcc = 2.2 to 5.5 V, Ta = -20 to 85°C, unless otherwise noted)

Symbol		Doromotor		Limits		Unit
Symbol		Parameter	Min.	Тур.	Max.	Unit
Vcc	Power source voltage	High-speed mode f(XIN) = 8 MHz	4.0	5.0	5.5	V
		Middle-speed mode f(XIN) = 8 MHz	2.2	5.0	5.5	V
		Low-speed mode	2.2	5.0	5.5	V
Vss	Power source voltage			0		V
VREF	A-D converter reference	voltage	2.0		Vcc	V
AVss	Analog power source vol	tage		0		V
VIA	Analog input voltage AN	0–AN7	AVss		Vcc	V

Table 3.1.14 Recommended operating conditions (M version)

(Vcc = 2.5 to 5.5 V, Ta = -20 to 85°C, unless otherwise noted)

Cumbal		Developer		Limits		I India
Symbol		Parameter	Min.	Тур.	Max.	Unit
VIH	"H" input voltage	P00–P07, P10–P17, P20–P27	0.7Vcc		Vcc	V
VIH	"H" input voltage	P40-P47, P50-P57, P60-P67, P70, P71 (CM4 = 0)	0.8Vcc		Vcc	V
VIH	"H" input voltage	P80-P87	0.4Vcc		Vcc	V
VIH	"H" input voltage	RESET	0.8Vcc		Vcc	V
VIH	"H" input voltage	XIN	0.8Vcc		Vcc	V
VIL	"L" input voltage	P00–P07, P10–P17, P20–P27	0		0.3Vcc	V
VIL	"L" input voltage	P40-P47, P50-P57, P60-P67, P70, P71 (CM4 = 0)	0		0.2Vcc	V
VIL	"L" input voltage	P80-P87	0		0.16Vcc	V
VIL	"L" input voltage	RESET	0		0.2Vcc	V
VIL	"L" input voltage	XIN	0		0.2Vcc	V

Table 3.1.15 Recommended operating conditions (M version)

(Vcc = 2.2 to 2.5 V, Ta = -20 to 85°C, unless otherwise noted)

Cumbal		Davarratar		l lait		
Symbol		Parameter	Min.	Тур.	Max.	Unit
VIH	"H" input voltage	P00–P07, P10–P17, P20–P27	0.8Vcc		Vcc	V
VIH	"H" input voltage	P40–P47, P50–P57, P60–P67, P70, P71 (CM4 = 0)	0.95Vcc		Vcc	V
VIH	"H" input voltage	P80–P87	0.5Vcc		Vcc	V
VIH	"H" input voltage	RESET	0.95Vcc		Vcc	V
VIH	"H" input voltage	XIN	0.95Vcc		Vcc	V
VIL	"L" input voltage	P00-P07, P10-P17, P20-P27	0		0.2Vcc	V
VIL	"L" input voltage	P40-P47, P50-P57, P60-P67, P70, P71 (CM4 = 0)	0		0.05Vcc	V
VIL	"L" input voltage	P80-P87	0		0.1Vcc	V
VIL	"L" input voltage	RESET	0		0.05Vcc	V
VIL	"L" input voltage	XIN	0		0.05Vcc	V

3.1 Electrical characteristics

Table 3.1.16 Recommended operating conditions (M version)

(Vcc = 2.2 to 5.5 V, Ta = -20 to 85°C, unless otherwise noted)

Symbol	Parameter		Limits		Linit
Зуппоот	i didilicici	Min.	Тур.	Max.	MA MA MA MA MA MA MA MA
ΣIOH(peak)	"H" total peak output current (Note 1) P00–P07, P10–P17, P20–P27, P30–P37 P80–P87, P50			-60	mA
ΣIOH(peak)	"H" total peak output current (Note 1) P40–P47, P52–P57, P60–P67, P70, P71			-30	mA
ΣIOL(peak)	"L" total peak output current (Note 1) P00–P07, P10–P17, P20–P27, P30–P37			40	mA
ΣIOL(peak)	"L" total peak output current (Note 1) P80–P87, P50			80	mA
ΣIOL(peak)	"L" total peak output current (Note 1) P40–P47, P52–P57, P60–P67, P70, P71			40	mA
Σ lOH(avg)	"H" total average output current (Note 1) P00–P07, P10–P17, P20–P27, P30–P37 P80–P87, P50			-30	mA
Σ IOH(avg)	"H" total average output current (Note 1) P40–P47, P52–P57, P60–P67, P70, P71			-15	mA
Σ IOL(avg)	"L" total average output current (Note 1) P00–P07, P10–P17, P20–P27, P30–P37			20	mA
ΣIOL(avg)	"L" total average output current (Note 1) P80–P87, P50			40	mA
ΣIOL(avg)	"L" total average output current (Note 1) P40–P47, P52–P57, P60–P67, P70, P71			20	mA
IOH(peak)	"H" peak output current (Note 2) P00–P07, P10–P17, P20–P27, P30–P37			-4.0	mA
IOH(peak)	"H" peak output current (Note 2) P40–P47, P50, P52–P57, P60–P67, P70, P71 P80–P87			-10	mA
IOL(peak)	"L" peak output current (Note 2) P00–P07, P10–P17, P20–P27, P30–P37			5.0	mA
IOL(peak)	"L" peak output current (Note 2) P40–P47, P52–P57, P60–P67, P70, P71			10	mA
IOL(peak)	"L" peak output current (Note 2) P80–P87, P50			30	mA
IOH(avg)	"H" average output current (Note 3) P00–P07, P10–P17, P20–P27, P30–P37			-2.0	mA
IOH(avg)	"H" average output current (Note 3) P40–P47, P50, P52–P57, P60–P67, P70, P71 P80–P87			-5.0	mA
IOL(avg)	"L" average output current (Note 3) P00–P07, P10–P17, P20–P27, P30–P37			2.5	mA
IOL(avg)	"L" average output current (Note 3) P40–P47, P52–P57, P60–P67, P70, P71			5.0	mA
IOL(avg)	"L" average output current (Note 3) P80–P87, P50			15	mA

Notes 1: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value measured over 100 ms. The total peak current is the peak value of all the currents.

^{2:} The peak output current is the peak current flowing in each port.

^{3:} The average output current is average value measured over 100 ms.

3.1 Electrical characteristics

Table 3.1.17 Recommended operating conditions (M version)

(Vcc = 2.2 to 5.5 V, Ta = -20 to 85°C, unless otherwise noted)

Symbol	Parameter			Limits		Unit
Symbol	Parameter		Min.	Тур.	Max.	Offic
f(CNTR ₀)	Input frequency (duty cycle 50%)	(4.0 V ≤ VCC ≤ 5.5 V)			4.0	MHz
f(CNTR1)		(2.2 V ≤ Vcc ≤ 4.0 V)			(2XVcc)-4	MHz
f(XIN)	Main clock input oscillation frequency (Note 4)	High-speed mode $(4.0 \text{ V} \le \text{Vcc} \le 5.5 \text{ V})$			8.0	MHz
		High-speed mode (2.2 V ≤ Vcc ≤ 4.0 V)			(4XVcc)-8	MHz
		Middle-speed mode			8.0	MHz
f(XCIN)	Sub-clock input oscillation frequency (Notes 4, 5)			32.768	50	kHz

Notes 4: When the oscillation frequency has a duty cycle of 50%.

^{5:} When using the microcomputer in low-speed mode, set the sub-clock input oscillation frequency on condition that f(XCIN) < f(XIN)/3.

3.1 Electrical characteristics

3.1.8 Electrical characteristics (M version)

Table 3.1.18 Electrical characteristics (M version)

(Vcc = 4.0 to 5.5 V, Ta = -20 to 85°C, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits		Unit
Symbol	Farameter	rest conditions	Min.	Тур.	Max.	Offic
Voн	"H" output voltage	IOH = -2.0 mA	Vcc-2.0			V
	P00-P07, P10-P17, P20-P27,	IOH = -0.6 mA	Vcc-1.0			V
	P30-P37	VCC = 2.5 V				
Vон	"H" output voltage	IOH = -5 mA	Vcc-2.0			V
	P40-P47, P50, P52-P57,	IOH = −1.25 mA	Vcc-0.5			V
	P60–P67, P70, P71, (Note)	IOH = −1.25 mA	Vcc-1.0			V
	P80-P87	Vcc = 2.5 V				
VOL	"L" output voltage	IOL = 2.5 mA			2.0	V
	P00-P07, P10-P17, P20-P27,	IOL = 1.25 mA			0.5	V
	P30-P37	IOL = 1.25 mA			1.0	V
		VCC = 2.5 V				
Vol	"L" output voltage	IOL = 5.0 mA			2.0	V
	P40-P47, P52-P57, P60-P67,	IOL = 2.5 mA			0.5	V
	P70, P71 (Note)	IOL = 2.5 mA			1.0	V
		Vcc = 2.5 V				
Vol	"L" output voltage P80-P87, P50	IOL = 15 mA			2.0	V
VT+-VT-	Hysteresis			0.5		V
	INT0-INT2, CNTR0, CNTR1, P80-P87					
VT+-VT-	Hysteresis SCLK1, SIN			0.5		V
VT+-VT-	Hysteresis RESET	RESET:		0.5		V
		VCC = 2.2 V - 5.5 V				
Іін	"H" input current	VI = VCC			5.0	μА
	P00-P07, P10-P17, P20-P27	Pull-down "off"				
		Vcc = 5.0 V, VI = Vcc	30	70	140	μА
		Pull-down "on"				
		Vcc = 3.0 V, VI = Vcc	6.0	25	45	μА
		Pull-down "on"				
Іін	"H" input current P40-P47, P50-P57, P60-P67,	VI = VCC			5.0	μА
	P70, P71, P80–P87					
Іін	"H" input current RESET	VI = VCC			5.0	μА
Iн	"H" input current XIN	VI = VCC		4.0		μΑ
IIL	"L" input current P00–P07, P10–P17, P20–P27, P51				-5.0	μА
lil	"L" input current	VI = VSS			-5.0	μΑ
	P40–P47, P50, P52–P57,	Pull-up "off"			5.0	μ'
	P60–P67, P70, P71, P80–P87	VCC = 5.0 V, VI = VSS	-30	-70	-140	μА
		Pull-up "on"		, ,	140	μ,
		VCC = 3.0 V, VI = VSS	-6	-25	-45	μА
		Pull-up "on"		20	45	μΛ
lıL	"L" input current RESET	VI = VSS			-5	μΑ
	TO THE STATE OF TH	=				

Note: When "1" is set to the port XC switch bit (bit 4 of address 003B16) of the CPU mode register, the drive ability of Port P71 is different from the value above mentioned.

3.1 Electrical characteristics

Table 3.1.19 Electrical characteristics (M version)

(Vcc = 2.2 to 5.5 V, Ta = -20 to 85°C, unless otherwise noted)

Cymphol	Doromotor	Test conditions		Limits		
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
VRAM	RAM hold voltage	When clock is stopped	2.0		5.5	V
Icc	Power source current	High-speed mode, Vcc = 5 V f(XIN) = 8 MHz f(XCIN) = 32.768 kHz Output transistors "off", A-D converter in operating		6.4	13	mA
		High-speed mode, Vcc = 5 V f(XIN) = 8 MHz (in WIT state) f(XCIN) = 32.768 kHz Output transistors "off", A-D converter stopped		1.6	3.2	mA
		Low-speed mode, Vcc = 3 V, $Ta \le 55$ °C f(XIN) = stopped f(XCIN) = 32.768 kHz Output transistors "off"		15	22	μА
		Low-speed mode, Vcc = 3 V, Ta = 25 °C f(XIN) = stopped f(XCIN) = 32.768 kHz (in WIT state) Output transistors "off"		4.5	9.0	μА
		All oscillation stopped Ta = 25 ° (in STP state)	С	0.1	1.0	μА
		Output transistors "off" Ta = 85 °	С		10	μΑ

3.1 Electrical characteristics

3.1.9 A-D converter characteristics (M version)

Table 3.1.20 A-D converter characteristics (M version)

 $(Vcc = 4.0 \text{ to } 5.5 \text{ V}, Vss = 0 \text{ V}, Ta = -20 \text{ to } 85^{\circ}C, 4 \text{ MHz} \le f(XIN) \le 8 \text{ MHz}, in middle-speed/high-speed mode)}$

Symbol	Parameter	Test conditions		Limits		Unit
Symbol	Farameter	lest conditions	Min.	Тур.	Max.	Offic
_	Resolution				10	Bits
_	Absolute accuracy (excluding quantization error)	VCC = VREF = 5.12 V		±1	±2.5	LSB
Tconv	Conversion time		61		62	tc(φ)
IVREF	Reference input current	VREF = 5 V	50	150	200	μΑ
lia	Analog port input current			0.5	5.0	μΑ
RLADDER	Ladder resistor			35		kΩ

3.1.10 Timing requirements and switching characteristics (M version)

Table 3.1.21 Timing requirements 1 (M version)

(Vcc = 4.0 to 5.5 V, Vss = 0 V, Ta = -20 to 85°C, unless otherwise noted)

Correcte ad	Davamatas		Limits		l linit
Symbol	Parameter	Min.	Тур.	Max.	Unit μs ns ns ns ns ns
tw(RESET)	Reset input "L" pulse width	2			μs
tc(XIN)	Main clock input cycle time (XIN input)	125			ns
twH(XIN)	Main clock input "H" pulse width	45			ns
twL(XIN)	Main clock input "L" pulse width	40			ns
tc(CNTR)	CNTR ₀ , CNTR ₁ input cycle time	250			ns
twH(CNTR)	CNTR ₀ , CNTR ₁ input "H" pulse width	105			ns
twL(CNTR)	CNTR ₀ , CNTR ₁ input "L" pulse width	105			ns
twH(INT)	INT0-INT2 input "H" pulse width	80			ns
twL(INT)	INT0-INT2 input "L" pulse width	80			ns
tc(SCLK)	Serial I/O clock input cycle time	800			ns
twH(SCLK)	Serial I/O clock input "H" pulse width	370			ns
twL(SCLK)	Serial I/O clock input "L" pulse width	370			ns
tsu(SIN-SCLK)	Serial I/O input setup time	220			ns
th(SCLK-SIN)	Serial I/O input hold time	100			ns

Table 3.1.22 Timing requirements 2 (M version)

(Vcc = 2.2 to 4.0 V, Vss = 0 V, $Ta = -20 \text{ to } 85^{\circ}\text{C}$, unless otherwise noted)

		Li	mits		
Symbol	Parameter	Min.	Тур.	Max.	Unit µs ns ns ns ns ns
tw(RESET)	Reset input "L" pulse width	2			μs
tc(XIN)	Main clock input cycle time (XIN input)	125			ns
twH(XIN)	Main clock input "H" pulse width	45			ns
twL(XIN)	Main clock input "L" pulse width	40			ns
tc(CNTR)	CNTR ₀ , CNTR ₁ input cycle time	500/(Vcc-2)			ns
twH(CNTR)	CNTR ₀ , CNTR ₁ input "H" pulse width	250/(Vcc-2)-20			ns
twL(CNTR)	CNTR ₀ , CNTR ₁ input "L" pulse width	250/(Vcc-2)-20			ns
twH(INT)	INTo-INT2 input "H" pulse width	230			ns
twL(INT)	INTo-INT2 input "L" pulse width	230			ns
tc(SCLK)	Serial I/O clock input cycle time	2000			ns
twH(SCLK)	Serial I/O clock input "H" pulse width	950			ns
twL(SCLK)	Serial I/O clock input "L" pulse width	950			ns
tsu(SIN-SCLK)	Serial I/O input setup time	400			ns
th(SCLK-SIN)	Serial I/O input hold time	200			ns

3.1 Electrical characteristics

Table 3.1.23 Switching characteristics 1 (M version)

(Vcc = 4.0 to 5.5 V, Vss = 0 V, Ta = -20 to 85°C, unless otherwise noted)

Cymbol	Parameter		Lii	mits		Unit
Symbol	Farameter		Min.	Тур.	Max.	Offic
twH(SCLK)	Serial I/O clock output "H" pulse width		tc(SCLK)/2-30			ns
twL(SCLK)	Serial I/O clock output "L" pulse width		tc(SCLK)/2-30			ns
td(SCLK-SOUT)	Serial I/O output delay time	(Note 1)			140	ns
tv(Sclk-Sout)	Serial I/O output valid time	(Note 1)	-30			ns
tr(SCLK)	Serial I/O clock output rising time				30	ns
tf(SCLK)	Serial I/O clock output falling time				30	ns
tr(CMOS)	CMOS output rising time	(Note 2)		10	30	ns
tf(CMOS)	CMOS output falling time	(Note 2)		10	30	ns

Notes 1: When the P-channel output disable bit (bit 7 of address 001916) is "0."

2: The XOUT, XCOUT pins are excluded.

Table 3.1.24 Switching characteristics 2 (M version)

(Vcc = 2.2 to 4.0 V, Vss = 0 V, Ta = -20 to 85°C, unless otherwise noted)

Symbol	Parameter		Li	mits		Unit
Symbol	Farameter		Min.	Тур.	Max.	Offic
twH(SCLK)	Serial I/O clock output "H" pulse width		tc(Sclk)/2-50			ns
twL(SCLK)	Serial I/O clock output "L" pulse width		tc(Sclk)/2-50			ns
td(SCLK-SOUT)	Serial I/O output delay time	(Note 1)			350	ns
tv(Sclk-Sout)	Serial I/O output valid time	(Note 1)	-30			ns
tr(SCLK)	Serial I/O clock output rising time				50	ns
tf(SCLK)	Serial I/O clock output falling time				50	ns
tr(CMOS)	CMOS output rising time	(Note 2)		20	50	ns
tf(CMOS)	CMOS output falling time	(Note 2)		20	50	ns

Notes 1: When the P-channel output disable bit (bit 7 of address 001916) is "0."

2: The XOUT, XCOUT pins are excluded.

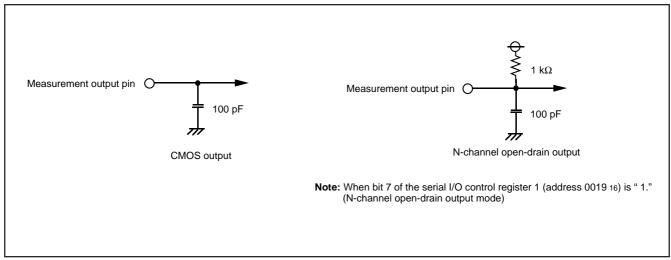


Fig. 3.1.1 Circuit for measuring output switching characteristics

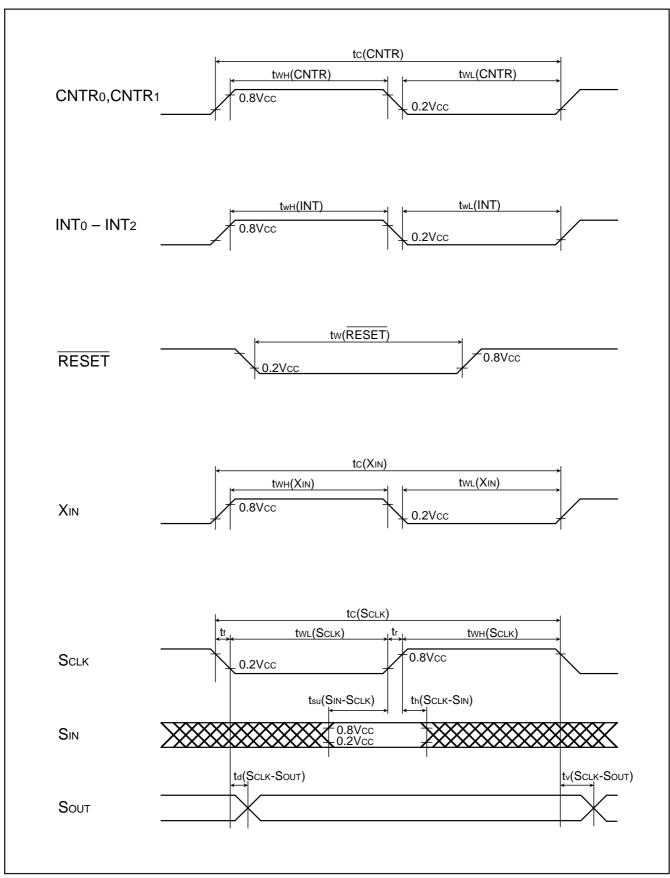


Fig. 3.1.2 Timing chart

3.2 Standard characteristics

3.2 Standard characteristics

3.2.1 Power source current standard characteristics

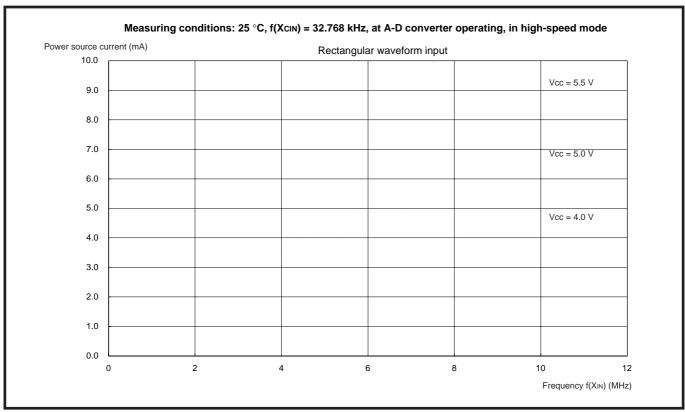


Fig. 3.2.1 Power source current standard characteristics

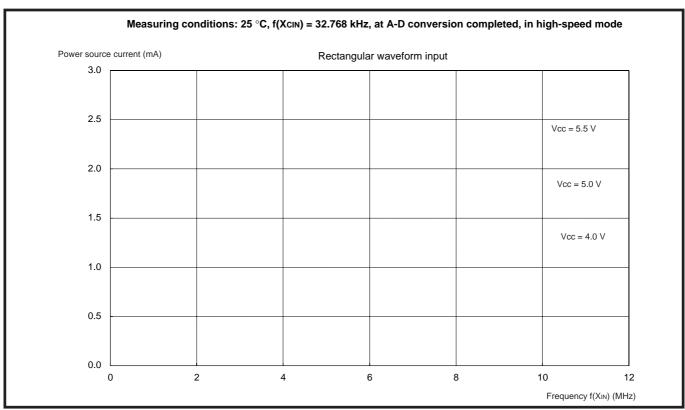


Fig. 3.2.2 Power source current standard characteristics (in wait mode)

3.2.2 Port standard characteristics

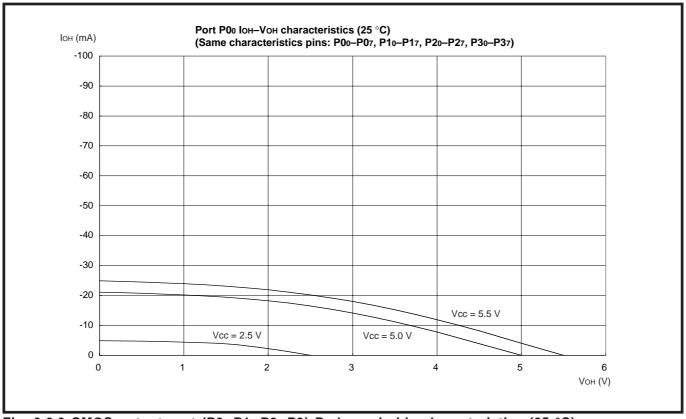


Fig. 3.2.3 CMOS output port (P0, P1, P2, P3) P-channel side characteristics (25 °C)

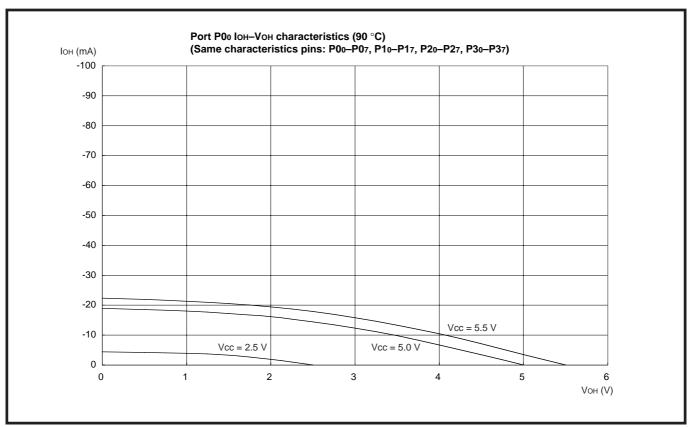


Fig. 3.2.4 CMOS output port (P0, P1, P2, P3) P-channel side characteristics (90 °C)

3.2 Standard characteristics

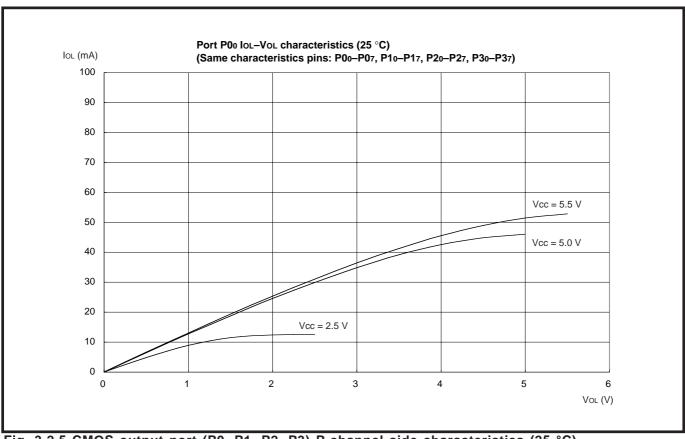


Fig. 3.2.5 CMOS output port (P0, P1, P2, P3) P-channel side characteristics (25 °C)

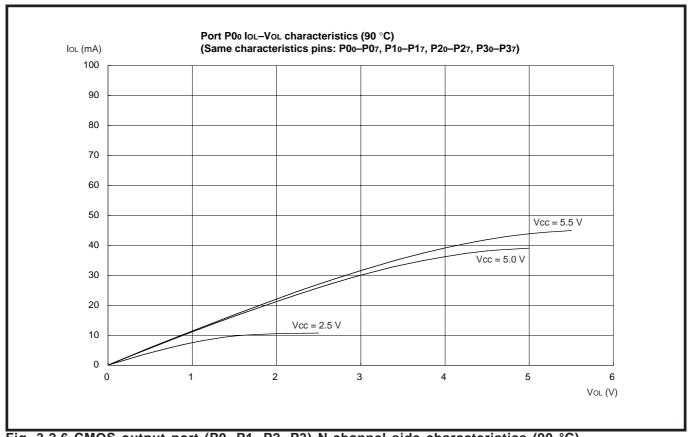


Fig. 3.2.6 CMOS output port (P0, P1, P2, P3) N-channel side characteristics (90 °C)

3-22

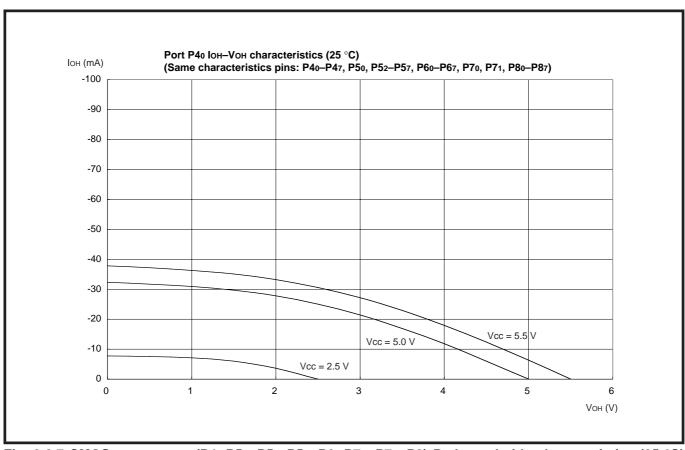


Fig. 3.2.7 CMOS output port (P4, P50, P52-P57, P6, P70, P71, P8) P-channel side characteristics (25 °C)

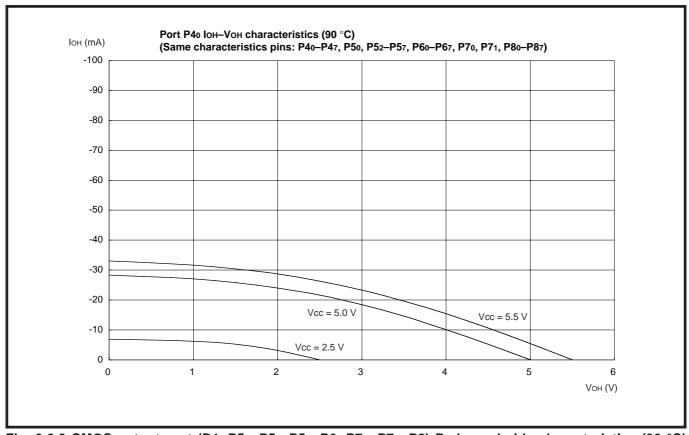


Fig. 3.2.8 CMOS output port (P4, P50, P52-P57, P6, P70, P71, P8) P-channel side characteristics (90 °C)

3.2 Standard characteristics

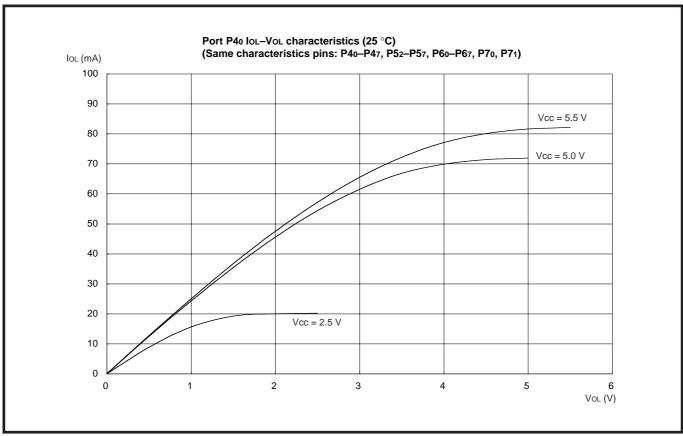


Fig. 3.2.9 CMOS output port (P4, P52-P57, P6, P70, P71) N-channel side characteristics (25 °C)

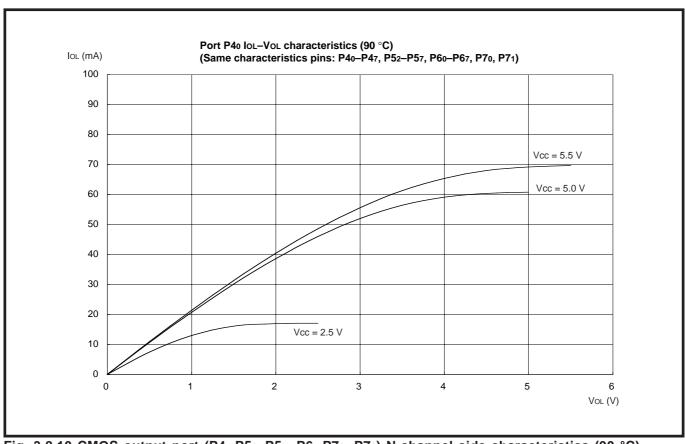


Fig. 3.2.10 CMOS output port (P4, P52-P57, P6, P70, P71) N-channel side characteristics (90 °C)

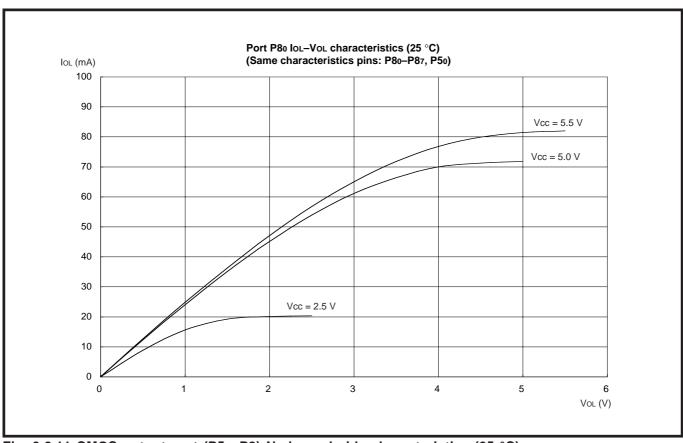


Fig. 3.2.11 CMOS output port (P50, P8) N-channel side characteristics (25 °C)

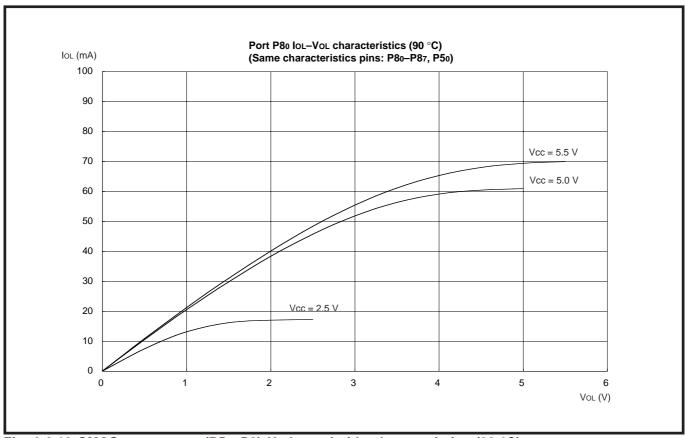


Fig. 3.2.12 CMOS output port (P50, P8) N-channel side characteristics (90 °C)

3.3 Notes on use

3.3 Notes on use

3.3.1 Notes on interrupts

(1) Switching external interrupt detection edge

For the products able to switch the external interrupt detection edge, switch it as the following sequence.

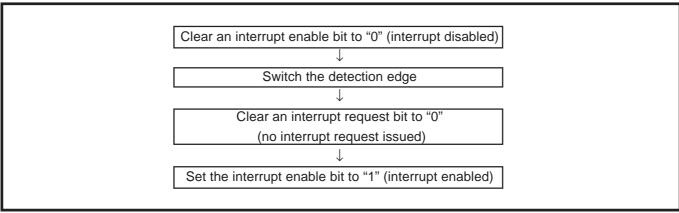


Fig. 3.3.1 Sequence of switch detection edge

■ Reason

The interrupt circuit recognizes the switching of the detection edge as the change of external input signals. This may cause an unnecessary interrupt.

(2) Check of interrupt request bit

● When executing the **BBC** or **BBS** instruction to an interrupt request bit of an interrupt request register immediately after this bit is set to "0" by using a data transfer instruction, execute one or more instructions before executing the **BBC** or **BBS** instruction.

■ Reason

If the **BBC** or **BBS** instruction is executed immediately after an interrupt request bit of an interrupt request register is cleared to "0", the value of the interrupt request bit before being cleared to "0" is read.

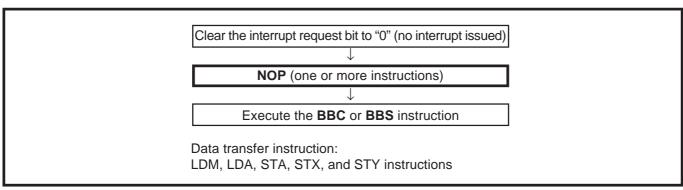


Fig. 3.3.2 Sequence of check of interrupt request bit

(3) Structure of interrupt control register 2
Fix the bit 7 of the interrupt control register 2
to "0". Figure 3.3.3 shows the structure of the interrupt control register 2.

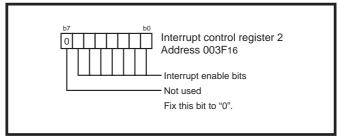


Fig. 3.3.3 Structure of interrupt control register 2

3.3.2 Notes on timer A (PWM mode and IGBT output mode)

(1) When timer starts first or last value of compare register is " 0000_{16} "

After "L" level (timer A output active edge switch bit is "0"; when starting from "L" output) is output during 2 cycles (until timer underflows two times), start PWM output or IGBT output.

Reason: When data is written to timer A and compare register, value of timer A and value of compare register are renewed at timer underflow. In case of this, compare register value and timer value are compared before renewal so that they are judged to be equal, and TAOUT output becomes "L". (Timer A output switch bit = "0": when starting from "L" output) Timer A underflow should be "H" output, but the match have the priority. (see "Figure 3.3.4")

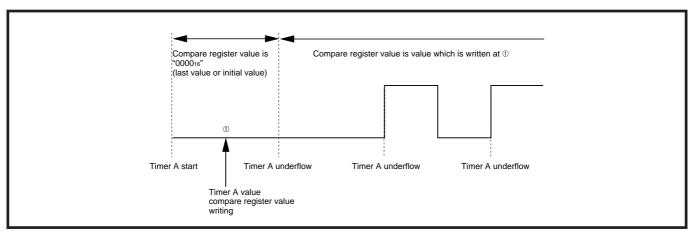


Fig. 3.3.4 PWM output and IGBT output (1)

3.3 Notes on use

(2) When compare register is set to "000016" (last value is except "000016")

Next 1 cycle of the cycle which data is written to timer A and compare register is output "H", and "L" is output from the next cycle. (timer A output switch bit = "0": when starting from "L" output) (see "Figure 3.3.5")

Fig. 3.3.5 PWM output and IGBT output (2)

(3) When timer A and compare register are same value

TAOUT output becomes "H" with underflow immediately after data is written to timer A and compare register. And TAOUT output becomes "L" when timer A is reloaded and the value matches with compare register. This "H" output width becomes 1 count of timer A count source. (timer A output switch bit ="0": when starting from "L" output) (see "Figure 3.3.6")

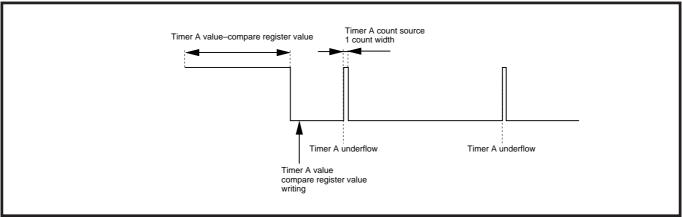


Fig. 3.3.6 PWM output and IGBT output (3)

3.3.3 Notes on serial I/O

(1) Selecting external synchronous clock

When an external synchronous clock is selected, the contents of serial I/O register are being shifted continually while the transfer clock is input to the serial I/O1 clock pin. In this case, control the clock externally.

(2) Transmission data writing

When an external clock is used as the synchronous clock, write the transmit data to the serial I/O shift register at "H" level of transfer clock input.

3.3.4 Notes on LCD controller

- ●When switching from the high-speed or middle-speed mode to the low-speed mode, switch the mode in the following order:
 - (1) 32 kHz oscillation selected (bit 4 of CPU mode register (address 003B₁₆) = "1")
 - (2) Count source for LCDCK = $f(X_{CIN})/32$ (bit 7 of LCD mode register (address 0039_{16}) = "0")
 - (3) Internal system clock: Xcin-Xcout selected (bit 7 of CPU mode register (address 003B₁₆) = "1")
 - (4) Main clock XIN-XOUT stopped (bit 5 of CPU mode register (address 003B₁₆) = "1")

Execute the setting (2) after the oscillation at 32 kHz (setting (1)) becomes completely stable.

- ●If the STP instruction is executed while the LCD is turned on by setting bit 3 of the LCD mode register (address 0039₁6) to "1", a DC voltage is applied to the LCD. For this reason, do not execute the STP instruction while the LCD is lighting.
- ■When the LCD is not used, open the segment and the common pins. Connect V_{L1} to V_{L3} to V_{SS}.
- ●For the following products, if the LCD enable bit of the LCD mode register (bit 3 of address 0039₁6) is set to "0", all LCDs cannot be turned off. When all LCDs are turned off, set "0" (turn off) to all corresponding LCD display RAM.

Corresponding products: M38C34M6AXXXFP, M38C34M6MXXXFP, M38C37ECAXXXFP, M38C37ECAXXXFP, M38C37ECAFP, M38C37ECAFP, M38C37ECAFS, M38C37CAFS, M38C37CAFS,

3.3 Notes on use

3.3.5 Notes on A-D converter

(1) Analog input pin

■ Make the signal source impedance for analog input low, or equip an analog input pin with an external capacitor of 0.01 μ F to 1 μ F. Further, be sure to verify the operation of application products on the user side.

Reason

An analog input pin includes the capacitor for analog voltage comparison. Accordingly, when signals from signal source with high impedance are input to an analog input pin, charge and discharge noise generates. This may cause the A-D conversion precision to be worse.

(2) A-D converter power source pin

The AVss pin is A-D converter power source pin. Regardless of using the A-D conversion function or not, connect it as following:

AVss: Connect to the Vss line.

Reason

If the AVss pin is opened, the microcomputer may have a failure because of noise or others.

(3) Clock frequency during A-D conversion

The comparator consists of a capacity coupling, and a charge of the capacity will be lost if the clock frequency is too low. Thus, make sure the following during an A-D conversion.

- f(XIN) is 500 kHz or more.
- Use clock divided by main clock (f(X_{IN})) as internal system clock.
- Do not execute the STP instruction and WIT instruction.

3.3.6 Notes on reset circuit

(1) Reset input voltage control

Make sure that the reset input voltage is 0.5 V or less for Vcc of 2.5 V (Note).

Perform switch to the high-speed mode when power source voltage is within 4.0 to 5.5 V.

Note: M version of mask ROM version is 2.2 V.

(2) Countermeasure when RESET signal rise time is long

In case where the RESET signal rise time is long, connect a ceramic capacitor or others across the RESET pin and the Vss pin. And use a 1000 pF or more capacitor for high frequency use. When connecting the capacitor, note the following :

- Make the length of the wiring which is connected to a capacitor as short as possible.
- Be sure to verify the operation of application products on the user side.

Reason

If the several nanosecond or several ten nanosecond impulse noise enters the $\overline{\text{RESET}}$ pin, it may cause a microcomputer failure.

3.4 Countermeasures against noise

Countermeasures against noise are described below. The following countermeasures are effective against noise in theory, however, it is necessary not only to take measures as follows but to evaluate before actual use.

3.4.1 Shortest wiring length

The wiring on a printed circuit board can function as an antenna which feeds noise into the microcomputer. The shorter the total wiring length (by mm unit), the less the possibility of noise insertion into a microcomputer.

(1) Package

Select the smallest possible package to make the total wiring length short.

Reason

The wiring length depends on a microcomputer package. Use of a small package, for example QFP and not DIP, makes the total wiring length short to reduce influence of noise.

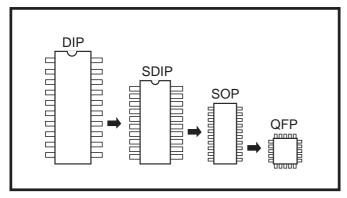


Fig. 3.4.1 Selection of packages

(2) Wiring for RESET pin

Make the length of wiring which is connected to the $\overline{\text{RESET}}$ pin as short as possible. Especially, connect a capacitor across the $\overline{\text{RESET}}$ pin and the Vss pin with the shortest possible wiring (within 20mm).

Reason

The width of a pulse input into the RESET pin is determined by the timing necessary conditions. If noise having a shorter pulse width than the standard is input to the RESET pin, the reset is released before the internal state of the microcomputer is completely initialized. This may cause a program runaway.

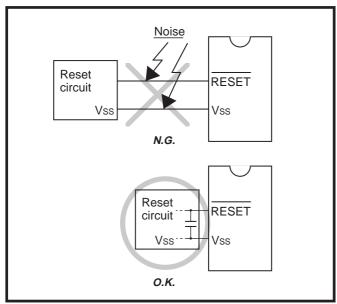


Fig. 3.4.2 Wiring for the RESET pin

3.4 Countermeasures against noise

(3) Wiring for clock input/output pins

- Make the length of wiring which is connected to clock I/O pins as short as possible.
- Make the length of wiring (within 20 mm) across the grounding lead of a capacitor which is connected to an oscillator and the Vss pin of a microcomputer as short as possible.
- Separate the Vss pattern only for oscillation from other Vss patterns.

Reason

If noise enters clock I/O pins, clock waveforms may be deformed. This may cause a program failure or program runaway. Also, if a potential difference is caused by the noise between the Vss level of a microcomputer and the Vss level of an oscillator, the correct clock will not be input in the microcomputer.

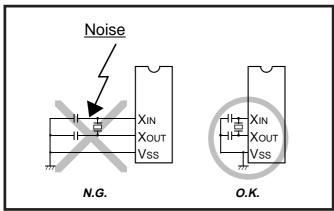


Fig. 3.4.3 Wiring for clock I/O pins

(4) Wiring to VPP pin of One Time PROM version and EPROM version

Connect an approximately 5 k Ω resistor to the VPP pin the shortest possible in series. When not connecting the resistor, make the length of wiring between the VPP pin and the Vss pin the shortest possible.

Note: Even when a circuit which included an approximately 5 k Ω resistor is used in the Mask ROM version, the microcomputer operates correctly.

Reason

The VPP pin of the One Time PROM and the EPROM version is the power source input pin for the built-in PROM. When programming in the built-in PROM, the impedance of the VPP pin is low to allow the electric current for writing flow into the PROM. Because of this, noise can enter easily. If noise enters the VPP pin, abnormal instruction codes or data are read from the built-in PROM, which may cause a program runaway.

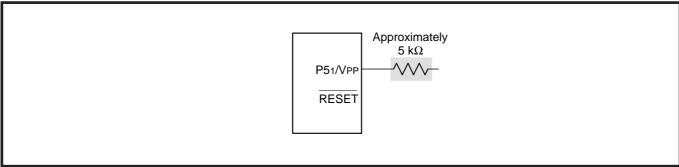


Fig. 3.4.4 Wiring for the VPP pin of the One Time PROM and the EPROM version

3.4.2 Connection of bypass capacitor across Vss line and Vcc line

Connect an approximately 0.1 μ F bypass capacitor across the Vss line and the Vcc line as follows:

- Connect a bypass capacitor across the Vss pin and the Vcc pin at equal length.
- Connect a bypass capacitor across the Vss pin and the Vcc pin with the shortest possible wiring.
- Use lines with a larger diameter than other signal lines for Vss line and Vcc line.
- Connect the power source wiring via a bypass capacitor to the Vss pin and the Vcc pin.

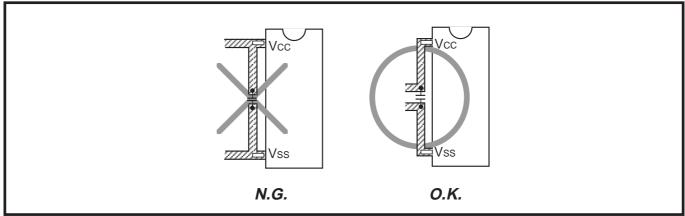


Fig. 3.4.5 Bypass capacitor across the Vss line and the Vcc line

3.4 Countermeasures against noise

3.4.3 Wiring to analog input pins

- Connect an approximately 100 Ω to 1 k Ω resistor to an analog signal line which is connected to an analog input pin in series. Besides, connect the resistor to the microcomputer as close as possible.
- Connect an approximately 1000 pF capacitor across the Vss pin and the analog input pin. Besides, connect the capacitor to the Vss pin as close as possible. Also, connect the capacitor across the analog input pin and the Vss pin at equal length.

Reason

Signals which is input in an analog input pin (such as an A-D converter/comparator input pin) are usually output signals from sensor. The sensor which detects a change of event is installed far from the printed circuit board with a microcomputer, the wiring to an analog input pin is longer necessarily. This long wiring functions as an antenna which feeds noise into the microcomputer, which causes noise to an analog input pin.

If a capacitor between an analog input pin and the Vss pin is grounded at a position far away from the Vss pin, noise on the GND line may enter a microcomputer through the capacitor.

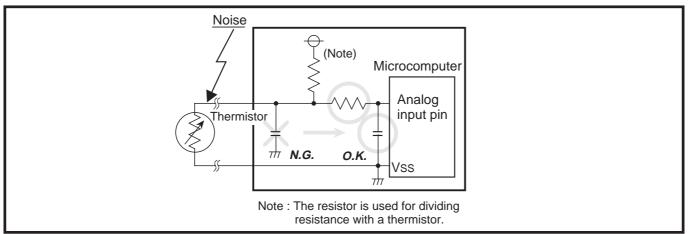


Fig. 3.4.6 Analog signal line and a resistor and a capacitor

3.4.4 Oscillator concerns

Take care to prevent an oscillator that generates clocks for a microcomputer operation from being affected by other signals.

(1) Keeping oscillator away from large current signal lines

Install a microcomputer (and especially an oscillator) as far as possible from signal lines where a current larger than the tolerance of current value flows.

Reason

In the system using a microcomputer, there are signal lines for controlling motors, LEDs, and thermal heads or others. When a large current flows through those signal lines, strong noise occurs because of mutual inductance.

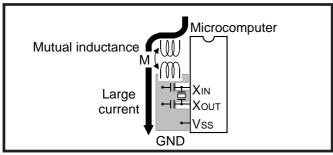


Fig. 3.4.7 Wiring for a large current signal line

(2) Installing oscillator away from signal lines where potential levels change frequently

Install an oscillator and a connecting pattern of an oscillator away from signal lines where potential levels change frequently. Also, do not cross such signal lines over the clock lines or the signal lines which are sensitive to noise.

Reason

Signal lines where potential levels change frequently (such as the CNTR pin signal line) may affect other lines at signal rising edge or falling edge. If such lines cross over a clock line, clock waveforms may be deformed, which causes a microcomputer failure or a program runaway.

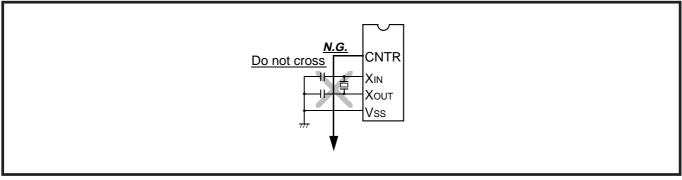


Fig. 3.4.8 Wiring of signal lines where potential levels change frequently

(3) Oscillator protection using Vss pattern

As for a two-sided printed circuit board, print a Vss pattern on the underside (soldering side) of the position (on the component side) where an oscillator is mounted.

Connect the Vss pattern to the microcomputer Vss pin with the shortest possible wiring. Besides, separate this Vss pattern from other Vss patterns.

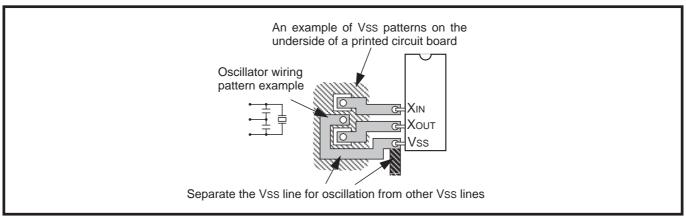


Fig. 3.4.9 Vss pattern on the underside of an oscillator

3.4 Countermeasures against noise

3.4.5 Setup for I/O ports

Setup I/O ports using hardware and software as follows:

<Hardware>

• Connect a resistor of 100 Ω or more to an I/O port in series.

<Software>

- As for an input port, read data several times by a program for checking whether input levels are equal or not.
- As for an output port, since the output data may reverse because of noise, rewrite data to its port latch at fixed periods.
- Rewrite data to direction registers and pull-up control registers at fixed periods.

Note: When a direction register is set for <u>input port</u> again at fixed periods, a several-nanosecond short pulse may be output from this port. If this is undesirable, connect a capacitor to this port to remove the noise pulse.

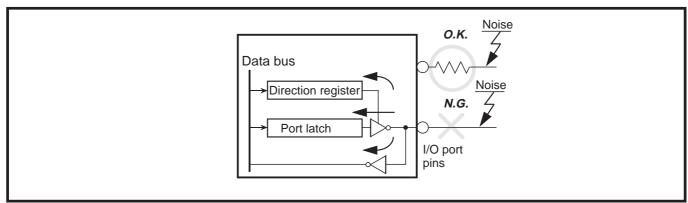


Fig. 3.4.10 Setup for I/O ports

3.4.6 Providing of watchdog timer function by software

If a microcomputer runs away because of noise or others, it can be detected by a software watchdog timer and the microcomputer can be reset to normal operation. This is equal to or more effective than program runaway detection by a hardware watchdog timer. The following shows an example of a watchdog timer provided by software.

In the following example, to reset a microcomputer to normal operation, the main routine detects errors of the interrupt processing routine and the interrupt processing routine detects errors of the main routine. This example assumes that interrupt processing is repeated multiple times in a single main routine processing.

<The main routine>

- Assigns a single byte of RAM to a software watchdog timer (SWDT) and writes the initial value N in the SWDT once at each execution of the main routine. The initial value N should satisfy the following condition:
 - $N+1 \ge$ (Counts of interrupt processing executed in each main routine)
 - As the main routine execution cycle may change because of an interrupt processing or others, the initial value N should have a margin.
- Watches the operation of the interrupt processing routine by comparing the SWDT contents with counts of interrupt processing after the initial value N has been set.
- Detects that the interrupt processing routine has failed and determines to branch to the program initialization routine for recovery processing in the following case:
 If the SWDT contents do not change after interrupt processing.

<The interrupt processing routine>

- Decrements the SWDT contents by 1 at each interrupt processing.
- Determines that the main routine operates normally when the SWDT contents are reset to the initial value N at almost fixed cycles (at the fixed interrupt processing count).
- Detects that the main routine has failed and determines to branch to the program initialization routine for recovery processing in the following case:

 If the SWDT contents are not initialized to the initial value N but continued to degrament and if

If the SWDT contents are not initialized to the initial value N but continued to decrement and if they reach 0 or less.

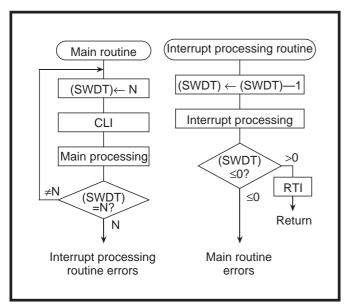


Fig. 3.4.11 Watchdog timer by software

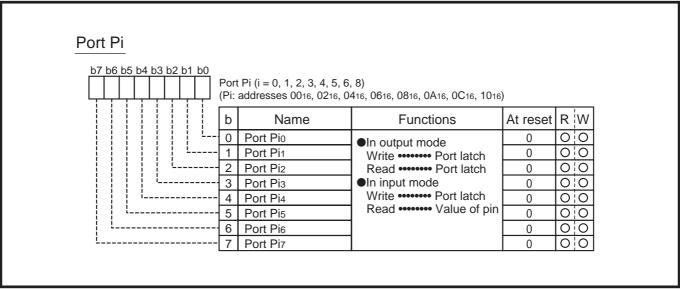


Fig. 3.5.1 Structure of Port Pi

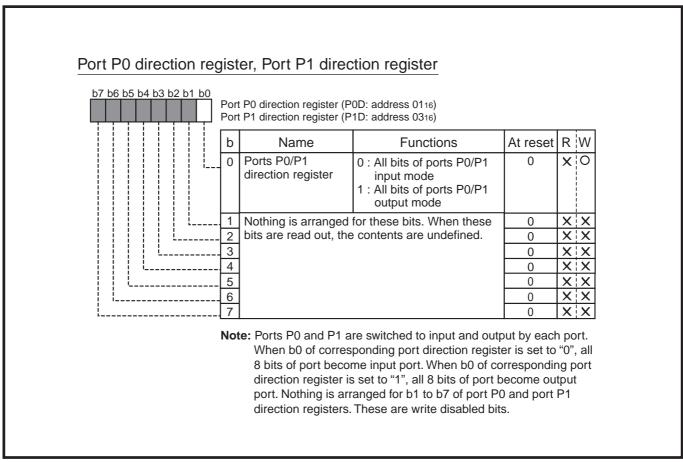


Fig. 3.5.2 Structure of Port P0 direction register and Port P1 direction register

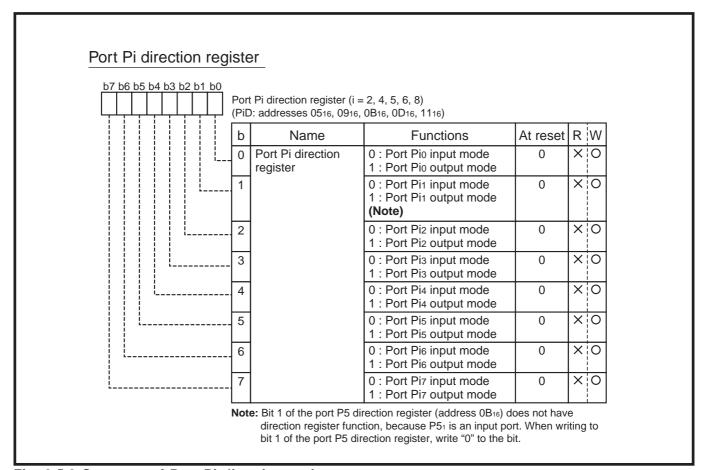


Fig. 3.5.3 Structure of Port Pi direction register

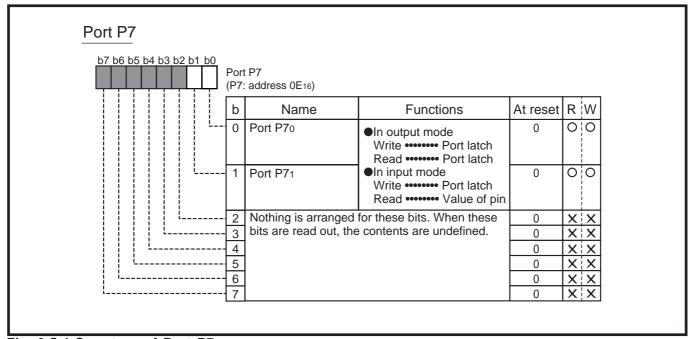


Fig. 3.5.4 Structure of Port P7

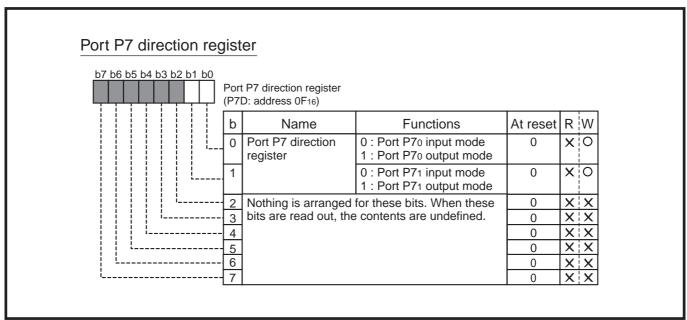


Fig. 3.5.5 Structure of Port P7 direction register

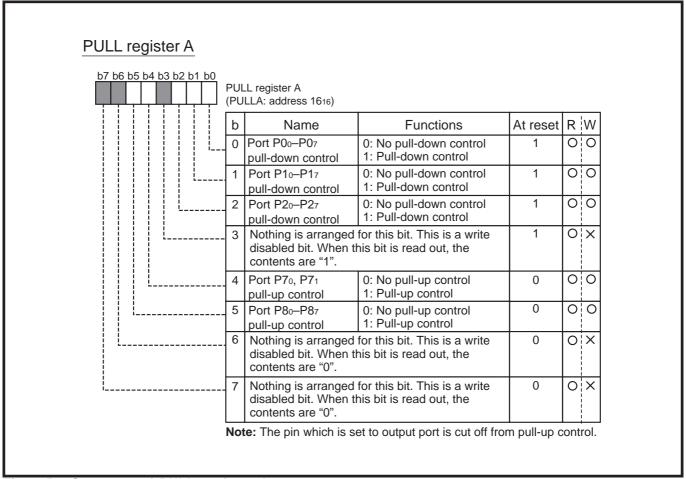


Fig. 3.5.6 Structure of PULL register A

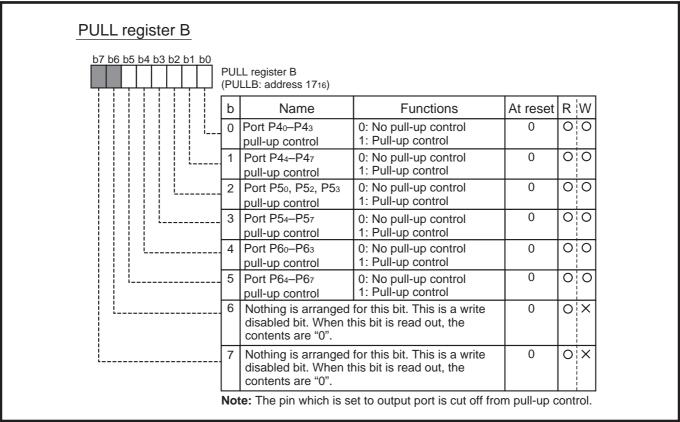


Fig. 3.5.7 Structure of PULL register B

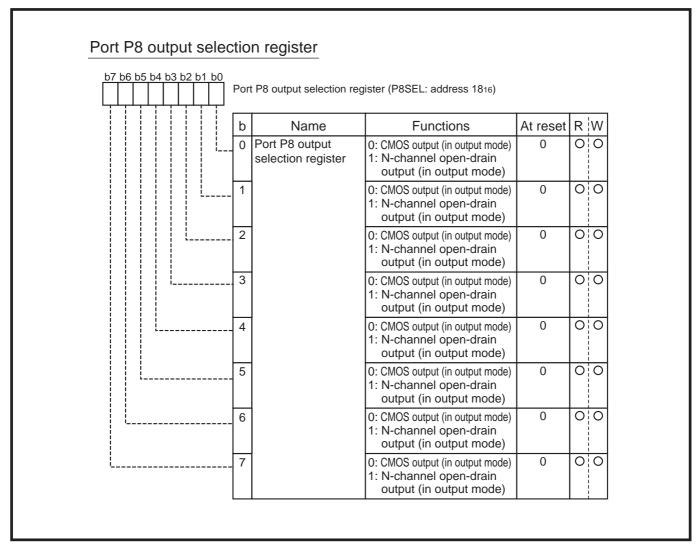


Fig. 3.5.8 Structure of Port P8 output selection register

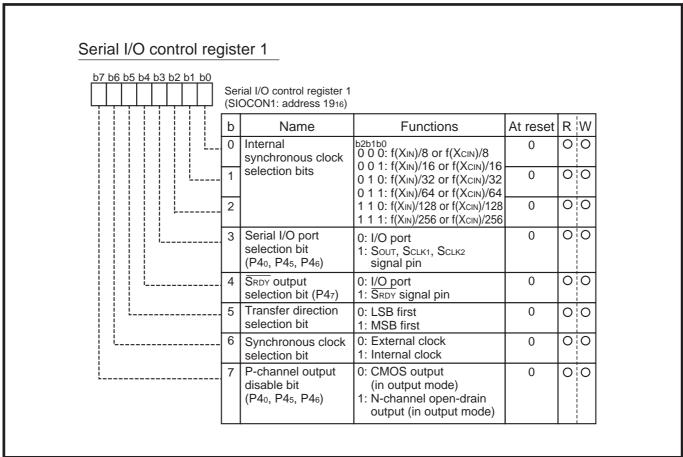


Fig. 3.5.9 Structure of Serial I/O control register 1

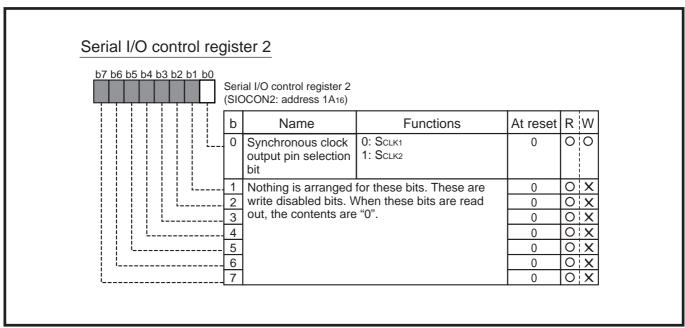


Fig. 3.5.10 Structure of Serial I/O control register 2

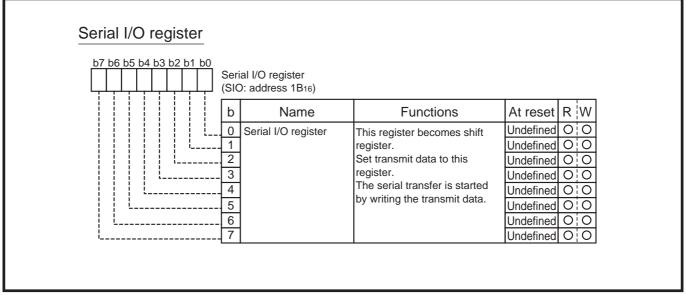


Fig. 3.5.11 Structure of Serial I/O register

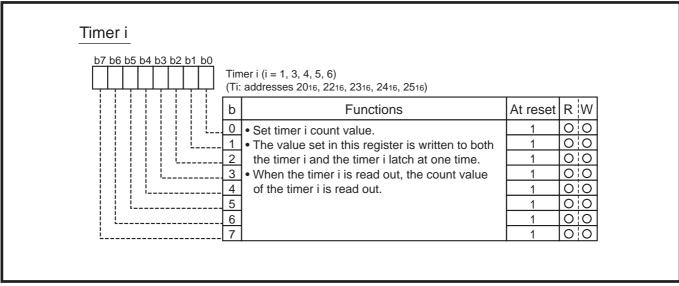


Fig. 3.5.12 Structure of Timer i

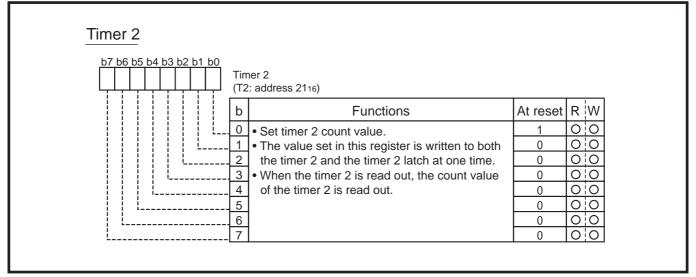


Fig. 3.5.13 Structure of Timer 2

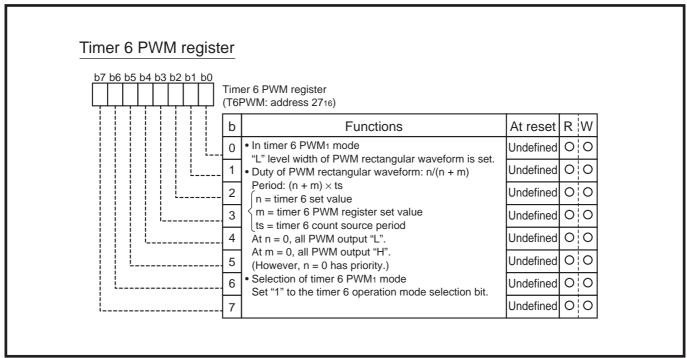


Fig. 3.5.14 Structure of Timer 6 PWM register

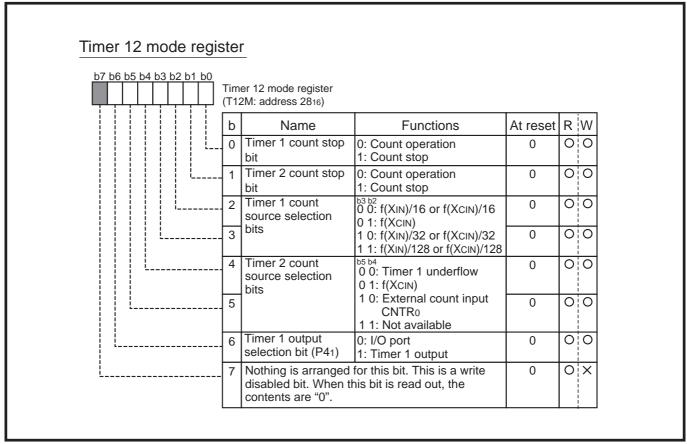


Fig. 3.5.15 Structure of Timer 12 mode register

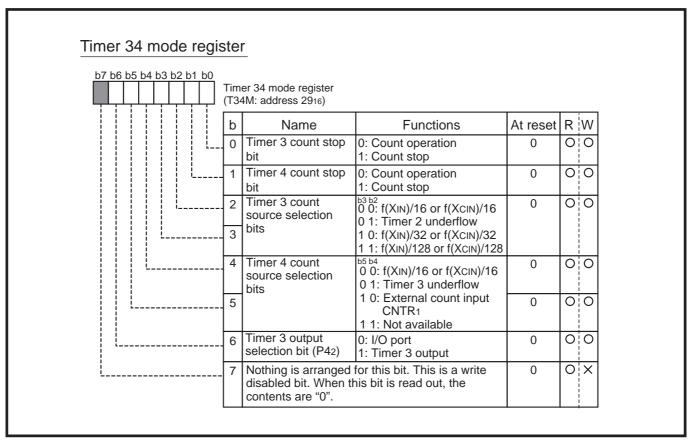


Fig. 3.5.16 Structure of Timer 34 mode register

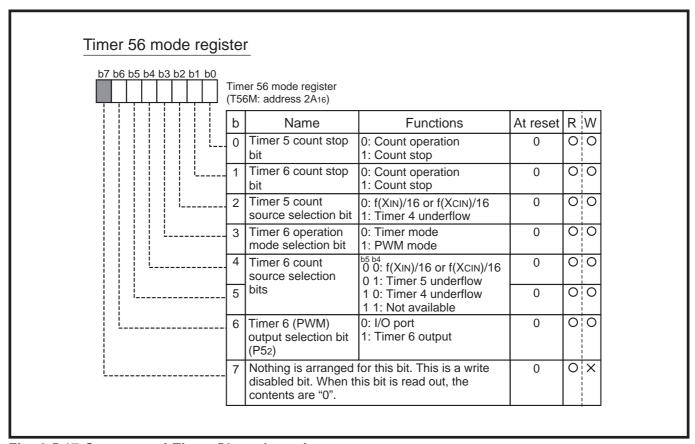


Fig. 3.5.17 Structure of Timer 56 mode register

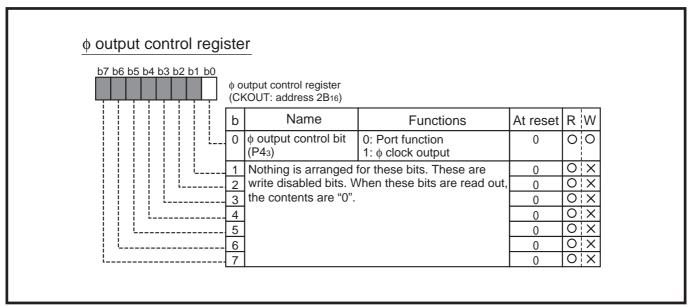


Fig. 3.5.18 Structure of ϕ output control register

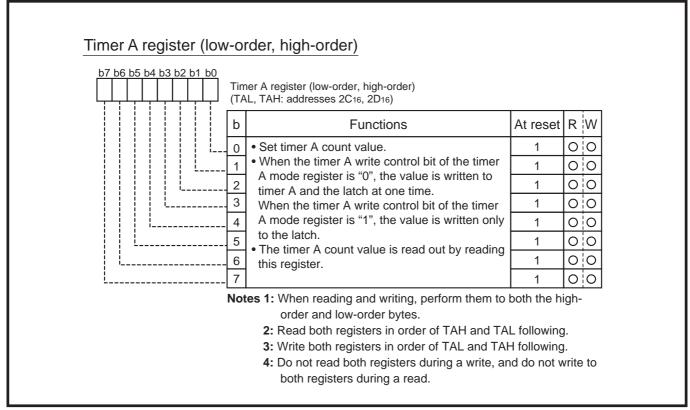


Fig. 3.5.19 Structure of Timer A register (low-order, high-order)

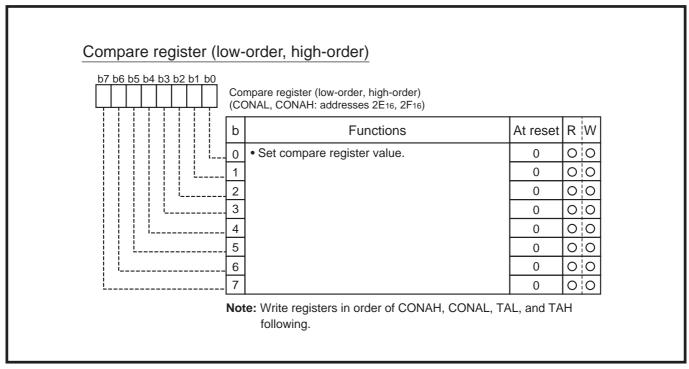


Fig. 3.5.20 Structure of Compare register (low-order, high-order)

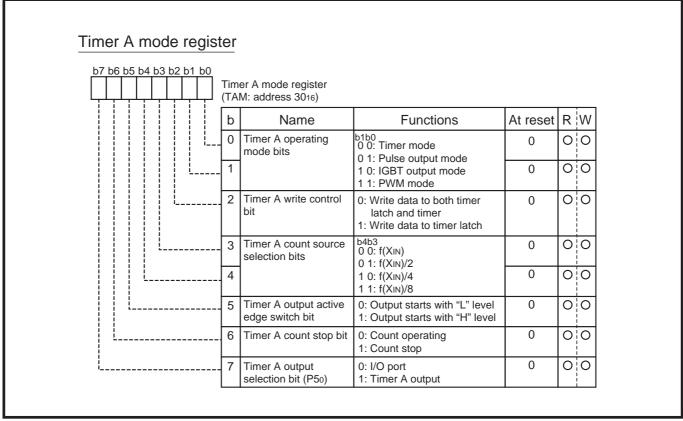


Fig. 3.5.21 Structure of Timer A mode register

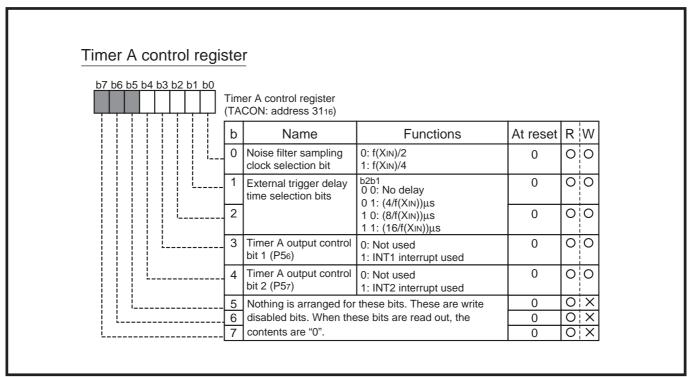


Fig. 3.5.22 Structure of Timer A control register

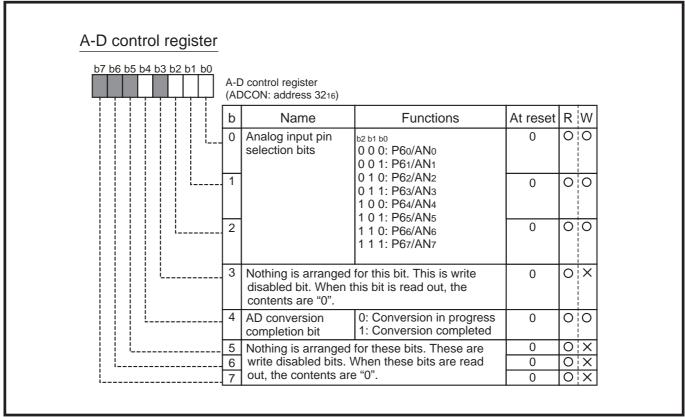


Fig. 3.5.23 Structure of A-D control register

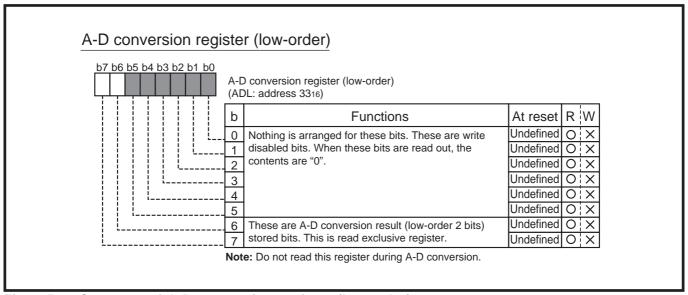


Fig. 3.5.24 Structure of A-D conversion register (low-order)

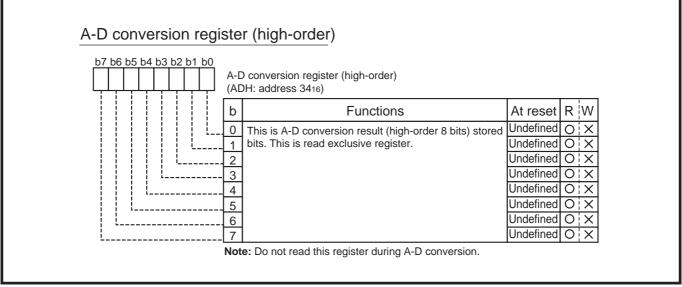


Fig. 3.5.25 Structure of A-D conversion register (high-order)

b7 b6 b5 b4 b3 b2 b1 b0		ment output enable regi G: address 3816)	ster		
	b	Name	Functions	At reset	RW
	0	Segment output enable bit 0	0: I/O ports P2 ₀ –P2 ₃ 1: Segment output SEG ₀ –SEG ₃	0	00
	1	Segment output enable bit 1	0: I/O ports P24–P27 1: Segment output SEG4–SEG7	0	00
	2	Segment output enable bit 2	0: I/O ports P00–P03 1: Segment output SEG8–SEG11	0	00
	3	Segment output enable bit 3	0: I/O ports P04–P07 1: Segment output SEG ₁₂ –SEG ₁₅	0	00
	4	Segment output enable bit 4	0: I/O ports P10–P13 1: Segment output SEG16–SEG19	0	00
	5	Segment output enable bit 5	0: I/O ports P14–P17 1: Segment output SEG20–SEG23	0	00
	6	Segment output enable bit 6	0: Output ports P30–P33 1: Segment output SEG24–SEG27	0	0
L	7	Segment output enable bit 7	0: Output ports P34–P37 1: Segment output SEG28–SEG31	0	00

Fig. 3.5.26 Structure of Segment output enable register

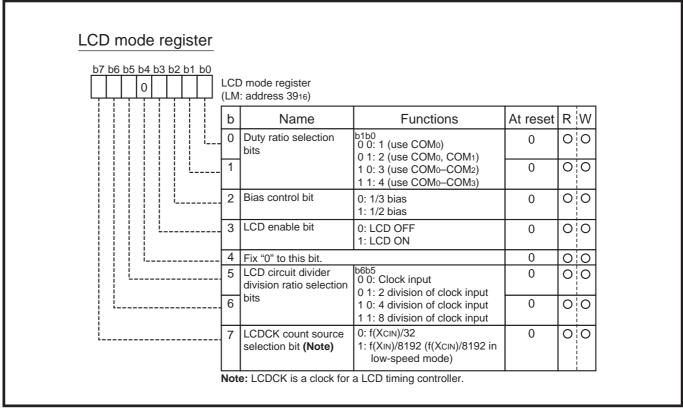


Fig. 3.5.27 Structure of LCD mode register

Interrupt edge selec	tio	n register			
b7 b6 b5 b4 b3 b2 b1 b0		rrupt edge selection reg FEDGE: address 3A16)	ister		
	b	Name	Functions	At reset	RW
	0	INTo interrupt edge selection bit	0: Falling edge active 1: Rising edge active	0	00
	1	INT ₁ interrupt edge selection bit	0: I/O ports P24–P27 1: Segment output SEG4–SEG7	0	00
	2	INT2 interrupt edge selection bit	0: I/O ports P0 ₀ –P0 ₃ 1: Segment output SEG ₈ –SEG ₁₁	0	00
		Nothing is arranged for these bits. These are write disabled bits. When these bits are read out, the contents are "0".		0	OX
				0	O¦X
				0	O¦X
ļ	6	CNTR ₀ active edge switch bit	O: Falling edge active, rising edge count 1: Rising edge active, falling edge count	0	0 0
<u> </u>	7	CNTR ₁ active edge switch bit	Falling edge active, rising edge count Rising edge active, falling edge count	0	00

Fig. 3.5.28 Structure of Interrupt edge selection register

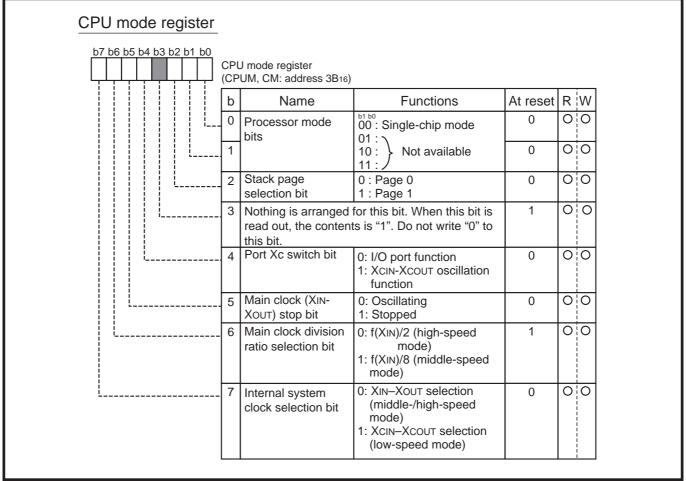


Fig. 3.5.29 Structure of CPU mode register

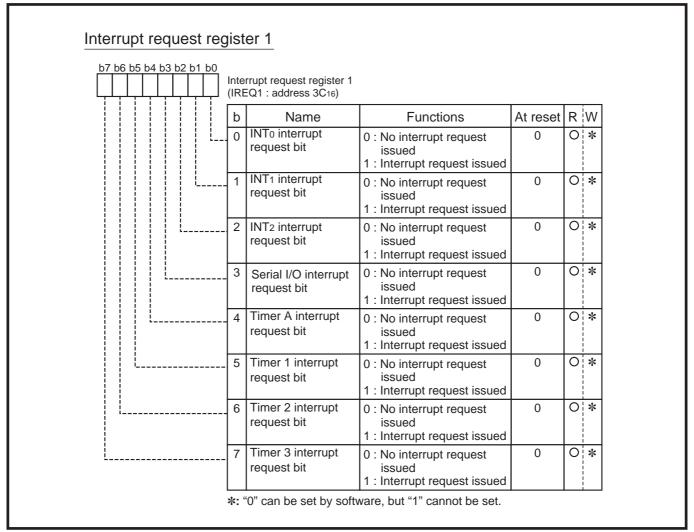


Fig. 3.5.30 Structure of Interrupt request register 1

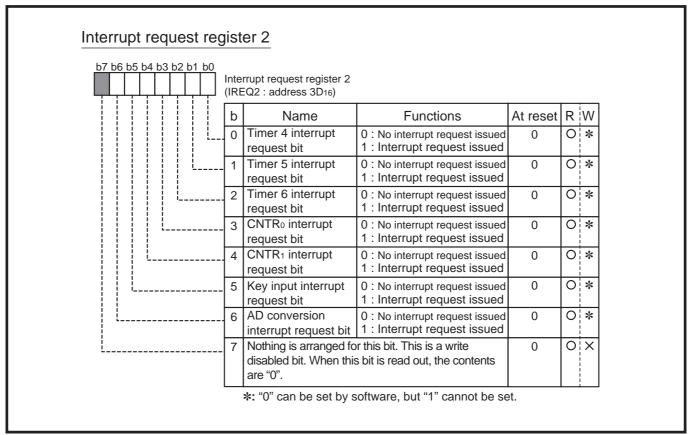


Fig. 3.5.31 Structure of Interrupt request register 2

Interrupt control regi	Sie	<u> </u>			
		rrupt control register 1 DN1 : address 3E ₁₆)			
	b	Name	Functions	At reset	RW
	0	INTo interrupt enable bit	0 : Interrupt disabled 1 : Interrupt enabled	0	00
	1	INT1 interrupt enable bit	0 : Interrupt disabled 1 : Interrupt enabled	0	00
	2	INT2 interrupt enable bit	0 : Interrupt disabled 1 : Interrupt enabled	0	00
	3	Serial I/O interrupt enable bit	0 : Interrupt disabled 1 : Interrupt enabled	0	0 0
	4	Timer A interrupt enable bit	0 : Interrupt disabled 1 : Interrupt enabled	0	00
	5	Timer 1 interrupt enable bit	0 : Interrupt disabled 1 : Interrupt enabled	0	00
	6	Timer 2 interrupt enable bit	0 : Interrupt disabled 1 : Interrupt enabled	0	00
<u> </u>	7	Timer 3 interrupt enable bit	0 : Interrupt disabled 1 : Interrupt enabled	0	00

Fig. 3.5.32 Structure of Interrupt control register 1

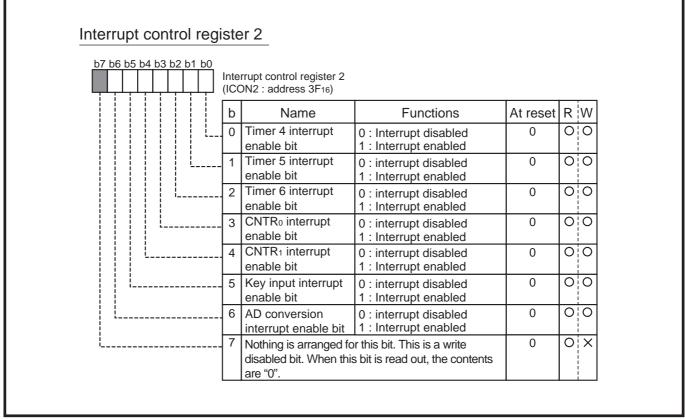


Fig. 3.5.33 Structure of Interrupt control register 2

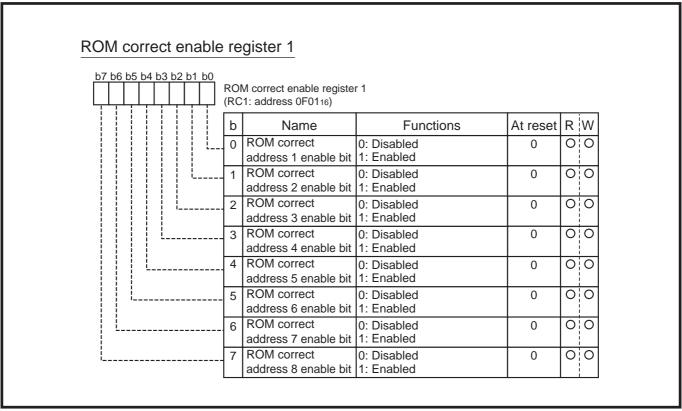


Fig. 3.5.34 Structure of ROM correct enable register 1

APPENDIX

3.6 Mask ROM confirmation form

3.6 Mask ROM confirmation form

GZZ-SH56-24B<91A0>

Mask ROM number

740 FAMILY MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M38C34M6AXXXFP MITSUBISHI ELECTRIC

	Date:	
eipt	Section head signature	Supervisor signature
Receipt		

Note: Please fill in all items marked **.

		Company		TEL		ΦΦ	Submitted by	Supervisor
*	Customer	name		()	uanc natur		
		Date issued	Date:			Iss sigi		

* 1. Confirmation

Three EPROMs are required for each pattern if this order is performed by EPROMs. One floppy disk is required for each pattern if this order is performed by a floppy disk.

Microcomputer name: M38C34M6AXXXF

☐ Ordering by EPROMs

Specify the type of EPROMs submitted.

If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based on this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differs from this data. Thus, extreme care must be taken to verify the data in the submitted EPROMs.

Checksum code for entire EPROM (hexadecimal notation)

EPROM type (indicate the type used)

	po (maioato ti	,	po dood)	
	27256			27512
EPROM ac	ddress		EPROM ac	ddress
000016	Product name ASCII code :		000016	Product name ASCII code :
000F16	'M38C34M6A'		000F16	'M38C34M6A'
001016			001016	
207F16			A07F16	
208016	data		A08016	data
7FFD16	ROM (24K-130) bytes		FFFD ₁₆	ROM (24K-130) bytes
7FFE16 7FFF16			FFFE16 FFFF16	

In the address space of the microcomputer, the internal ROM area is from address A08016 to FFFD16. The reset vector is stored in addresses FFFC16 and FFFD16.

- (1) Set the data in the unused area (the shaded area of the diagram) to "FF16".
- (2) The ASCII codes of the product name "M38C34M6A" must be entered in addresses 000016 to 000816. And set the data "FF16" in addresses 000916 to 000F16. The ASCII codes and addresses are listed to the right in hexadecimal notation.

Address		Address	
000016	'M' = 4D16	000816	'A' = 4116
000116	'3' = 3316	000916	FF16
000216	'8' = 3816	000A16	FF16
000316	'C' = 4316	000B16	FF16
000416	'3' = 3316	000C16	FF16
000516	'4' = 34 ₁₆	000D16	FF16
000616	'M' = 4D16	000E16	FF16
000716	'6' = 3616	000F16	FF16

(1/2)

GZZ-SH56-24B<91A0>

–	
Mask ROM number	

740 FAMILY MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M38C34M6AXXXFP MITSUBISHI ELECTRIC

We recommend the use of the following pseudo-command to set the start address of the assembler source program because ASCII codes of the product name are written to addresses 000016 to 000816 of EPROM.

EPROM type	27256	27512
The pseudo-command	*= △\$8000 .BYTE △'M38C34M6A'	*= △\$0000 .BYTE △'M38C34M6A'

Note: If the name of the product written to the EPROMs does not match the name of the mask confirmation form, the ROM will not be processed. Ordering by floppy disk We will produce masks based on the mask files generated by the mask file generating utility. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differs from this mask file. Thus, extreme care must be taken to verify the mask file in the submitted floppy disk. The submitted floppy disk must be 3.5-inch 2HD type and DOS/V format. And the number of the mask files must be 1 in one floppy disk. File code (hexadecimal notation) Mask file name .MSK (equal or less than eight characters) * 2. Mark specification Mark specification must be submitted using the correct form for the package being ordered. Fill out the appropriate mark specification form (80P6N for M38C34M6AXXXFP) and attach it to the mask ROM confirmation form. * 3. Usage conditions Please answer the following questions about usage for use in our product inspection: (1) How will you use the XIN-XOUT oscillator? Ceramic resonator Quartz crystal ☐ Other (External clock input) f(XIN) =At what frequency? MHz (2) Which function will you use the pins P70/XCIN and P71/XCOUT as P70 and P71, or XCIN and XCOUT? Ports P70 and P71 function ☐ XCIN and XCOUT function (external resonator) # 4. Comments

(2/2)

APPENDIX

3.6 Mask ROM confirmation form

GZZ-SH56-25B<91A0>

Mask ROM number

740 FAMILY MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M38C34M6MXXXFP MITSUBISHI ELECTRIC

	Date:	
Receipt	Section head signature	Supervisor signature

Note: Please fill in all items marked *.

		Company		TEL		(h, (l)	Submitted by	Supervisor
*	Customer	name		()	uance nature		
		Date issued	Date:			Issi Sigis		

* 1. Confirmation

Three EPROMs are required for each pattern if this order is performed by EPROMs. One floppy disk is required for each pattern if this order is performed by a floppy disk.

Microcomputer name:	☐ M38C34M6MXXXFF
Microcombuler name	

☐ Ordering by EPROMs

Specify the type of EPROMs submitted.

If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based on this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differs from this data. Thus, extreme care must be taken to verify the data in the submitted EPROMs.

Checksum code for entire EPROM

	1	ı	
	1	ı	
	1	ı	
	1	ı	
	1	ı	
	1	ı	

(hexadecimal notation)

EPROM type (indicate the type used)

	□ 27256			27512	
EPROM ac	ddress		EPROM ac	ddress	
000016	Product name ASCII code :		000016	Product name ASCII code :	
000F16	'M38C34M6M'		000F16	'M38C34M6M'	
001016			001016		
207F16			A07F16		
208016	data		A08016	data	
7FFD16	ROM (24K-130) bytes		FFFD16	ROM (24K-130) bytes	
7FFE16 7FFF16			FFFE16 FFFF16		

In the address space of the microcomputer, the internal ROM area is from address A08016 to FFFD16. The reset vector is stored in addresses FFFC16 and FFFD16.

- (1) Set the data in the unused area (the shaded area of the diagram) to "FF16".
- (2) The ASCII codes of the product name "M38C34M6M" must be entered in addresses 000016 to 000816. And set the data "FF16" in addresses 000916 to 000F16. The ASCII codes and addresses are listed to the right in hexadecimal notation.

Address	
000016	'M' = 4D16
000116	'3' = 3316
000216	'8' = 3816
000316	'C' = 4316
000416	'3' = 3316
000516	'4' = 3416
000616	'M' = 4D16
000716	'6' = 3616

Address	
000816	'M' = 4D16
000916	FF16
000A16	FF16
000B16	FF16
000C16	FF16
000D16	FF16
000E16	FF16
000F16	FF16

(1/2)

GZZ-	SH	56-	25R	-91	Δſ	۱,

Mask ROM number	

740 FAMILY MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M38C34M6MXXXFP MITSUBISHI ELECTRIC

We recommend the use of the following pseudo-command to set the start address of the assembler source program because ASCII codes of the product name are written to addresses 000016 to 000816 of EPROM.

EPROM type	27256	27512
The pseudo-command	*= △\$8000 .BYTE △'M38C34M6M'	*= △\$0000 .BYTE △'M38C34M6M'

Note: If the name of the product written to the EPROMs does not match the name of the mask confirmation form, the ROM will not be processed. Ordering by floppy disk We will produce masks based on the mask files generated by the mask file generating utility. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differs from this mask file. Thus, extreme care must be taken to verify the mask file in the submitted floppy disk. The submitted floppy disk must be 3.5-inch 2HD type and DOS/V format. And the number of the mask files must be 1 in one floppy disk. File code (hexadecimal notation) Mask file name .MSK (equal or less than eight characters) * 2. Mark specification Mark specification must be submitted using the correct form for the package being ordered. Fill out the appropriate mark specification form (80P6N for M38C34M6MXXXFP) and attach it to the mask ROM confirmation form. * 3. Usage conditions Please answer the following questions about usage for use in our product inspection: (1) How will you use the XIN-XOUT oscillator? Quartz crystal Ceramic resonator ☐ Other (External clock input) f(XIN) =At what frequency? MHz (2) Which function will you use the pins P70/XCIN and P71/XCOUT as P70 and P71, or XCIN and XCOUT? □ XCIN and XCOUT function (external resonator) Ports P70 and P71 function # 4. Comments

(2/2)

3.7 ROM programming confirmation form

3.7 ROM programming confirmation form

GZZ-SH56-29B<91A0>

ROM number

740 FAMILY WRITING TO PROM CONFIRMATION FORM SINGLE-CHIP 8-BIT MICROCOMPUTER M38C37ECAXXXFP MITSUBISHI ELECTRIC

	Date:	
eipt	Section head signature	Supervisor signature
Receipt		

Note: Please fill in all items marked *.

		Company		TEL		ΦΦ	Submitted by	Supervisor
*	Customer	name		()	uanc natur		
		Date issued	Date:			Issi sigi		

* 1. Confirmation

Three EPROMs are required for each pattern if this order is performed by EPROMs. One floppy disk is required for each pattern if this order is performed by a floppy disk.

☐ Ordering by EPROMs

If at least two of the three sets of EPROMs submitted contain identical data, we will produce writing to PROM based on this data. We shall assume the responsibility for errors only if the written PROM data on the products we produce differs from this data. Thus, extreme care must be taken to verify the data in the submitted EPROMs.

EPROM address

Checksum code for entire EPROM

1		
1		
1		

(hexadecimal notation)

EPROM type (indicate the type used)

	· · · · · · · · · · · · · · · · · · ·
	27512
EPROM addr	ess
000016	Product name
000F ₁₆	ASCII code : 'M38C37ECA'
001016	
407F ₁₆	[/////
408016	Data
	ROM 48K-130 bytes
FFFD16 FFFE16 FFFF16	

In the address space of the microcomputer, the internal ROM area is from address 408016 to FFFD16. The reset vector is stored in addresses FFFC16 and FFFD16.

- (1) Set the data in the unused area (the shaded area of the diagram) to "FF16".
- (2) The ASCII codes of the product name "M38C37ECA" must be entered in addresses 000016 to 000816. And set the data "FF16" in addresses 000916 to 000F16. The ASCII codes and addresses are listed to the right in hexadecimal notation.

Address 000016 $M' = 4D_{16}$ 000116 '3' = 3316000216 **'8'** = 38₁₆ 000316 'C' = 4316 000416 '3' = 3316000516 $'7' = 37_{16}$ 000616 'E' = 4516 'C' = 43₁₆ 000716

Address	
000816	' A ' =41 ₁₆
000916	FF ₁₆
000A ₁₆	FF ₁₆
000B ₁₆	FF ₁₆
000C ₁₆	FF ₁₆
000D ₁₆	FF ₁₆
000E ₁₆	FF ₁₆
000F ₁₆	FF ₁₆

38C3 Group User's Manual

(1/2)

3.7 ROM programming confirmation form

GZZ-SH56-29B<91A0>	ROM number	

740 FAMILY WRITING TO PROM CONFIRMATION FORM SINGLE-CHIP 8-BIT MICROCOMPUTER M38C37ECAXXXFP MITSUBISHI ELECTRIC

We recommend the use of the following pseudo-command to set the start address of the assembler source program because ASCII codes of the product name are written to addresses 000016 to 000816 of EPROM.

EPROM type	27512
The pseudo-command	*= △\$0000 .BYTE △'M38C37ECA'

Note: If the name of the product written to the EPROMs does not match the name of the writing to PROM confirmation form, the ROM will not be processed. Ordering by floppy disk We will produce writing to PROM based on the mask files generated by the mask file generating utility. We shall assume the responsibility for errors only if the written PROM data on the products we produce differs from this mask file. Thus, extreme care must be taken to verify the mask file in the submitted floppy disk. The submitted floppy disk must be 3.5-inch 2HD type and DOS/V format. And the number of the mask files must be 1 in one floppy disk. File code (hexadecimal notation) Mask file name .MSK (equal or less than eight characters) * 2. Mark specification Mark specification must be submitted using the correct form for the package being ordered. Fill out the appropriate 80P6N mark specification form and attach it to the writing to PROM confirmation form. * 3. Usage conditions Please answer the following questions about usage for use in our product inspection: (1) How will you use the XIN-XOUT oscillator? ☐ Ceramic resonator Quartz crystal ☐ External clock input Other () f(XIN) = MHz At what frequency? (2) Which function will you use the pins P70/XCIN and P71/XCOUT as P70 and P71, or XCIN and XCOUT? Ports P70 and P71 function □ XCIN and XCOUT function (external resonator) # 4. Comments

(2/2)

APPENDIX

3.7 ROM programming confirmation form

GZZ-SH56-30B<91A0>

ROM number

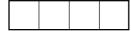
740 FAMILY WRITING TO PROM CONFIRMATION FORM SINGLE-CHIP 8-BIT MICROCOMPUTER M38C37ECMXXXFP MITSUBISHI ELECTRIC

	Date:	
eipt	Section head signature	Supervisor signature
Receipt		

Note: Please fill in all items marked *.

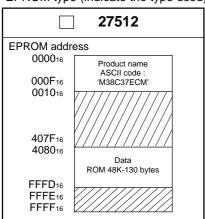
		Company		TEL		ө ө	Submitted by	Supervisor
*	Customer	name		()	uance nature		
		Date issued	Date:			Issi Sigis		

* 1. Confirmation


Three EPROMs are required for each pattern if this order is performed by EPROMs. One floppy disk is required for each pattern if this order is performed by a floppy disk.

Ordering by EPROMs

If at least two of the three sets of EPROMs submitted contain identical data, we will produce writing to PROM based on this data. We shall assume the responsibility for errors only if the written PROM data on the products we produce differs from this data. Thus, extreme care must be taken to verify the data in the submitted EPROMs.


EPROM address

Checksum code for entire EPROM

(hexadecimal notation)

EPROM type (indicate the type used)

In the address space of the microcomputer, the internal ROM area is from address 408016 to FFFD16. The reset vector is stored in addresses FFFC16 and FFFD16.

- (1) Set the data in the unused area (the shaded area of the diagram) to "FF16".
- (2) The ASCII codes of the product name "M38C37ECM" must be entered in addresses 000016 to 000816. And set the data "FF16" in addresses 000916 to 000F16. The ASCII codes and addresses are listed to the right in hexadecimal notation.

Address	
000016	'M' = 4D ₁₆
000116	'3' = 33 ₁₆
000216	'8' = 38 ₁₆
000316	'C' = 43 ₁₆
000416	'3' = 33 ₁₆
000516	'7' = 37 16
000616	'E' = 45 ₁₆
000716	'C' = 43 ₁₆

Address	
000816	' M ' =4D ₁₆
000916	FF ₁₆
000A ₁₆	FF ₁₆
000B ₁₆	FF ₁₆
000C ₁₆	FF ₁₆
000D ₁₆	FF ₁₆
000E ₁₆	FF ₁₆
000F ₁₆	FF ₁₆

(1/2)

3.7 ROM programming confirmation form

GZZ-SH56-30B<91A0>	ROM number	

740 FAMILY WRITING TO PROM CONFIRMATION FORM SINGLE-CHIP 8-BIT MICROCOMPUTER M38C37ECMXXXFP MITSUBISHI ELECTRIC

We recommend the use of the following pseudo-command to set the start address of the assembler source program because ASCII codes of the product name are written to addresses 000016 to 000816 of EPROM.

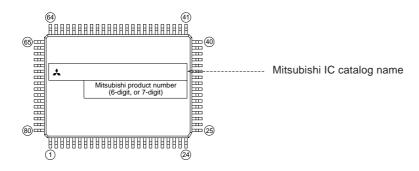
EPROM type	27512
The pseudo-command	*= △\$0000 .BYTE △'M38C37ECM'

Note: If the name of the product written to the EPROMs does not match the name of the writing to PROM confirmation form, the ROM will not be processed. Ordering by floppy disk We will produce writing to PROM based on the mask files generated by the mask file generating utility. We shall assume the responsibility for errors only if the written PROM data on the products we produce differs from this mask file. Thus, extreme care must be taken to verify the mask file in the submitted floppy disk. The submitted floppy disk must be 3.5-inch 2HD type and DOS/V format. And the number of the mask files must be 1 in one floppy disk. File code (hexadecimal notation) Mask file name .MSK (equal or less than eight characters) * 2. Mark specification Mark specification must be submitted using the correct form for the package being ordered. Fill out the appropriate 80P6N mark specification form and attach it to the writing to PROM confirmation form. * 3. Usage conditions Please answer the following questions about usage for use in our product inspection: (1) How will you use the XIN-XOUT oscillator? ☐ Ceramic resonator Quartz crystal ☐ External clock input Other () f(XIN) = MHz At what frequency? (2) Which function will you use the pins P70/XCIN and P71/XCOUT as P70 and P71, or XCIN and XCOUT? Ports P70 and P71 function □ XCIN and XCOUT function (external resonator)

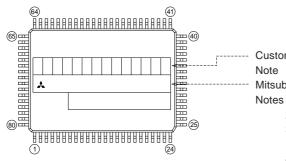
(2/2)

4. Comments

3.8 Mark specification form


3.8 Mark specification form

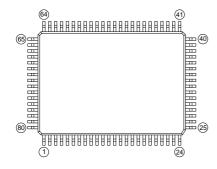
80P6N (80-PIN QFP) MARK SPECIFICATION FORM


-	
Mitsubishi IC catalog name	

Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).

A. Standard Mitsubishi Mark

B. Customer's Parts Number + Mitsubishi IC Catalog Name


Customer's Parts Number

Note : The fonts and size of characters are standard Mitsubishi type. Mitsubishi IC catalog name

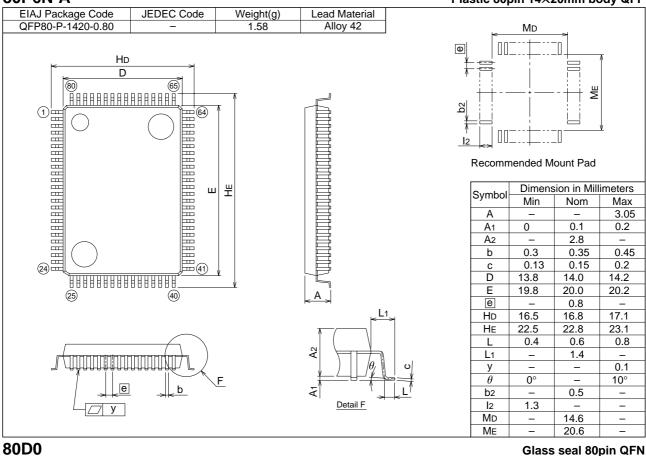
Notes 1: The mark field should be written right aligned.

- 2: The fonts and size of characters are standard Mitsubishi type.
- 3 : Customer's parts number can be up to 14 alphanumeric characters for capital letters, hyphens, commas, periods and so on.
- 4 : If the Mitsubishi logo 🛦 is not required, check the box below.
 - ♣ Mitsubishi logo is not required

C. Special Mark Required

Notes1: If special mark is to be printed, indicate the desired layout of the mark in the left figure. The layout will be duplicated technically as close as possible.

Mitsubishi product number (6-digit, or 7-digit) and Mask ROM number (3-digit) are always marked for sorting the products.


2 : If special character fonts (e,g., customer's trade mark logo) must be used in Special Mark, check the box below.

For the new special character fonts, a clean font original (ideally logo drawing) must be submitted.

Special character fonts required

3.9 Package outline 80P6N-A

Plastic 80pin 14×20mm body QFP

EIAJ Package Code JEDEC Code Weight(g) 21.0±0.2 3.32MAX 18.4±0.15 1.78TYP 0.8TYP 0.6TYP 0.8TYP 12.0±0.15 0.8TYP 15.6±0.2 1.2TYP 0.5TYP ²⁴1.2TYP 1 INDEX

3.10 Machine instructions

						_				Addre	essi	ng r	mod	е	_			_		
Symbol	Function	Details		IMP	1		IMM	l		Α		BI	Γ, Α	, R		ZP		ВІТ	, ZF), F
			OP	n	#	ОР	n	#	OP	n	#	OP	n	#	OP	n	#	OP	n	#
ADC (Note 1) (Note 5)	When T = 0 $A \leftarrow A + M + C$ When T = 1 $M(X) \leftarrow M(X) + M + C$	When T = 0, this instruction adds the contents M, C, and A; and stores the results in A and C. When T = 1, this instruction adds the contents of M(X), M and C; and stores the results in M(X) and C. When T=1, the contents of A remain unchanged, but the contents of status flags are changed. $M(X) \ represents the contents of memory where is indicated by X.$				69	2	2							65	3	2			
AND (Note 1)	When T = 0 $A \leftarrow A \land M$ When T = 1 $M(X) \leftarrow M(X) \land M$	When T = 0, this instruction transfers the contents of A and M to the ALU which performs a bit-wise AND operation and stores the result back in A. When T = 1, this instruction transfers the contents M(X) and M to the ALU which performs a bit-wise AND operation and stores the results back in M(X). When T = 1, the contents of A remain unchanged, but status flags are changed. M(X) represents the contents of memory where is indicated by X.				29	2	2							25	3	2			
ASL	7 0 □ ← 0	This instruction shifts the content of A or M by one bit to the left, with bit 0 always being set to 0 and bit 7 of A or M always being contained in C.							0А	2	1				06	5	2			
BBC (Note 4)	Ai or Mi = 0?	This instruction tests the designated bit i of M or A and takes a branch if the bit is 0. The branch address is specified by a relative address. If the bit is 1, next instruction is executed.										1 <u>,</u> 3 20i	4	2				1,7 20i	5	3
BBS (Note 4)	Ai or Mi = 1?	This instruction tests the designated bit i of the M or A and takes a branch if the bit is 1. The branch address is specified by a relative address. If the bit is 0, next instruction is executed.										0 <u>3</u> 20i	4	2				0 ₄ 7 20i	5	;
BCC (Note 4)	C = 0?	This instruction takes a branch to the appointed address if C is 0. The branch address is specified by a relative address. If C is 1, the next instruction is executed.																		
BCS (Note 4)	C = 1?	This instruction takes a branch to the appointed address if C is 1. The branch address is specified by a relative address. If C is 0, the next instruction is executed.																		
BEQ (Note 4)	Z = 1?	This instruction takes a branch to the appointed address when Z is 1. The branch address is specified by a relative address. If Z is 0, the next instruction is executed.																		
BIT	AAM	This instruction takes a bit-wise logical AND of A and M contents; however, the contents of A and M are not modified. The contents of N, V, Z are changed, but the contents of A, M remain unchanged.													24	3	2			
BMI (Note 4)	N = 1?	This instruction takes a branch to the appointed address when N is 1. The branch address is specified by a relative address. If N is 0, the next instruction is executed.																		
BNE (Note 4)	Z = 0?	This instruction takes a branch to the appointed address if Z is 0. The branch address is specified by a relative address. If Z is 1, the next instruction is executed.																		

															Ad	dres	sing	g mo	ode															F	roc	esso	or st	atus	reg	jiste	er
Z	ΈP, Ι	X		ZF	P, Y	,		ABS	3	A	BS,	Х	А	BS,	Υ		IND		ZF	P, IN	ID.	II	ND,	X	IN	۱D,	Υ		REL			SP		7	6	5	4	3	2	1	0
OP	n	#	+	\neg			OP	n	#	OP	n	#	ОР	n	#	OP	n	#	OP	n	#	OP	n	#	OP	n	#	OP	n	#	OP	n	#	N	V	Т	В	D	ı	Z	С
75	4	2					6D	4	3	7D	5	3	79	5	3							61	6	2	71	6	2							N	V	•	•	•	•	Z	С
35	4	2					2D	4	3	3D	5	3	39	5	3							21	6	2	31	6	2							N	•	•	•	•	•	Z	•
16	6	2					0E	6	3	1E	7	3																						N	•	•	•	•	•	Z	С
																																		•	•	•	•	•	•	•	•
																												90	2	2				•	•	•	•	•	•		•
																												ВО		2				•	•	•	•	•	•	•	•
																												F0	2	2				•	•	•	•	•	•	•	•
							2C	1	3																									Mz	M6	•	•	•	•	Z	•
								-	3																									11/1/	IVIO	-	-		-		
																												30		2				•	•	•	•	•	•	•	•
																												D0	2	2				•	•	•	•	•	•	•	•

3-68 38C3 Group User's Manual 3-69

									-	ddr	ess	ing	mod	le	_					
Symbol	Function	Details		IMP			IMN	_		Α		E	BIT,	_		ZP		ВІ	IT, Z	P.
			OP	n	#	OF	n	#	OP	n	#	OF	n	#	OP	n	#	OP	n	#
BPL (Note 4)	N = 0?	This instruction takes a branch to the appointed address if N is 0. The branch address is specified by a relative address. If N is 1, the next instruction is executed.																		
BRA	PC ← PC ± offset	This instruction branches to the appointed address. The branch address is specified by a relative address.																		
BRK	$\begin{split} B \leftarrow 1 \\ (PC) \leftarrow (PC) + 2 \\ M(S) \leftarrow PCH \\ S \leftarrow S - 1 \\ M(S) \leftarrow PCL \\ S \leftarrow S - 1 \\ M(S) \leftarrow PS \\ S \leftarrow S - 1 \\ \leftarrow ADL \\ \rightarrow CH \leftarrow ADH \end{split}$	When the BRK instruction is executed, the CPU pushes the current PC contents onto the stack. The BADRS designated in the interrupt vector table is stored into the PC.	00	7	1															
BVC (Note 4)	V = 0?	This instruction takes a branch to the appointed address if V is 0. The branch address is specified by a relative address. If V is 1, the next instruction is executed.																		
BVS (Note 4)	V = 1?	This instruction takes a branch to the appointed address when V is 1. The branch address is specified by a relative address. When V is 0, the next instruction is executed.																		
CLB	Ai or Mi ← 0	This instruction clears the designated bit i of A or M.										1В 20і	2	1				1F 20i	5	2
CLC	C ← 0	This instruction clears C.	18	2	1															
CLD	D ← 0	This instruction clears D.	D8	2	1															
CLI	I ← 0	This instruction clears I.	58	2	1															
CLT	T ← 0	This instruction clears T.	12	2	1															
CLV	V ← 0	This instruction clears V.	B8	2	1															
CMP (Note 3)	When T = 0 A - M When T = 1 M(X) - M	When T = 0, this instruction subtracts the contents of M from the contents of A. The result is not stored and the contents of A or M are not modified. When T = 1, the CMP subtracts the contents of M from the contents of M(X). The result is not stored and the contents of X, M, and A are not modified. M(X) represents the contents of memory where is indicated by X.				C9	2	2							C5	3	2			
COM	$M \leftarrow \overline{M}$	This instruction takes the one's complement of the contents of M and stores the result in M.													44	5	2			
CPX	X – M	This instruction subtracts the contents of M from the contents of X. The result is not stored and the contents of X and M are not modified.				E0	2	2							E4	3	2			
CPY	Y – M	This instruction subtracts the contents of M from the contents of Y. The result is not stored and the contents of Y and M are not modified.				C0	2	2							C4	3	2			
DEC	A ← A − 1 or M ← M − 1	This instruction subtracts 1 from the contents of A or M.							1A	2	1				C6	5	2			

														Ad	dres	sin	g m	ode															F	roc	esso	or st	atus	reg	giste	;r
Z	ZP,)	K	Z	ΈΡ, `	′		ABS	3	А	BS,	Х	А	BS,	Υ		IND	1	ZF	P, IN	۱D	11	ND,	X	II.	ND,	Υ		REL	_		SP		7	6	5	4	3	2	1	0
ОР	n	#	OP	n	#	OP	n	#	OP	n	#	OP	n	#	OP	n	#	OP	n	#	OP	n	#	OP	n	#	OP	n	#	OP	n	#	N	٧	Т	В	D	ı	Z	С
																											10	2	2					•	•	•	•	•	•	•
																											80	4	2					٠		•				
																																	•	•	•	1	•	1	•	•
																											50	2	2				•	•	•	•	•	•	•	•
																											70	2	2				•	•	•	•	•	•	•	•
																																	•	•	•	•	•	•	•	•
																																	•	•	•	•	•	•	•	0
																																	•	•	•	•	0	0	•	•
																																	•	•	0	•	•	•	•	•
																																	•	0	•	•	•	•	•	•
D5	4	2				CD	4	3	חח	5	3	D9	5	3							C1	6	2	D1	6	2							N	•	•	•	•	•	7	С
		_																					_		3	_													_	
																																	N	•	•	•	•	•	z	•
						EC	4	3																									N	•	•	•	•	•	Z	С
						СС	4	3																									N	•	•	•	•	•	Z	С
D6	6	2				CE	6	3	DE	7	3																						N	•	•	•	•	•	Z	

			Π						Α	ddre	essi	ing r	nod	е						
Symbol	Function	Details		IMP	,		IMM			Α		В	IT,	A		ZP		ВІ	T, Z	— Р
			ОР	n	#	ОР	n	#	OP	n	#	ОР	n	#	OP	n	#	OP	n	#
DEX	X ← X − 1	This instruction subtracts one from the current contents of X.	CA	2	1															
DEY	Y ← Y − 1	This instruction subtracts one from the current contents of Y.	88	2	1															
DIV	$\begin{split} A &\leftarrow (M(zz+X+1),\\ M(zz+X)) \ / \ A\\ M(S) &\leftarrow \text{one's complement of Remainder}\\ S &\leftarrow S-1 \end{split}$	This instruction divides the 16-bit data in M(zz+(X)) (low-order byte) and M(zz+(X)+1) (high-order byte) by the contents of A. The quotient is stored in A and the one's complement of the remainder is pushed onto the stack.																		
EOR (Note 1)	When T = 0 $A \leftarrow A \forall M$ When T = 1 $M(X) \leftarrow M(X) \forall M$	When T = 0, this instruction transfers the contents of the M and A to the ALU which performs a bit-wise Exclusive OR, and stores the result in A. When T = 1, the contents of M(X) and M are transferred to the ALU, which performs a bit-wise Exclusive OR and stores the results in M(X). The contents of A remain unchanged, but status flags are changed. M(X) represents the contents of memory where is indicated by X.				49	2	2							45	3	2			
INC	A ← A + 1 or M ← M + 1	This instruction adds one to the contents of A or M.							ЗА	2	1				E6	5	2			
INX	X ← X + 1	This instruction adds one to the contents of X.	E8	2	1															
INY	Y ← Y + 1	This instruction adds one to the contents of Y.	C8	2	1															
JMP	If addressing mode is ABS PCL \leftarrow ADL PCH \leftarrow ADH If addressing mode is IND PCL \leftarrow M (ADH, ADL) PCH \leftarrow M (ADH, ADL + 1) If addressing mode is ZP, IND PCL \leftarrow M(00, ADL) PCH \leftarrow M(00, ADL + 1)	This instruction jumps to the address designated by the following three addressing modes: Absolute Indirect Absolute Zero Page Indirect Absolute																		
JSR	$\begin{split} M(S) &\leftarrow \text{PCH} \\ S \leftarrow S - 1 \\ M(S) \leftarrow \text{PCL} \\ S \leftarrow S - 1 \\ \text{After executing the above,} \\ \text{if addressing mode is ABS,} \\ \text{PCL} \leftarrow \text{ADL} \\ \text{PCH} \leftarrow \text{ADH} \\ \text{if addressing mode is SP,} \\ \text{PCL} \leftarrow \text{ADL} \\ \text{PCH} \leftarrow \text{FF} \\ \text{If addressing mode is ZP, IND,} \\ \text{PCL} \leftarrow M(00, \text{ADL}) \\ \text{PCH} \leftarrow M(00, \text{ADL}) + 1) \end{split}$	This instruction stores the contents of the PC in the stack, then jumps to the address designated by the following addressing modes: Absolute Special Page Zero Page Indirect Absolute																		
LDA (Note 2)	When $T = 0$ $A \leftarrow M$ When $T = 1$ $M(X) \leftarrow M$	When T = 0, this instruction transfers the contents of M to A. When T = 1, this instruction transfers the contents of M to $(M(X))$. The contents of A remain unchanged, but status flags are changed. $M(X)$ represents the contents of memory where is indicated by X.				A9	2	2							A5	3	2			
LDM	M ← nn	This instruction loads the immediate value in M.													3C	4	3			
LDX	$X \leftarrow M$	This instruction loads the contents of M in X.	L			A2	2	2							A6	3	2			
LDY	$Y \leftarrow M$	This instruction loads the contents of M in Y.				A0	2	2							A4	3	2			

														Ad	dres	ssin	g mo	ode															F	roc	esso	or st	atus	reç	jiste	r
Z	P, >	(Z	ΖP, `	Y	Ι.	ABS	3	А	BS,	Х	A	BS,	Υ		IND		ZF	P, IN	ID	IN	1D, 1	X	IN	۱D, ۱	Υ	ı	REL			SP		7	6	5	4	3	2	1	0
OP	n	#	OP	n	#	OP	n	#	OP	n	#	ОР	n	#	OP	n	#	OP	n	#	OP	n	#	OP	n	#	OP	n	#	OP	n	#	N	٧	Т	В	D	ı	Z	С
																																	N	•	•	•	•	•	Z	•
																																	N	•	•	•	•	•	Z	•
E2	16	2																															•	•	•	•	•	•	•	•
55	4	2				4D	4	3	5D	5	3	59	5	3							41	6	2	51	6	2							N	•	•	•	•	•	Z	•
F6	6	2				EE	6	3	FE	7	3																						N	•	•	•	•	•	Z	•
																																	N	•	•	•	•	•	Z	•
																																	N	•	•	•	•	•	Z	•
						4C	3	3							6C	5	3	B2	4	2													•	•	•	•	•	•	•	•
						20	6	3										02	7	2										22	5	2	•	•	٠	•	٠	•	•	•
B5	4	2				AD	4	3	BD	5	3	В9	5	3							A1	0	2	B1	6	2							N	•	•	•	•	•	Z	•
																																	•	•	•	•	•	•	•	•
			В6	4	2	ΑE	4	3				BE	5	3																			N	•	•	•	•	•	Z	•
В4	4	2				AC	4	3	вс	5	3																						N	•	•	•	•	•	Z	•

3-72 38C3 Group User's Manual 3-73

Function 7 0 0 \rightarrow \square \rightarrow \square M(S) • A \leftarrow A * M(zz + X) S \leftarrow S - 1 PC \leftarrow PC + 1 When T = 0 A \leftarrow A V M When T = 1 M(X) \leftarrow M(X) V M	This instruction shifts either A or M one bit to the right such that bit 7 of the result always is set to 0, and the bit 0 is stored in C. This instruction multiply Accumulator with the memory specified by the Zero Page X address mode and stores the high-order byte of the result on the Stack and the low-order byte in A. This instruction adds one to the PC but does no otheroperation. When T = 0, this instruction transfers the contents of A and M to the ALU which performs a bit-wise "OR", and stores the result in A. When T = 1, this instruction transfers the contents of M(X) and the M to the ALU which performs a bit-wise OR, and stores the result in M(X). The contents of A remain unchanged, but status flags are changed. M(X) represents the contents of memory where is indicated by X.	OP			OP 09		#	OP 4A	A n 2	1	ОР	n		OP 46	n 5	# 2	BI*	n n
$M(S) \bullet A \leftarrow A * M(zz + X)$ $S \leftarrow S - 1$ $PC \leftarrow PC + 1$ $When T = 0$ $A \leftarrow A \lor M$ $When T = 1$ $M(X) \leftarrow M(X) \lor M$	the right such that bit 7 of the result always is set to 0, and the bit 0 is stored in C. This instruction multiply Accumulator with the memory specified by the Zero Page X address mode and stores the high-order byte of the result on the Stack and the low-order byte in A. This instruction adds one to the PC but does no otheroperation. When T = 0, this instruction transfers the contents of A and M to the ALU which performs a bit-wise "OR", and stores the result in A. When T = 1, this instruction transfers the contents of M(X) and the M to the ALU which performs a bit-wise OR, and stores the result in M(X). The contents of A remain unchanged, but status flags are changed. M(X) represents the contents of memory							Н	\rightarrow	\dashv	OP	n	#	-			OP	n
$M(S) \bullet A \leftarrow A * M(zz + X)$ $S \leftarrow S - 1$ $PC \leftarrow PC + 1$ $When T = 0$ $A \leftarrow A \lor M$ $When T = 1$ $M(X) \leftarrow M(X) \lor M$	the right such that bit 7 of the result always is set to 0, and the bit 0 is stored in C. This instruction multiply Accumulator with the memory specified by the Zero Page X address mode and stores the high-order byte of the result on the Stack and the low-order byte in A. This instruction adds one to the PC but does no otheroperation. When T = 0, this instruction transfers the contents of A and M to the ALU which performs a bit-wise "OR", and stores the result in A. When T = 1, this instruction transfers the contents of M(X) and the M to the ALU which performs a bit-wise OR, and stores the result in M(X). The contents of A remain unchanged, but status flags are changed. M(X) represents the contents of memory	EA	2	1	09			4A	2	1				46	5	2		
$S \leftarrow S - 1$ $PC \leftarrow PC + 1$ When $T = 0$ $A \leftarrow A \lor M$ When $T = 1$ $M(X) \leftarrow M(X) \lor M$	memory specified by the Zero Page X address mode and stores the high-order byte of the result on the Stack and the low-order byte in A. This instruction adds one to the PC but does no otheroperation. When T = 0, this instruction transfers the contents of A and M to the ALU which performs a bit-wise "OR", and stores the result in A. When T = 1, this instruction transfers the contents of M(X) and the M to the ALU which performs a bit-wise OR, and stores the result in M(X). The contents of A remain unchanged, but status flags are changed. M(X) represents the contents of memory	EA	2	1	09	0												
When T = 0 $A \leftarrow A \lor M$ When T = 1 $M(X) \leftarrow M(X) \lor M$ $M(S) \leftarrow A$	no otheroperation. When T = 0, this instruction transfers the contents of A and M to the ALU which performs a bit-wise "OR", and stores the result in A. When T = 1, this instruction transfers the contents of M(X) and the M to the ALU which performs a bit-wise OR, and stores the result in M(X). The contents of A remain unchanged, but status flags are changed. M(X) represents the contents of memory	EA	2	1	09													
$A \leftarrow A \lor M$ When $T = 1$ $M(X) \leftarrow M(X) \lor M$ $M(S) \leftarrow A$	tents of A and M to the ALU which performs a bit-wise "OR", and stores the result in A. When T = 1, this instruction transfers the contents of M(X) and the M to the ALU which performs a bit-wise OR, and stores the result in M(X). The contents of A remain unchanged, but status flags are changed. M(X) represents the contents of memory				09													
						2	2							05	3	2		
	This instruction pushes the contents of A to the memory location designated by S, and decrements the contents of S by one.	48	3	1														
$\begin{array}{l} M(S) \leftarrow PS \\ S \leftarrow S - 1 \end{array}$	This instruction pushes the contents of PS to the memory location designated by S and decrements the contents of S by one.	08	3	1														
$\begin{array}{l} S \leftarrow S + 1 \\ A \leftarrow M(S) \end{array}$	This instruction increments S by one and stores the contents of the memory designated by S in A.	68	4	1														
$\begin{array}{c} S \leftarrow S + 1 \\ PS \leftarrow M(S) \end{array}$	This instruction increments S by one and stores the contents of the memory location designated by S in PS.	28	4	1														
7 0 	This instruction shifts either A or M one bit left through C. C is stored in bit 0 and bit 7 is stored in C.							2A	2	1				26	5	2		
7 0 —C→——	This instruction shifts either A or M one bit right through C. C is stored in bit 7 and bit 0 is stored in C.							6A	2	1				66	5	2		
7 0	This instruction rotates 4 bits of the M content to the right.													82	8	2		
$\begin{array}{l} S \leftarrow S+1 \\ PS \leftarrow M(S) \\ S \leftarrow S+1 \\ PCL \leftarrow M(S) \\ S \leftarrow S+1 \\ PCH \leftarrow M(S) \end{array}$	This instruction increments S by one, and stores the contents of the memory location designated by S in PS. S is again incremented by one and stores the contents of the memory location designated by S in PCL. S is again incremented by one and stores the contents of memory location designated by S in PCH.	40	6	1														
$\begin{array}{l} S \leftarrow S+1 \\ PCL \leftarrow M(S) \\ S \leftarrow S+1 \\ PCH \leftarrow M(S) \\ (PC) \leftarrow (PC)+1 \end{array}$	This instruction increments S by one and stores the contents of the memory location designated by S in PCL. S is again incremented by one and the contents of the memory location is stored in PCH. PC is incremented by 1.	60	6	1														
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	stores the contents of the memory designated by S in A. $S \leftarrow S + 1$ $PS \leftarrow M(S)$ $This instruction increments S by one and stores the contents of the memory location designated by S in PS. TO This instruction shifts either A or M one bit left through C. C is stored in bit 0 and bit 7 is stored in C. This instruction shifts either A or M one bit right through C. C is stored in bit 7 and bit 0 is stored in C. This instruction shifts either A or M one bit right through C. C is stored in bit 7 and bit 0 is stored in C. This instruction rotates 4 bits of the M content to the right. S \leftarrow S + 1 PS \leftarrow M(S) S \leftarrow S + 1 PCL \leftarrow M(S) S \leftarrow S + 1 PCH \leftarrow M(S) S \leftarrow S + 1 PCL \leftarrow M(S) S \leftarrow S + 1 PCH \leftarrow M(S) S \leftarrow S + 1 S $	A ← M(S) stores the contents of the memory designated by S in A. 68 S ← S + 1 PS ← M(S) This instruction increments S by one and stores the contents of the memory location designated by S in PS. 28 7 0	A ← M(S) stores the contents of the memory designated by S in A. 68 4 S ← S + 1 PS ← M(S) This instruction increments S by one and stores the contents of the memory location designated by S in PS. 28 4 7 0	A ← M(S) stores the contents of the memory designated by S in A. 68 4 1 S ← S + 1 PS ← M(S) This instruction increments S by one and stores the contents of the memory location designated by S in PS. 28 4 1 7 0	A ← M(S) stores the contents of the memory designated by S in A. 68 4 1 S ← S + 1 PS ← M(S) This instruction increments S by one and stores the contents of the memory location designated by S in PS. 28 4 1 7 0	A ← M(S) stores the contents of the memory designated by S in A. 68 4 1 S ← S + 1 PS ← M(S) This instruction increments S by one and stores the contents of the memory location designated by S in PS. 28 4 1 7 0	A ← M(S) stores the contents of the memory designated by S in A. 68 4 1 S ← S + 1 PS ← M(S) This instruction increments S by one and stores the contents of the memory location designated by S in PS. 28 4 1 7 0	A ← M(S) stores the contents of the memory designated by S in A. 68 4 1 S ← S + 1 PS ← M(S) This instruction increments S by one and stores the contents of the memory location designated by S in PS. 28 4 1 7 0	A ← M(S) stores the contents of the memory designated by S in A. 68 4 1 S ← S + 1 PS ← M(S) This instruction increments S by one and stores the contents of the memory location designated by S in PS. 28 4 1 7 0	A ← M(S) stores the contents of the memory designated by S in A. 68 4 1 S ← S + 1 PS ← M(S) This instruction increments S by one and stores the contents of the memory location designated by S in PS. 28 4 1 7 0	A ← M(S) stores the contents of the memory designated by S in A. 68 4 1 S ← S + 1 PS ← M(S) This instruction increments S by one and stores the contents of the memory location designated by S in PS. 28 4 1 7 0	A ← M(S) stores the contents of the memory designated by S in A. 68 4 1 S ← S + 1 PS ← M(S) This instruction increments S by one and stores the contents of the memory location designated by S in PS. 28 4 1 7 0	A ← M(S) stores the contents of the memory designated by S in A. 68 4 1 S ← S + 1 PCL ← M(S) This instruction increments S by one and stores the contents of the memory location designated by S in PS. 28 4 1 7 0 Control	A ← M(S) stores the contents of the memory designated by S in A. 68 4 1 S ← S + 1 PCL ← M(S) This instruction increments S by one and stores the contents of the memory location designated by S in PS. 28 4 1 7 0 Condition of the memory location designated by S in PS. 28 4 1 7 0 Condition of the memory location designated by S in PS. S is again incremented by one and stores the contents of the memory location designated by S in PS. S is again incremented by one and stores the contents of the memory location designated by S in PCL. S is again incremented by one and stores the contents of the memory location designated by S in PCH. 60 1 S ← S + 1 PCH ← M(S) S ← S + 1 PCH ← M(S) G ← S + 1 PCH ← M(S) This instruction increments S by one and stores the contents of the memory location designated by S in PCH. S is again incremented by one and stores the contents of the memory location designated by S in PCH. S is again incremented by one and stores the contents of the memory location designated by S in PCH. S is again incremented by one and stores the contents of the memory location designated by S in PCH. S is again incremented by one and stores the contents of the memory location designated by S in PCH. S is again incremented by one and stores the contents of the memory location designated by S in PCH. S is again incremented by one and the contents of the memory location incremented by one and the contents of the memory location incremented by one and the contents of the memory location incremented by one and the contents of the memory location incremented by one and the contents of the memory location incremented by One and the contents of the me	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A ← M(S) stores the contents of the memory designated by S in A. S ← S + 1 PS ← M(S) This instruction increments S by one and stores the contents of the memory location designated by S in PS. 28 4 1 7 0	A ← M(S) stores the contents of the memory designated by S in A. S ← S + 1 PS ← M(S) This instruction increments S by one and stores the contents of the memory location designated by S in PS. 7 0 This instruction shifts either A or M one bit left through C. C is stored in bit 0 and bit 7 is stored in C. 7 0 This instruction shifts either A or M one bit right through C. C is stored in bit 7 and bit 0 is stored in C. 7 0 This instruction rotates 4 bits of the M content to the right. 82 8 2 85 ← S + 1 PS ← M(S) S ← S + 1 PCH ← M(S) This instruction increments S by one and stores the contents of the memory location designated by S in PCL. S is again incremented by one and stores the contents of the memory location designated by S in PCL. S is again incremented by one and stores the contents of the memory location designated by S in PCL. S is again incremented by one and stores the contents of the memory location designated by S in PCL. S is again incremented by one and stores the contents of the memory location designated by S in PCL. S is again incremented by one and stores the contents of the memory location designated by S in PCL. S is again incremented by one and stores the contents of the memory location designated by S in PCL. S is again incremented by one and the contents of the memory location designated by S in PCL. S is again incremented by one and the contents of the memory location is stored in PCH. PC is

			_			_									Ad	dres	ssin	g m	ode												_			F	Proc	esso	or st	atus	s re	giste	ان ب
Z	Ρ, Σ	X	Z	ZP,	Υ		AE	3S		Al	BS,	Χ	А	BS,	Υ		IND		ZF	P, IN	ID	١١	۱D,	X	IN	ND,	Υ		REL	-		SP		7	6	5	4	3	2	1	
ЭP	n	#	ОР	n	#	OF	r	n I	#	OP	n	#	OP	n	#	OP	n	#	OP	n	#	OP	n	#	OP	n	#	OP	n	#	OF	n	#	N	٧	Т	В	D	ı	z	
56	6	2				48	Ε 6	6	3	5E	7	3																						0	•	•	•	•	•	Z	
62	15	2																																•	•	•	•	•	•	•	
																																		•	•	•	•	•	•	•	1
15	4	2				01	0 4	1	3	1D	5	3	19	5	3							01	6	2	11	6	2							N	•	•	•	•	•	Z	
								1																										•	•	•	•	•	•	•	
																																		•	•	•	•	•	•	•	
																																		N	•	•	•	•	•	Z	
																																			(Va	lue :	save	ed ir	n sta	ack)	+
36	6	2				21	≣ 6	6	3	3E	7	3																						N	•	•	•	•	•	Z	
76	6	2				61	Ξ 6	6	3	7E	7	3																						N	•	•	•	•	•	Z	
																																		•	•	•	•	•	•	•	
																																			(Va	lue :	save	ed ir	n sta	ack)	+
																																		•	•	•	•	•	•	•	

										Ad	ddres	sir	ng n	nod	е						
Symbol	Function	Details		IMF)		IM	M			Α		В	IT, i	A		ΖP		ВІ	T, Z	ľP
			ОР	n	#	OF	1	n #	# C	P	n #	#	OP	n	#	OP	n	#	OP	n	#
SBC (Note 1) (Note 5)	When T = 0 $A \leftarrow A - M - \overline{C}$ When T = 1 $M(X) \leftarrow M(X) - M - \overline{C}$	When T = 0, this instruction subtracts the value of M and the complement of C from A, and stores the results in A and C. When T = 1, the instruction subtracts the contents of M and the complement of C from the contents of M(X), and stores the results in M(X) and C. A remain unchanged, but status flag are changed. M(X) represents the contents of memory where is indicated by X.				ES	2	2 2	2							E5	3	2			
SEB	Ai or Mi ← 1	This instruction sets the designated bit i of A or M.										2	0 <u>В</u> 20і	2	1				0₽ 20i	5	2
SEC	C ← 1	This instruction sets C.	38	2	1																
SED	D ← 1	This instruction set D.	F8	2	1																
SEI	I ← 1	This instruction set I.	78	2	1																
SET	T ← 1	This instruction set T.	32	2	1				T												
STA	M ← A	This instruction stores the contents of A in M. The contents of A does not change.							Ī							85	4	2			
STP		This instruction resets the oscillation control F/F and the oscillation stops. Reset or interrupt input is needed to wake up from this mode.	42	2	1																
STX	$M \leftarrow X$	This instruction stores the contents of X in M. The contents of X does not change.														86	4	2			
STY	$M \leftarrow Y$	This instruction stores the contents of Y in M. The contents of Y does not change.														84	4	2			
TAX	$X \leftarrow A$	This instruction stores the contents of A in X. The contents of A does not change.	AA	2	1				Ī												
TAY	Y ← A	This instruction stores the contents of A in Y. The contents of A does not change.	A8	2	1				Ī												
TST	M = 0?	This instruction tests whether the contents of M are "0" or not and modifies the N and Z.							T							64	3	2			
TSX	X←S	This instruction transfers the contents of S in X.	ВА	2	1				T												
TXA	$A \leftarrow X$	This instruction stores the contents of X in A.	8A	2	1							1									
TXS	S←X	This instruction stores the contents of X in S.	9A	2	1				†												
TYA	A ← Y	This instruction stores the contents of Y in A.	98	2	1				1			1									
WIT		The WIT instruction stops the internal clock but not the oscillation of the oscillation circuit is not stopped. CPU starts its function after the Timer X over flows (comes to the terminal count). All registers or internal memory contents except Timer X will not change during this mode. (Of course needs VDD).	C2	2	1																

														Ad	dres	sin	g mo	ode															F	Proc	esso	or st	atus	reg	jiste	
Z	ΈP,)	X	Z	ZP, `	Y	Γ.	ABS	3	А	BS,	Х	А	BS,	Υ		IND		ZF	P, IN	ID.	IN	ND,	X	IN	ND,	Υ		REL			SP		7	6	5	4	3	2	1	0
OP	n	#	OP	n	#	OP	n	#	OP	n	#	ОР	n	#	OP	n	#	OP	n	#	OP	n	#	OP	n	#	OP	n	#	OP	n	#	N	V	Т	В	D	ı	Z	С
F5	4	2				ED	4	3	FD	5	3	F9	5	3							E1	6	2	F1	6	2							N	V	•	•	•	•	Z	С
																																	•	•	•	•	•	•	•	•
																																	•	•	•	•	•	•	•	1
																																	•	•	•	•	1	1	•	•
																																	•	•	1	•	•	•	•	•
95	5	2				8D	5	3	9D	6	3	99	6	3							81	7	2	91	7	2							•	•	•	•	•	•	•	•
																																	•	•	•	•	•	•	•	•
			96	5	2	8E	5	3																									•	•	•	•	•	•	•	•
94	5	2				8C	5	3																									•	•	•	•	•	•	•	•
																																	N	•	•	•	•	•	Z	•
																																	N	•	•	•	•	•	Z	•
																																	N N	•	•	•	•	•	Z Z	•
																																	N	•	•	•	•	•	Z	•
																																	•	•	•	•	•	•	•	•
																																	N	•	•	•	•	•	Z	•
																																	•	•	•	•	•	•	•	•

3-76 38C3 Group User's Manual 38C3 Group User's Manual 3-77

Notes 1: The number of cycles "n" is increased by 3 when T is 1.
2: The number of cycles "n" is increased by 2 when T is 1.
3: The number of cycles "n" is increased by 1 when T is 1.
4: The number of cycles "n" is increased by 2 when branching has occurred.
5: N, V, and Z flags are invalid in decimal operation mode.

APPENDIX

3.10 Machine instructions

Symbol	Contents	Symbol	Contents
IMP	Implied addressing mode	+	Addition
IMM	Immediate addressing mode	-	Subtraction
Α	Accumulator or Accumulator addressing mode	*	Multiplication
BIT, A	Accumulator bit addressing mode	/	Division
BIT, A, R	Accumulator bit relative addressing mode	٨	Logical OR
ZP	Zero page addressing mode	V	Logical AND
BIT, ZP	Zero page bit addressing mode	¥	Logical exclusive OR
BIT, ZP, R	Zero page bit relative addressing mode	_	Negation
ZP, X	Zero page X addressing mode	←	Shows direction of data flow
ZP, Y	Zero page Y addressing mode	X	Index register X
ABS	Absolute addressing mode	Υ	Index register Y
ABS, X	Absolute X addressing mode	S	Stack pointer
ABS, Y	Absolute Y addressing mode	PC	Program counter
IND	Indirect absolute addressing mode	PS	Processor status register
		РСн	8 high-order bits of program counter
ZP, IND	Zero page indirect absolute addressing mode	PCL	8 low-order bits of program counter
		ADH	8 high-order bits of address
IND, X	Indirect X addressing mode	ADL	8 low-order bits of address
IND, Y	Indirect Y addressing mode	FF	FF in Hexadecimal notation
REL	Relative addressing mode	nn	Immediate value
SP	Special page addressing mode	ZZ	Zero page address
С	Carry flag	M	Memory specified by address designation of any ad-
Z	Zero flag		dressing mode
1	Interrupt disable flag	M(X)	Memory of address indicated by contents of index
D	Decimal mode flag		register X
B T	Break flag X-modified arithmetic mode flag	M(S)	Memory of address indicated by contents of stack pointer
V	Overflow flag	M(ADH, ADL)	Contents of memory at address indicated by ADH and
N	Negative flag	, , ,	ADL, in ADH is 8 high-order bits and ADL is 8 low-or-
			der bits.
		M(00, ADL)	Contents of address indicated by zero page ADL
		Ai	Bit i (i = 0 to 7) of accumulator
		Mi	Bit i (i = 0 to 7) of memory
		OP	Opcode
		n	Number of cycles
		#	Number of bytes
		1	*

3.11 List of instruction code

	D3 – D0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
D7 – D4	exadecimal notation	0	1	2	3	4	5	6	7	8	9	А	В	С	D	E	F
0000	0	BRK	ORA IND, X	JSR ZP, IND	BBS 0, A	_	ORA ZP	ASL ZP	BBS 0, ZP	PHP	ORA IMM	ASL A	SEB 0, A	-	ORA ABS	ASL ABS	SEB 0, ZP
0001	1	BPL	ORA IND, Y	CLT	BBC 0, A	_	ORA ZP, X	ASL ZP, X	BBC 0, ZP	CLC	ORA ABS, Y	DEC A	CLB 0, A	_	ORA ABS, X	ASL ABS, X	CLB 0, ZP
0010	2	JSR ABS	AND IND, X	JSR SP	BBS 1, A	BIT ZP	AND ZP	ROL ZP	BBS 1, ZP	PLP	AND IMM	ROL A	SEB 1, A	BIT ABS	AND ABS	ROL ABS	SEB 1, ZP
0011	3	ВМІ	AND IND, Y	SET	BBC 1, A	_	AND ZP, X	ROL ZP, X	BBC 1, ZP	SEC	AND ABS, Y	INC A	CLB 1, A	LDM ZP	AND ABS, X	ROL ABS, X	CLB 1, ZP
0100	4	RTI	EOR IND, X	STP	BBS 2, A	COM ZP	EOR ZP	LSR ZP	BBS 2, ZP	РНА	EOR IMM	LSR A	SEB 2, A	JMP ABS	EOR ABS	LSR ABS	SEB 2, ZP
0101	5	BVC	EOR IND, Y	_	BBC 2, A	_	EOR ZP, X	LSR ZP, X	BBC 2, ZP	CLI	EOR ABS, Y	_	CLB 2, A	_	EOR ABS, X	LSR ABS, X	CLB 2, ZP
0110	6	RTS	ADC IND, X	MUL ZP, X	BBS 3, A	TST ZP	ADC ZP	ROR ZP	BBS 3, ZP	PLA	ADC IMM	ROR A	SEB 3, A	JMP IND	ADC ABS	ROR ABS	SEB 3, ZP
0111	7	BVS	ADC IND, Y	_	BBC 3, A	-	ADC ZP, X	ROR ZP, X	BBC 3, ZP	SEI	ADC ABS, Y	_	CLB 3, A	_	ADC ABS, X	ROR ABS, X	CLB 3, ZP
1000	8	BRA	STA IND, X	RRF ZP	BBS 4, A	STY ZP	STA ZP	STX ZP	BBS 4, ZP	DEY	_	TXA	SEB 4, A	STY ABS	STA ABS	STX ABS	SEB 4, ZP
1001	9	всс	STA IND, Y	_	BBC 4, A	STY ZP, X	STA ZP, X	STX ZP, Y	BBC 4, ZP	TYA	STA ABS, Y	TXS	CLB 4, A	_	STA ABS, X	_	CLB 4, ZP
1010	А	LDY IMM	LDA IND, X	LDX IMM	BBS 5, A	LDY ZP	LDA ZP	LDX ZP	BBS 5, ZP	TAY	LDA IMM	TAX	SEB 5, A	LDY ABS	LDA ABS	LDX ABS	SEB 5, ZP
1011	В	BCS	LDA IND, Y	JMP ZP, IND	BBC 5, A	LDY ZP, X	LDA ZP, X	LDX ZP, Y	BBC 5, ZP	CLV	LDA ABS, Y	TSX	CLB 5, A	LDY ABS, X	LDA ABS, X	LDX ABS, Y	CLB 5, ZP
1100	С	CPY IMM	CMP IND, X	WIT	BBS 6, A	CPY ZP	CMP ZP	DEC ZP	BBS 6, ZP	INY	CMP IMM	DEX	SEB 6, A	CPY ABS	CMP ABS	DEC ABS	SEB 6, ZP
1101	D	BNE	CMP IND, Y	_	BBC 6, A	_	CMP ZP, X	DEC ZP, X	BBC 6, ZP	CLD	CMP ABS, Y	_	CLB 6, A	_	CMP ABS, X	DEC ABS, X	CLB 6, ZP
1110	Е	CPX IMM	SBC IND, X	DIV ZP, X	BBS 7, A	CPX ZP	SBC ZP	INC ZP	BBS 7, ZP	INX	SBC	NOP	SEB 7, A	CPX ABS	SBC ABS	INC ABS	SEB 7, ZP
1111	F	BEQ	SBC IND, Y	_	BBC 7, A	_	SBC ZP, X	INC ZP, X	BBC 7, ZP	SED	SBC ABS, Y	_	CLB 7, A	_	SBC ABS, X	INC ABS, X	CLB 7, ZP

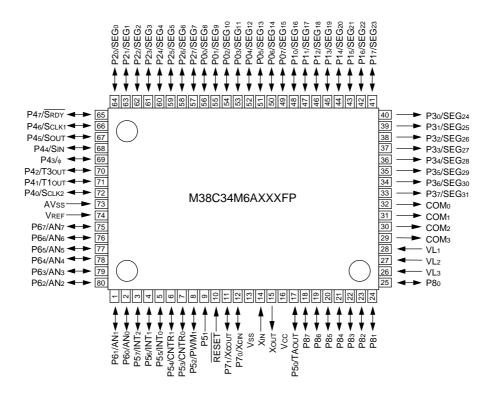
:	3-byte	instruction
١.	O Dyto	ii ioti dotiori

: 2-byte instruction

: 1-byte instruction

3.12 SFR memory map

3.12 SFR memory map


000016	Port P0 (P0)	002016	Timer 1 (T1)
000116	Port P0 direction register (P0D)	002116	Timer 2 (T2)
000216	Port P1 (P1)	002216	Timer 3 (T3)
000316	Port P1 direction register (P1D)	002316	Timer 4 (T4)
000416	Port P2 (P2)	002416	Timer 5 (T5)
000516	Port P2 direction register (P2D)	002516	Timer 6 (T6)
000616	Port P3 (P3)	002616	
000716		002716	Timer 6 PWM register (T6PWM)
000816	Port P4 (P4)	002816	Timer 12 mode register (T12M)
000916	Port P4 direction register (P4D)	002916	Timer 34 mode register (T34M)
000A16	Port P5 (P5)	002A ₁₆	Timer 56 mode register (T56M)
000B ₁₆	Port P5 direction register (P5D)	002B ₁₆	φ output control register (CKOUT)
000C ₁₆	Port P6 (P6)	002C ₁₆	Timer A register (low) (TAL)
000D ₁₆	Port P6 direction register (P6D)	002D ₁₆	Timer A register (high) (TAH)
000E16	Port P7 (P7)	002E ₁₆	Compare register (low) (CONAL)
000F ₁₆	Port P7 direction register (P7D)	002F ₁₆	Compare register (high) (CONAH)
001016	Port P8 (P8)	003016	Timer A mode register (TAM)
001116	Port P8 direction register (P8D)		Timer A control register (TACON)
001216		003216	A-D control register (ADCON)
001316		003316	A-D conversion register (low) (ADL)
001416		003416	A-D conversion register (high) (ADH)
001516		003516	
001616	PULL register A (PULLA)	003616	
001716	PULL register B (PULLB)	003716	
	Port P8 output selection register (P8SEL)	003816	Segment output enable register (SEG)
	Serial I/O control register 1 (SIOCON1)	003916	LCD mode register (LM)
	Serial I/O control register 2 (SIOCON2)	003A ₁₆	Interrupt edge selection register (INTEDGE)
001B ₁₆	Serial I/O register (SIO)		CPU mode register (CPUM)
001C ₁₆			Interrupt request register 1 (IREQ1)
001D ₁₆			Interrupt request register 2 (IREQ2)
001E ₁₆		003E ₁₆	Interrupt control register 1 (ICON1)
001F ₁₆		003F ₁₆	Interrupt control register 2 (ICON2)
		,	,
	ROM correct enable register 1 (Note)		ROM correct high-order address register 5 (Note)
	ROM correct high-order address register 1 (Note)		ROM correct low-order address register 5 (Note)
	ROM correct low-order address register 1 (Note)		ROM correct high-order address register 6 (Note)
	ROM correct high-order address register 2 (Note)		ROM correct low-order address register 6 (Note)
	ROM correct low-order address register 2 (Note)		ROM correct high-order address register 7 (Note)
	ROM correct high-order address register 3 (Note)		ROM correct low-order address register 7 (Note)
0F07 ₁₆	ROM correct low-order address register 3 (Note)	0F10 ₁₆	ROM correct high-order address register 8 (Note)

Note: This register is valid only in mask ROM version.

0F08₁₆ ROM correct high-order address register 4 (Note)
0F09₁₆ ROM correct low-order address register 4 (Note)

0F11₁₆ ROM correct low-order address register 8 (Note)

3.13 Pin configuration

(Top view)

Package type: 80P6N-A 80-pin plastic molded QFP

APPENDIX

3.13 Pin configuration

MEMORANDUM

MITSUBISHI SEMICONDUCTORS USER'S MANUAL 38C3 Group

Apr. First Edition 1999

Editioned by

Committee of editing of Mitsubishi Semiconductor USER'S MANUAL

Published by

Mitsubishi Electric Corp., Semiconductor Marketing Division

This book, or parts thereof, may not be reproduced in any form without permission of Mitsubishi Electric Corporation.

©1999 MITSUBISHI ELECTRIC CORPORATION

User's Manual 38C3 Group

HEAD OFFICE: MITSUBISHI DENKI BLDG., MARUNOUCHI, TOKYO 100. TELEX: J24532 CABLE: MELCO TOKYO